Beispiel #1
0
inline void CalculateVolumeLevels(float *buffer, int totalFloats, float mulVal, float &RMS, float &MAX)
{
    float sum = 0.0f;
    int totalFloatsStore = totalFloats;

    float Max = 0.0f;

    if((UPARAM(buffer) & 0xF) == 0)
    {
        UINT alignedFloats = totalFloats & 0xFFFFFFFC;
        __m128 sseMulVal = _mm_set_ps1(mulVal);

        for(UINT i=0; i<alignedFloats; i += 4)
        {
            __m128 sseScaledVals = _mm_mul_ps(_mm_load_ps(buffer+i), sseMulVal);

            /*compute squares and add them to the sum*/
            __m128 sseSquares = _mm_mul_ps(sseScaledVals, sseScaledVals);
            sum += sseSquares.m128_f32[0] + sseSquares.m128_f32[1] + sseSquares.m128_f32[2] + sseSquares.m128_f32[3];

            /* 
                sse maximum of squared floats 
                concept from: http://stackoverflow.com/questions/9795529/how-to-find-the-horizontal-maximum-in-a-256-bit-avx-vector
            */
            __m128 sseSquaresP = _mm_shuffle_ps(sseSquares, sseSquares, _MM_SHUFFLE(1, 0, 3, 2));
            __m128 halfmax = _mm_max_ps(sseSquares, sseSquaresP);
            __m128 halfmaxP = _mm_shuffle_ps(halfmax, halfmax, _MM_SHUFFLE(0,1,2,3));
            __m128 maxs = _mm_max_ps(halfmax, halfmaxP);

            Max = max(Max, maxs.m128_f32[0]);
        }

        buffer      += alignedFloats;
        totalFloats -= alignedFloats;
    }

    for(int i=0; i<totalFloats; i++)
    {
        float val = buffer[i] * mulVal;
        float pow2Val = val * val;
        sum += pow2Val;
        Max = max(Max, pow2Val);
    }

    RMS = sqrt(sum / totalFloatsStore);
    MAX = sqrt(Max);
}
Beispiel #2
0
void MultiplyAudioBuffer(float *buffer, int totalFloats, float mulVal)
{
    float sum = 0.0f;
    int totalFloatsStore = totalFloats;

    if((UPARAM(buffer) & 0xF) == 0)
    {
        UINT alignedFloats = totalFloats & 0xFFFFFFFC;
        __m128 sseMulVal = _mm_set_ps1(mulVal);

        for(UINT i=0; i<alignedFloats; i += 4)
        {
            __m128 sseScaledVals = _mm_mul_ps(_mm_load_ps(buffer+i), sseMulVal);
            _mm_store_ps(buffer+i, sseScaledVals);
        }

        buffer      += alignedFloats;
        totalFloats -= alignedFloats;
    }

    for(int i=0; i<totalFloats; i++)
        buffer[i] *= mulVal;
}
void UWidgetBlueprintLibrary::SetInputMode_GameOnly(APlayerController* Target)
{
	if (Target != nullptr)
	{
		FInputModeGameOnly InputMode;
		Target->SetInputMode(InputMode);
	}
}

void UWidgetBlueprintLibrary::SetFocusToGameViewport()
{
	FSlateApplication::Get().SetAllUserFocusToGameViewport();
}

void UWidgetBlueprintLibrary::DrawBox(UPARAM(ref) FPaintContext& Context, FVector2D Position, FVector2D Size, USlateBrushAsset* Brush, FLinearColor Tint)
{
	Context.MaxLayer++;

	if ( Brush )
	{
		FSlateDrawElement::MakeBox(
			Context.OutDrawElements,
			Context.MaxLayer,
			Context.AllottedGeometry.ToPaintGeometry(Position, Size),
			&Brush->Brush,
			Context.MyClippingRect,
			ESlateDrawEffect::None,
			Tint);
	}
}
Beispiel #4
0
UINT AudioSource::QueryAudio(float curVolume)
{
    LPVOID buffer;
    UINT numAudioFrames;
    QWORD newTimestamp;

    if(GetNextBuffer((void**)&buffer, &numAudioFrames, &newTimestamp))
    {
        //------------------------------------------------------------
        // convert to float

        float *captureBuffer;

        if(!bFloat)
        {
            UINT totalSamples = numAudioFrames*inputChannels;
            if(convertBuffer.Num() < totalSamples)
                convertBuffer.SetSize(totalSamples);

            if(inputBitsPerSample == 8)
            {
                float *tempConvert = convertBuffer.Array();
                char *tempSByte = (char*)buffer;

                while(totalSamples--)
                {
                    *(tempConvert++) = float(*(tempSByte++))/127.0f;
                }
            }
            else if(inputBitsPerSample == 16)
            {
                float *tempConvert = convertBuffer.Array();
                short *tempShort = (short*)buffer;

                while(totalSamples--)
                {
                    *(tempConvert++) = float(*(tempShort++))/32767.0f;
                }
            }
            else if(inputBitsPerSample == 24)
            {
                float *tempConvert = convertBuffer.Array();
                BYTE *tempTriple = (BYTE*)buffer;
                TripleToLong valOut;

                while(totalSamples--)
                {
                    TripleToLong &valIn  = (TripleToLong&)tempTriple;

                    valOut.wVal = valIn.wVal;
                    valOut.tripleVal = valIn.tripleVal;
                    if(valOut.tripleVal > 0x7F)
                        valOut.lastByte = 0xFF;

                    *(tempConvert++) = float(double(valOut.val)/8388607.0);
                    tempTriple += 3;
                }
            }
            else if(inputBitsPerSample == 32)
            {
                float *tempConvert = convertBuffer.Array();
                long *tempShort = (long*)buffer;

                while(totalSamples--)
                {
                    *(tempConvert++) = float(double(*(tempShort++))/2147483647.0);
                }
            }

            captureBuffer = convertBuffer.Array();
        }
        else
            captureBuffer = (float*)buffer;

        //------------------------------------------------------------
        // channel upmix/downmix

        if(tempBuffer.Num() < numAudioFrames*2)
            tempBuffer.SetSize(numAudioFrames*2);

        float *dataOutputBuffer = tempBuffer.Array();
        float *tempOut = dataOutputBuffer;

        if(inputChannels == 1)
        {
            UINT  numFloats   = numAudioFrames;
            float *inputTemp  = (float*)captureBuffer;
            float *outputTemp = dataOutputBuffer;

            if((UPARAM(inputTemp) & 0xF) == 0 && (UPARAM(outputTemp) & 0xF) == 0)
            {
                UINT alignedFloats = numFloats & 0xFFFFFFFC;
                for(UINT i=0; i<alignedFloats; i += 4)
                {
                    __m128 inVal   = _mm_load_ps(inputTemp+i);

                    __m128 outVal1 = _mm_unpacklo_ps(inVal, inVal);
                    __m128 outVal2 = _mm_unpackhi_ps(inVal, inVal);

                    _mm_store_ps(outputTemp+(i*2),   outVal1);
                    _mm_store_ps(outputTemp+(i*2)+4, outVal2);
                }

                numFloats  -= alignedFloats;
                inputTemp  += alignedFloats;
                outputTemp += alignedFloats*2;
            }

            while(numFloats--)
            {
                float inputVal = *inputTemp;
                *(outputTemp++) = inputVal;
                *(outputTemp++) = inputVal;

                inputTemp++;
            }
        }
        else if(inputChannels == 2) //straight up copy
        {
            SSECopy(dataOutputBuffer, captureBuffer, numAudioFrames*2*sizeof(float));
        }
        else
        {
            //todo: downmix optimization, also support for other speaker configurations than ones I can merely "think" of.  ugh.
            float *inputTemp  = (float*)captureBuffer;
            float *outputTemp = dataOutputBuffer;

            if(inputChannelMask == KSAUDIO_SPEAKER_QUAD)
            {
                UINT numFloats = numAudioFrames*4;
                float *endTemp = inputTemp+numFloats;

                while(inputTemp < endTemp)
                {
                    float left      = inputTemp[0];
                    float right     = inputTemp[1];
                    float rearLeft  = inputTemp[2]*surroundMix4;
                    float rearRight = inputTemp[3]*surroundMix4;

                    // When in doubt, use only left and right .... and rear left and rear right :) 
                    // Same idea as with 5.1 downmix

                    *(outputTemp++) = (left  + rearLeft)  * attn4dotX;
                    *(outputTemp++) = (right + rearRight) * attn4dotX;

                    inputTemp  += 4;
                }
            }
            else if(inputChannelMask == KSAUDIO_SPEAKER_2POINT1)
            {
                UINT numFloats = numAudioFrames*3;
                float *endTemp = inputTemp+numFloats;

                while(inputTemp < endTemp)
                {
                    float left      = inputTemp[0];
                    float right     = inputTemp[1];
                   
                    // Drop LFE since we don't need it
                    //float lfe       = inputTemp[2]*lowFreqMix;

                    *(outputTemp++) = left;
                    *(outputTemp++) = right;

                    inputTemp  += 3;
                }
            }
            else if(inputChannelMask == KSAUDIO_SPEAKER_4POINT1)
            {
                UINT numFloats = numAudioFrames*5;
                float *endTemp = inputTemp+numFloats;

                while(inputTemp < endTemp)
                {
                    float left      = inputTemp[0];
                    float right     = inputTemp[1];

                    // Skip LFE , we don't really need it.
                    //float lfe       = inputTemp[2];

                    float rearLeft  = inputTemp[3]*surroundMix4;
                    float rearRight = inputTemp[4]*surroundMix4;

                    // Same idea as with 5.1 downmix

                    *(outputTemp++) = (left  + rearLeft)  * attn4dotX;
                    *(outputTemp++) = (right + rearRight) * attn4dotX;

                    inputTemp  += 5;
                }
            }
            else if(inputChannelMask == KSAUDIO_SPEAKER_SURROUND)
            {
                UINT numFloats = numAudioFrames*4;
                float *endTemp = inputTemp+numFloats;

                while(inputTemp < endTemp)
                {
                    float left      = inputTemp[0];
                    float right     = inputTemp[1];
                    float frontCenter    = inputTemp[2];
                    float rearCenter     = inputTemp[3];
                    
                    // When in doubt, use only left and right :) Seriously.
                    // THIS NEEDS TO BE PROPERLY IMPLEMENTED!

                    *(outputTemp++) = left;
                    *(outputTemp++) = right;

                    inputTemp  += 4;
                }
            }
            // Both speakers configs share the same format, the difference is in rear speakers position 
            // See: http://msdn.microsoft.com/en-us/library/windows/hardware/ff537083(v=vs.85).aspx
            // Probably for KSAUDIO_SPEAKER_5POINT1_SURROUND we will need a different coefficient for rear left/right
            else if(inputChannelMask == KSAUDIO_SPEAKER_5POINT1 || inputChannelMask == KSAUDIO_SPEAKER_5POINT1_SURROUND)
            {
                UINT numFloats = numAudioFrames*6;
                float *endTemp = inputTemp+numFloats;

                while(inputTemp < endTemp)
                {
                    float left      = inputTemp[0];
                    float right     = inputTemp[1];
                    float center    = inputTemp[2]*centerMix;
                    
                    //We don't need LFE channel so skip it (see below)
                    //float lowFreq   = inputTemp[3]*lowFreqMix;
                    
                    float rearLeft  = inputTemp[4]*surroundMix;
                    float rearRight = inputTemp[5]*surroundMix;
                    
                    // According to ITU-R  BS.775-1 recommendation, the downmix from a 3/2 source to stereo
                    // is the following:
                    // L = FL + k0*C + k1*RL
                    // R = FR + k0*C + k1*RR
                    // FL = front left
                    // FR = front right
                    // C  = center
                    // RL = rear left
                    // RR = rear right
                    // k0 = centerMix   = dbMinus3 = 0.7071067811865476 [for k0 we can use dbMinus6 = 0.5 too, probably it's better]
                    // k1 = surroundMix = dbMinus3 = 0.7071067811865476

                    // The output (L,R) can be out of (-1,1) domain so we attenuate it [ attn5dot1 = 1/(1 + centerMix + surroundMix) ]
                    // Note: this method of downmixing is far from "perfect" (pretty sure it's not the correct way) but the resulting downmix is "okayish", at least no more bleeding ears.
                    // (maybe have a look at http://forum.doom9.org/archive/index.php/t-148228.html too [ 5.1 -> stereo ] the approach seems almost the same [but different coefficients])

                    
                    // http://acousticsfreq.com/blog/wp-content/uploads/2012/01/ITU-R-BS775-1.pdf
                    // http://ir.lib.nctu.edu.tw/bitstream/987654321/22934/1/030104001.pdf

                    *(outputTemp++) = (left  + center  + rearLeft) * attn5dot1;
                    *(outputTemp++) = (right + center  + rearRight) * attn5dot1;

                    inputTemp  += 6;
                }
            }

            // According to http://msdn.microsoft.com/en-us/library/windows/hardware/ff537083(v=vs.85).aspx
            // KSAUDIO_SPEAKER_7POINT1 is obsolete and no longer supported in Windows Vista and later versions of Windows
            // Not sure what to do about it, meh , drop front left of center/front right of center -> 5.1 -> stereo; 

            else if(inputChannelMask == KSAUDIO_SPEAKER_7POINT1)
            {
                UINT numFloats = numAudioFrames*8;
                float *endTemp = inputTemp+numFloats;

                while(inputTemp < endTemp)
                {
                    float left          = inputTemp[0];
                    float right         = inputTemp[1];
                    
                    float center        = inputTemp[2] * centerMix;
                    
                    // Drop LFE since we don't need it
                    //float lowFreq       = inputTemp[3]*lowFreqMix;
                    
                    float rearLeft      = inputTemp[4] * surroundMix;
                    float rearRight     = inputTemp[5] * surroundMix;

                    // Drop SPEAKER_FRONT_LEFT_OF_CENTER , SPEAKER_FRONT_RIGHT_OF_CENTER
                    //float centerLeft    = inputTemp[6];
                    //float centerRight   = inputTemp[7];
                    
                    // Downmix from 5.1 to stereo
                    *(outputTemp++) = (left  + center  + rearLeft)  * attn5dot1;
                    *(outputTemp++) = (right + center  + rearRight) * attn5dot1;

                    inputTemp  += 8;
                }
            }

            // Downmix to 5.1 (easy stuff) then downmix to stereo as done in KSAUDIO_SPEAKER_5POINT1
            else if(inputChannelMask == KSAUDIO_SPEAKER_7POINT1_SURROUND)
            {
                UINT numFloats = numAudioFrames*8;
                float *endTemp = inputTemp+numFloats;

                while(inputTemp < endTemp)
                {
                    float left      = inputTemp[0];
                    float right     = inputTemp[1];
                    float center    = inputTemp[2] * centerMix;

                    // Skip LFE we don't need it
                    //float lowFreq   = inputTemp[3]*lowFreqMix;

                    float rearLeft  = inputTemp[4];
                    float rearRight = inputTemp[5];
                    float sideLeft  = inputTemp[6];
                    float sideRight = inputTemp[7];

                    // combine the rear/side channels first , baaam! 5.1
                    rearLeft  = (rearLeft  + sideLeft)  * 0.5f;
                    rearRight = (rearRight + sideRight) * 0.5f;
                    
                    // downmix to stereo as in 5.1 case
                    *(outputTemp++) = (left  + center + rearLeft  * surroundMix) * attn5dot1;
                    *(outputTemp++) = (right + center + rearRight * surroundMix) * attn5dot1;

                    inputTemp  += 8;
                }
            }
        }

        ReleaseBuffer();

        //------------------------------------------------------------
        // resample

        if(bResample)
        {
            UINT frameAdjust = UINT((double(numAudioFrames) * resampleRatio) + 1.0);
            UINT newFrameSize = frameAdjust*2;

            if(tempResampleBuffer.Num() < newFrameSize)
                tempResampleBuffer.SetSize(newFrameSize);

            SRC_DATA data;
            data.src_ratio = resampleRatio;

            data.data_in = tempBuffer.Array();
            data.input_frames = numAudioFrames;

            data.data_out = tempResampleBuffer.Array();
            data.output_frames = frameAdjust;

            data.end_of_input = 0;

            int err = src_process((SRC_STATE*)resampler, &data);
            if(err)
            {
                RUNONCE AppWarning(TEXT("AudioSource::QueryAudio: Was unable to resample audio for device '%s'"), GetDeviceName());
                return NoAudioAvailable;
            }

            if(data.input_frames_used != numAudioFrames)
            {
                RUNONCE AppWarning(TEXT("AudioSource::QueryAudio: Failed to downsample buffer completely, which shouldn't actually happen because it should be using 10ms of samples"));
                return NoAudioAvailable;
            }

            numAudioFrames = data.output_frames_gen;
        }

        //-----------------------------------------------------------------------------
        // sort all audio frames into 10 millisecond increments (done because not all devices output in 10ms increments)
        // NOTE: 0.457+ - instead of using the timestamps from windows, just compare and make sure it stays within a 100ms of their timestamps

        if(!bFirstBaseFrameReceived)
        {
            lastUsedTimestamp = newTimestamp;
            bFirstBaseFrameReceived = true;
        }

        float *newBuffer = (bResample) ? tempResampleBuffer.Array() : tempBuffer.Array();

        if (bSmoothTimestamps) {
            lastUsedTimestamp += 10;

            QWORD difVal = GetQWDif(newTimestamp, lastUsedTimestamp);
            if(difVal > 70)
            {
                //OSDebugOut(TEXT("----------------------------1\r\nlastUsedTimestamp before: %llu - device: %s\r\n"), lastUsedTimestamp, GetDeviceName());
                lastUsedTimestamp = newTimestamp;
                //OSDebugOut(TEXT("lastUsedTimestamp after: %llu\r\n"), lastUsedTimestamp);
            }

            if(lastUsedTimestamp > lastSentTimestamp)
            {
                QWORD adjustVal = (lastUsedTimestamp-lastSentTimestamp);
                if(adjustVal < 10)
                    lastUsedTimestamp += 10-adjustVal;

                AudioSegment *newSegment = new AudioSegment(newBuffer, numAudioFrames*2, lastUsedTimestamp);
                AddAudioSegment(newSegment, curVolume*sourceVolume);

                lastSentTimestamp = lastUsedTimestamp;
            }
        } else {
           // OSDebugOut(TEXT("newTimestamp: %llu\r\n"), newTimestamp);
            AudioSegment *newSegment = new AudioSegment(newBuffer, numAudioFrames*2, newTimestamp);
            AddAudioSegment(newSegment, curVolume*sourceVolume);
        }

        //-----------------------------------------------------------------------------

        return AudioAvailable;
    }

    return NoAudioAvailable;
}
	if (EventListener != nullptr)
	{
		UBTTask_ShowPhrases* Node = EventListener->ShowPhrasesNode;
		if (Node != nullptr)
		{
			Node->OwnerActor->GetWorldTimerManager().ClearTimer(Node->TimerHandle);
			Node->ShowNewDialoguePhrase(true);
		}
	}
}

/////////////////////////////////////////////////////
// Quests


void UBTDialogueFunctionLibrary::AddQuest(UPARAM(ref) TArray<FQuest>& Quests, FQuest Quest)
{
	Quests.AddUnique(Quest);
}

void UBTDialogueFunctionLibrary::DeleteQuest(UPARAM(ref) TArray<FQuest>& Quests, FQuest Quest)
{
	Quests.Remove(Quest);
}

void UBTDialogueFunctionLibrary::UpdateTaskProgress(UPARAM(ref) FQuest& Quest, int32 TaskIndex)
{
	if (!Quest.Tasks.IsValidIndex(TaskIndex)) return;
	FQuest_Task Task = Quest.Tasks[TaskIndex];

	if (Task.TotalProgressNeeded == Task.Progress) return;
UINT MMDeviceAudioSource::GetNextBuffer(float curVolume)
{
    UINT captureSize = 0;
    HRESULT err = mmCapture->GetNextPacketSize(&captureSize);
    if(FAILED(err))
    {
        RUNONCE AppWarning(TEXT("MMDeviceAudioSource::GetBuffer: GetNextPacketSize failed"));
        return NoAudioAvailable;
    }

    float *outputBuffer = NULL;

    if(captureSize)
    {
        LPBYTE captureBuffer;
        DWORD dwFlags = 0;
        UINT numAudioFrames = 0;

        UINT64 devPosition;
        UINT64 qpcTimestamp;
        err = mmCapture->GetBuffer(&captureBuffer, &numAudioFrames, &dwFlags, &devPosition, &qpcTimestamp);
        if(FAILED(err))
        {
            RUNONCE AppWarning(TEXT("MMDeviceAudioSource::GetBuffer: GetBuffer failed"));
            return NoAudioAvailable;
        }

        QWORD newTimestamp;

        if(dwFlags & AUDCLNT_BUFFERFLAGS_TIMESTAMP_ERROR)
        {
            RUNONCE AppWarning(TEXT("MMDeviceAudioSource::GetBuffer: woa woa woa, getting timestamp errors from the audio subsystem.  device = %s"), GetDeviceName().Array());
            if(!bBrokenTimestamp)
                newTimestamp = lastUsedTimestamp + numAudioFrames*1000/inputSamplesPerSec;
        }
        else
        {
            if(!bBrokenTimestamp)
                newTimestamp = qpcTimestamp/10000;

            /*UINT64 freq;
            mmClock->GetFrequency(&freq);
            Log(TEXT("position: %llu, numAudioFrames: %u, freq: %llu, newTimestamp: %llu, test: %llu"), devPosition, numAudioFrames, freq, newTimestamp, devPosition*8000/freq);*/
        }

        //have to do this crap to account for broken devices or device drivers.  absolutely unbelievable.
        if(!bFirstFrameReceived)
        {
            LARGE_INTEGER clockFreq;
            QueryPerformanceFrequency(&clockFreq);
            QWORD curTime = GetQPCTimeMS(clockFreq.QuadPart);

            if(newTimestamp < (curTime-1000) || newTimestamp > (curTime+1000))
            {
                bBrokenTimestamp = true;

                Log(TEXT("MMDeviceAudioSource::GetNextBuffer: Got bad audio timestamp offset %lld from device: '%s', timestamps for this device will be calculated.  curTime: %llu, newTimestamp: %llu"), (LONGLONG)(newTimestamp - curTime), GetDeviceName().Array(), curTime, newTimestamp);
                lastUsedTimestamp = newTimestamp = curTime;
            }
            else
                lastUsedTimestamp = newTimestamp;

            bFirstFrameReceived = true;
        }

        if(tempBuffer.Num() < numAudioFrames*2)
            tempBuffer.SetSize(numAudioFrames*2);

        outputBuffer = tempBuffer.Array();
        float *tempOut = outputBuffer;

        //------------------------------------------------------------
        // channel upmix/downmix

        if(inputChannels == 1)
        {
            UINT  numFloats   = numAudioFrames;
            float *inputTemp  = (float*)captureBuffer;
            float *outputTemp = outputBuffer;

            if(App->SSE2Available() && (UPARAM(inputTemp) & 0xF) == 0 && (UPARAM(outputTemp) & 0xF) == 0)
            {
                UINT alignedFloats = numFloats & 0xFFFFFFFC;
                for(UINT i=0; i<alignedFloats; i += 4)
                {
                    __m128 inVal   = _mm_load_ps(inputTemp+i);

                    __m128 outVal1 = _mm_unpacklo_ps(inVal, inVal);
                    __m128 outVal2 = _mm_unpackhi_ps(inVal, inVal);

                    _mm_store_ps(outputTemp+(i*2),   outVal1);
                    _mm_store_ps(outputTemp+(i*2)+4, outVal2);
                }

                numFloats  -= alignedFloats;
                inputTemp  += alignedFloats;
                outputTemp += alignedFloats*2;
            }

            while(numFloats--)
            {
                float inputVal = *inputTemp;
                *(outputTemp++) = inputVal;
                *(outputTemp++) = inputVal;

                inputTemp++;
            }
        }
        else if(inputChannels == 2) //straight up copy
        {
            if(App->SSE2Available())
                SSECopy(outputBuffer, captureBuffer, numAudioFrames*2*sizeof(float));
            else
                mcpy(outputBuffer, captureBuffer, numAudioFrames*2*sizeof(float));
        }
        else
        {
            //todo: downmix optimization, also support for other speaker configurations than ones I can merely "think" of.  ugh.
            float *inputTemp  = (float*)captureBuffer;
            float *outputTemp = outputBuffer;

            if(inputChannelMask == KSAUDIO_SPEAKER_QUAD)
            {
                UINT numFloats = numAudioFrames*4;
                float *endTemp = inputTemp+numFloats;

                while(inputTemp < endTemp)
                {
                    float left      = inputTemp[0];
                    float right     = inputTemp[1];
                    float rear      = (inputTemp[2]+inputTemp[3])*surroundMix;

                    *(outputTemp++) = left  - rear;
                    *(outputTemp++) = right + rear;

                    inputTemp  += 4;
                }
            }
            else if(inputChannelMask == KSAUDIO_SPEAKER_2POINT1)
            {
                UINT numFloats = numAudioFrames*3;
                float *endTemp = inputTemp+numFloats;

                while(inputTemp < endTemp)
                {
                    float left      = inputTemp[0];
                    float right     = inputTemp[1];
                    float lfe       = inputTemp[2]*lowFreqMix;

                    *(outputTemp++) = left  + lfe;
                    *(outputTemp++) = right + lfe;

                    inputTemp  += 3;
                }
            }
            else if(inputChannelMask == KSAUDIO_SPEAKER_4POINT1)
            {
                UINT numFloats = numAudioFrames*5;
                float *endTemp = inputTemp+numFloats;

                while(inputTemp < endTemp)
                {
                    float left      = inputTemp[0];
                    float right     = inputTemp[1];
                    float lfe       = inputTemp[2]*lowFreqMix;
                    float rear      = (inputTemp[3]+inputTemp[4])*surroundMix;

                    *(outputTemp++) = left  + lfe - rear;
                    *(outputTemp++) = right + lfe + rear;

                    inputTemp  += 5;
                }
            }
            else if(inputChannelMask == KSAUDIO_SPEAKER_SURROUND)
            {
                UINT numFloats = numAudioFrames*4;
                float *endTemp = inputTemp+numFloats;

                while(inputTemp < endTemp)
                {
                    float left      = inputTemp[0];
                    float right     = inputTemp[1];
                    float center    = inputTemp[2]*centerMix;
                    float rear      = inputTemp[3]*(surroundMix*dbMinus3);

                    *(outputTemp++) = left  + center - rear;
                    *(outputTemp++) = right + center + rear;

                    inputTemp  += 4;
                }
            }
            //don't think this will work for both
            else if(inputChannelMask == KSAUDIO_SPEAKER_5POINT1)
            {
                UINT numFloats = numAudioFrames*6;
                float *endTemp = inputTemp+numFloats;

                while(inputTemp < endTemp)
                {
                    float left      = inputTemp[0];
                    float right     = inputTemp[1];
                    float center    = inputTemp[2]*centerMix;
                    float lowFreq   = inputTemp[3]*lowFreqMix;
                    float rear      = (inputTemp[4]+inputTemp[5])*surroundMix;

                    *(outputTemp++) = left  + center + lowFreq - rear;
                    *(outputTemp++) = right + center + lowFreq + rear;

                    inputTemp  += 6;
                }
            }
            //todo ------------------
            //not sure if my 5.1/7.1 downmixes are correct
            else if(inputChannelMask == KSAUDIO_SPEAKER_5POINT1_SURROUND)
            {
                UINT numFloats = numAudioFrames*6;
                float *endTemp = inputTemp+numFloats;

                while(inputTemp < endTemp)
                {
                    float left      = inputTemp[0];
                    float right     = inputTemp[1];
                    float center    = inputTemp[2]*centerMix;
                    float lowFreq   = inputTemp[3]*lowFreqMix;
                    float sideLeft  = inputTemp[4]*dbMinus3;
                    float sideRight = inputTemp[5]*dbMinus3;

                    *(outputTemp++) = left  + center + sideLeft  + lowFreq;
                    *(outputTemp++) = right + center + sideRight + lowFreq;

                    inputTemp  += 6;
                }
            }
            else if(inputChannelMask == KSAUDIO_SPEAKER_7POINT1)
            {
                UINT numFloats = numAudioFrames*8;
                float *endTemp = inputTemp+numFloats;

                while(inputTemp < endTemp)
                {
                    float left          = inputTemp[0];
                    float right         = inputTemp[1];
                    float center        = inputTemp[2]*(centerMix*dbMinus3);
                    float lowFreq       = inputTemp[3]*lowFreqMix;
                    float rear          = (inputTemp[4]+inputTemp[5])*surroundMix;
                    float centerLeft    = inputTemp[6]*dbMinus6;
                    float centerRight   = inputTemp[7]*dbMinus6;

                    *(outputTemp++) = left  + centerLeft  + center + lowFreq - rear;
                    *(outputTemp++) = right + centerRight + center + lowFreq + rear;

                    inputTemp  += 8;
                }
            }
            else if(inputChannelMask == KSAUDIO_SPEAKER_7POINT1_SURROUND)
            {
                UINT numFloats = numAudioFrames*8;
                float *endTemp = inputTemp+numFloats;

                while(inputTemp < endTemp)
                {
                    float left      = inputTemp[0];
                    float right     = inputTemp[1];
                    float center    = inputTemp[2]*centerMix;
                    float lowFreq   = inputTemp[3]*lowFreqMix;
                    float rear      = (inputTemp[4]+inputTemp[5])*(surroundMix*dbMinus3);
                    float sideLeft  = inputTemp[6]*dbMinus6;
                    float sideRight = inputTemp[7]*dbMinus6;

                    *(outputTemp++) = left  + sideLeft + center + lowFreq - rear;
                    *(outputTemp++) = right + sideLeft + center + lowFreq + rear;

                    inputTemp  += 8;
                }
            }
        }

        mmCapture->ReleaseBuffer(numAudioFrames);

        //------------------------------------------------------------
        // resample

        if(bResample)
        {
            UINT frameAdjust = UINT((double(numAudioFrames) * resampleRatio) + 1.0);
            UINT newFrameSize = frameAdjust*2;

            if(tempResampleBuffer.Num() < newFrameSize)
                tempResampleBuffer.SetSize(newFrameSize);

            SRC_DATA data;
            data.src_ratio = resampleRatio;

            data.data_in = tempBuffer.Array();
            data.input_frames = numAudioFrames;

            data.data_out = tempResampleBuffer.Array();
            data.output_frames = frameAdjust;

            data.end_of_input = 0;

            int err = src_process(resampler, &data);
            if(err)
            {
                RUNONCE AppWarning(TEXT("Was unable to resample audio"));
                return NoAudioAvailable;
            }

            if(data.input_frames_used != numAudioFrames)
            {
                RUNONCE AppWarning(TEXT("Failed to downsample buffer completely, which shouldn't actually happen because it should be using 10ms of samples"));
                return NoAudioAvailable;
            }

            numAudioFrames = data.output_frames_gen;
        }

        //-----------------------------------------------------------------------------
        // sort all audio frames into 10 millisecond increments (done because not all devices output in 10ms increments)
        // NOTE: 0.457+ - instead of using the timestamps from windows, just compare and make sure it stays within a 100ms of their timestamps

        float *newBuffer = (bResample) ? tempResampleBuffer.Array() : tempBuffer.Array();

        if(storageBuffer.Num() == 0 && numAudioFrames == 441)
        {
            lastUsedTimestamp += 10;
            if(!bBrokenTimestamp) 
            {
                QWORD difVal = GetQWDif(newTimestamp, lastUsedTimestamp);
                if(difVal > 70)
                    lastUsedTimestamp = newTimestamp;
            }

            if(lastUsedTimestamp > lastSentTimestamp)
            {
                QWORD adjustVal = (lastUsedTimestamp-lastSentTimestamp);
                if(adjustVal < 10)
                    lastUsedTimestamp += 10-adjustVal;

                AudioSegment &newSegment = *audioSegments.CreateNew();
                newSegment.audioData.CopyArray(newBuffer, numAudioFrames*2);
                newSegment.timestamp = lastUsedTimestamp;
                MultiplyAudioBuffer(newSegment.audioData.Array(), numAudioFrames*2, curVolume);

                lastSentTimestamp = lastUsedTimestamp;
            }
        }
        else
        {
            UINT storedFrames = storageBuffer.Num();

            storageBuffer.AppendArray(newBuffer, numAudioFrames*2);
            if(storageBuffer.Num() >= (441*2))
            {
                lastUsedTimestamp += 10;
                if(!bBrokenTimestamp)
                {
                    QWORD difVal = GetQWDif(newTimestamp, lastUsedTimestamp);
                    if(difVal > 70)
                        lastUsedTimestamp = newTimestamp - (QWORD(storedFrames)/2*1000/44100);
                }

                //------------------------
                // add new data

                if(lastUsedTimestamp > lastSentTimestamp)
                {
                    QWORD adjustVal = (lastUsedTimestamp-lastSentTimestamp);
                    if(adjustVal < 10)
                        lastUsedTimestamp += 10-adjustVal;

                    AudioSegment &newSegment = *audioSegments.CreateNew();
                    newSegment.audioData.CopyArray(storageBuffer.Array(), (441*2));
                    newSegment.timestamp = lastUsedTimestamp;
                    MultiplyAudioBuffer(newSegment.audioData.Array(), 441*2, curVolume);

                    storageBuffer.RemoveRange(0, (441*2));
                }

                //------------------------
                // if still data pending (can happen)

                while(storageBuffer.Num() >= (441*2))
                {
                    lastUsedTimestamp += 10;

                    if(lastUsedTimestamp > lastSentTimestamp)
                    {
                        QWORD adjustVal = (lastUsedTimestamp-lastSentTimestamp);
                        if(adjustVal < 10)
                            lastUsedTimestamp += 10-adjustVal;

                        AudioSegment &newSegment = *audioSegments.CreateNew();
                        newSegment.audioData.CopyArray(storageBuffer.Array(), (441*2));
                        storageBuffer.RemoveRange(0, (441*2));
                        MultiplyAudioBuffer(newSegment.audioData.Array(), 441*2, curVolume);

                        newSegment.timestamp = lastUsedTimestamp;

                        lastSentTimestamp = lastUsedTimestamp;
                    }
                }
            }
        }

        //-----------------------------------------------------------------------------

        return ContinueAudioRequest;
    }

    return NoAudioAvailable;
}
Beispiel #7
0
void MixAudio(float *bufferDest, float *bufferSrc, UINT totalFloats, bool bForceMono)
{
    UINT floatsLeft = totalFloats;
    float *destTemp = bufferDest;
    float *srcTemp  = bufferSrc;

    if((UPARAM(destTemp) & 0xF) == 0 && (UPARAM(srcTemp) & 0xF) == 0)
    {
        UINT alignedFloats = floatsLeft & 0xFFFFFFFC;

        if(bForceMono)
        {
            __m128 halfVal = _mm_set_ps1(0.5f);
            for(UINT i=0; i<alignedFloats; i += 4)
            {
                float *micInput = srcTemp+i;
                __m128 val = _mm_load_ps(micInput);
                __m128 shufVal = _mm_shuffle_ps(val, val, _MM_SHUFFLE(2, 3, 0, 1));

                _mm_store_ps(micInput, _mm_mul_ps(_mm_add_ps(val, shufVal), halfVal));
            }
        }

        __m128 maxVal = _mm_set_ps1(1.0f);
        __m128 minVal = _mm_set_ps1(-1.0f);

        for(UINT i=0; i<alignedFloats; i += 4)
        {
            float *pos = destTemp+i;

            __m128 mix;
            mix = _mm_add_ps(_mm_load_ps(pos), _mm_load_ps(srcTemp+i));
            mix = _mm_min_ps(mix, maxVal);
            mix = _mm_max_ps(mix, minVal);

            _mm_store_ps(pos, mix);
        }

        floatsLeft  &= 0x3;
        destTemp    += alignedFloats;
        srcTemp     += alignedFloats;
    }

    if(floatsLeft)
    {
        if(bForceMono)
        {
            for(UINT i=0; i<floatsLeft; i += 2)
            {
                srcTemp[i] += srcTemp[i+1];
                srcTemp[i] *= 0.5f;
                srcTemp[i+1] = srcTemp[i];
            }
        }

        for(UINT i=0; i<floatsLeft; i++)
        {
            float val = destTemp[i]+srcTemp[i];

            if(val < -1.0f)     val = -1.0f;
            else if(val > 1.0f) val = 1.0f;

            destTemp[i] = val;
        }
    }
}
#include "AdvancedSessionsLibrary.h"

//General Log
DEFINE_LOG_CATEGORY(AdvancedSessionsLog);

void UAdvancedSessionsLibrary::GetCurrentUniqueBuildID(int32 &UniqueBuildId)
{
	UniqueBuildId = GetBuildUniqueId();
}

void UAdvancedSessionsLibrary::GetUniqueBuildID(FBlueprintSessionResult SessionResult, int32 &UniqueBuildId)
{
	UniqueBuildId = SessionResult.OnlineResult.Session.SessionSettings.BuildUniqueId;
}

void UAdvancedSessionsLibrary::AddOrModifyExtraSettings(UPARAM(ref) TArray<FSessionPropertyKeyPair> & SettingsArray, UPARAM(ref) TArray<FSessionPropertyKeyPair> & NewOrChangedSettings, TArray<FSessionPropertyKeyPair> & ModifiedSettingsArray)
{
	ModifiedSettingsArray = SettingsArray;

	bool bFoundSetting = false;
	// For each new setting
	for (const FSessionPropertyKeyPair& Setting : NewOrChangedSettings)
	{
		bFoundSetting = false;

		for (FSessionPropertyKeyPair & itr : ModifiedSettingsArray)
		{
			// Manually comparing the keys
			if (itr.Key == Setting.Key)
			{
				bFoundSetting = true;
Beispiel #9
0
bool InitDDrawCapture()
{
    bool versionSupported = false;
    HMODULE hDDrawLib = NULL;
    if (hDDrawLib = GetModuleHandle(TEXT("ddraw.dll")))
    {
        bool isWinVistaMin = IsWindowsVistaOrGreater();
        bool isWin7min = IsWindows7OrGreater();
        bool isWin8min = IsWindows8OrGreater();

        UPARAM libBaseAddr = UPARAM(hDDrawLib);
        UPARAM surfCreateOffset;
        UPARAM surfUnlockOffset;
        UPARAM surfReleaseOffset;
        UPARAM surfRestoreOffset;
        UPARAM surfBltOffset;
        UPARAM surfFlipOffset;
        UPARAM surfSetPaletteOffset;
        UPARAM palSetEntriesOffset;

        if (isWinVistaMin)
        {
            if (!isWin7min)
            {
                RUNEVERYRESET logOutput << CurrentTimeString() << "Windows Vista not supported yet" << endl;
            }
            else if (isWin7min && !isWin8min)
            {
                surfCreateOffset = 0x617E;
                surfUnlockOffset = 0x4C40;
                surfReleaseOffset = 0x3239;
                surfRestoreOffset = 0x3E9CB;
                surfBltOffset = surfCreateOffset + 0x44F63;
                surfFlipOffset = surfCreateOffset + 0x37789;
                surfSetPaletteOffset = surfCreateOffset + 0x4D2D3;
                palSetEntriesOffset = surfCreateOffset + 0x4CE68;
                versionSupported = true;
            }
            else if (isWin8min)
            {
                surfCreateOffset = 0x9530 + 0xC00;
                surfUnlockOffset = surfCreateOffset + 0x2A1D0;
                surfReleaseOffset = surfCreateOffset - 0x1A80;
                surfRestoreOffset = surfCreateOffset + 0x36000;
                surfBltOffset = surfCreateOffset + 0x438DC;
                surfFlipOffset = surfCreateOffset + 0x33EF3;
                surfSetPaletteOffset = surfCreateOffset + 0x4D3B8;
                palSetEntriesOffset = surfCreateOffset + 0x4CF4C;
                versionSupported = false;	// some crash bugs remaining

                RUNEVERYRESET logOutput << CurrentTimeString() << "Windows 8 not supported yet" << endl;
            }
            else
            {
                RUNEVERYRESET logOutput << CurrentTimeString() << "Unknown OS version" << endl;
            }
        }
        else
        {
            RUNEVERYRESET logOutput << CurrentTimeString() << "OS version not supported" << endl;
        }

        if (versionSupported)
        {
            ddrawSurfaceCreate.Hook((FARPROC)(libBaseAddr + surfCreateOffset), (FARPROC)CreateSurface);
            ddrawSurfaceRestore.Hook((FARPROC)(libBaseAddr + surfRestoreOffset), (FARPROC)Restore);
            ddrawSurfaceRelease.Hook((FARPROC)(libBaseAddr + surfReleaseOffset), (FARPROC)Release);
            ddrawSurfaceUnlock.Hook((FARPROC)(libBaseAddr + surfUnlockOffset), (FARPROC)Unlock);
            ddrawSurfaceBlt.Hook((FARPROC)(libBaseAddr + surfBltOffset), (FARPROC)Blt);
            ddrawSurfaceFlip.Hook((FARPROC)(libBaseAddr + surfFlipOffset), (FARPROC)Flip);
            ddrawSurfaceSetPalette.Hook((FARPROC)(libBaseAddr + surfSetPaletteOffset), (FARPROC)SetPalette);
            ddrawPaletteSetEntries.Hook((FARPROC)(libBaseAddr + palSetEntriesOffset), (FARPROC)PaletteSetEntries);

            ddrawSurfaceUnlock.Rehook();
            ddrawSurfaceFlip.Rehook();
            ddrawSurfaceBlt.Rehook();
            /*
            ddrawSurfaceCreate.Rehook();
            ddrawSurfaceRestore.Rehook();
            ddrawSurfaceRelease.Rehook();
            ddrawSurfaceSetPalette.Rehook();
            ddrawPaletteSetEntries.Rehook();
            */
        }
    }

    return versionSupported;
}