Beispiel #1
0
static void
upload_clip_state(struct brw_context *brw)
{
   struct intel_context *intel = &brw->intel;
   struct gl_context *ctx = &intel->ctx;
   uint32_t dw2 = 0;

   /* _NEW_BUFFERS */
   struct gl_framebuffer *fb = ctx->DrawBuffer;

   /* CACHE_NEW_WM_PROG */
   if (brw->wm.prog_data->barycentric_interp_modes &
       BRW_WM_NONPERSPECTIVE_BARYCENTRIC_BITS) {
      dw2 |= GEN6_CLIP_NON_PERSPECTIVE_BARYCENTRIC_ENABLE;
   }

   if (!ctx->Transform.DepthClamp)
      dw2 |= GEN6_CLIP_Z_TEST;

   /* _NEW_LIGHT */
   if (ctx->Light.ProvokingVertex == GL_FIRST_VERTEX_CONVENTION) {
      dw2 |=
	 (0 << GEN6_CLIP_TRI_PROVOKE_SHIFT) |
	 (1 << GEN6_CLIP_TRIFAN_PROVOKE_SHIFT) |
	 (0 << GEN6_CLIP_LINE_PROVOKE_SHIFT);
   } else {
      dw2 |=
	 (2 << GEN6_CLIP_TRI_PROVOKE_SHIFT) |
	 (2 << GEN6_CLIP_TRIFAN_PROVOKE_SHIFT) |
	 (1 << GEN6_CLIP_LINE_PROVOKE_SHIFT);
   }

   /* _NEW_TRANSFORM */
   dw2 |= (ctx->Transform.ClipPlanesEnabled <<
           GEN6_USER_CLIP_CLIP_DISTANCES_SHIFT);

   if (ctx->Viewport.X == 0 &&
       ctx->Viewport.Y == 0 &&
       ctx->Viewport.Width == fb->Width &&
       ctx->Viewport.Height == fb->Height) {
      dw2 |= GEN6_CLIP_GB_TEST;
   }

   BEGIN_BATCH(4);
   OUT_BATCH(_3DSTATE_CLIP << 16 | (4 - 2));
   OUT_BATCH(GEN6_CLIP_STATISTICS_ENABLE);
   OUT_BATCH(GEN6_CLIP_ENABLE |
	     GEN6_CLIP_API_OGL |
	     GEN6_CLIP_MODE_NORMAL |
	     GEN6_CLIP_XY_TEST |
	     dw2);
   OUT_BATCH(U_FIXED(0.125, 3) << GEN6_CLIP_MIN_POINT_WIDTH_SHIFT |
             U_FIXED(255.875, 3) << GEN6_CLIP_MAX_POINT_WIDTH_SHIFT |
             GEN6_CLIP_FORCE_ZERO_RTAINDEX);
   ADVANCE_BATCH();
}
/**
 * SAMPLER_STATE.  See gen7_update_sampler_state().
 */
static uint32_t
gen7_blorp_emit_sampler_state(struct brw_context *brw,
                              const brw_blorp_params *params)
{
   uint32_t sampler_offset;

   struct gen7_sampler_state *sampler = (struct gen7_sampler_state *)
      brw_state_batch(brw, AUB_TRACE_SAMPLER_STATE,
                      sizeof(struct gen7_sampler_state),
                      32, &sampler_offset);
   memset(sampler, 0, sizeof(*sampler));

   sampler->ss0.min_filter = BRW_MAPFILTER_LINEAR;
   sampler->ss0.mip_filter = BRW_MIPFILTER_NONE;
   sampler->ss0.mag_filter = BRW_MAPFILTER_LINEAR;

   sampler->ss3.r_wrap_mode = BRW_TEXCOORDMODE_CLAMP;
   sampler->ss3.s_wrap_mode = BRW_TEXCOORDMODE_CLAMP;
   sampler->ss3.t_wrap_mode = BRW_TEXCOORDMODE_CLAMP;

   //   sampler->ss0.min_mag_neq = 1;

   /* Set LOD bias: 
    */
   sampler->ss0.lod_bias = 0;

   sampler->ss0.lod_preclamp = 1; /* OpenGL mode */
   sampler->ss0.default_color_mode = 0; /* OpenGL/DX10 mode */

   /* Set BaseMipLevel, MaxLOD, MinLOD: 
    *
    * XXX: I don't think that using firstLevel, lastLevel works,
    * because we always setup the surface state as if firstLevel ==
    * level zero.  Probably have to subtract firstLevel from each of
    * these:
    */
   sampler->ss0.base_level = U_FIXED(0, 1);

   sampler->ss1.max_lod = U_FIXED(0, 8);
   sampler->ss1.min_lod = U_FIXED(0, 8);

   sampler->ss3.non_normalized_coord = 1;

   sampler->ss3.address_round |= BRW_ADDRESS_ROUNDING_ENABLE_U_MIN |
      BRW_ADDRESS_ROUNDING_ENABLE_V_MIN |
      BRW_ADDRESS_ROUNDING_ENABLE_R_MIN;
   sampler->ss3.address_round |= BRW_ADDRESS_ROUNDING_ENABLE_U_MAG |
      BRW_ADDRESS_ROUNDING_ENABLE_V_MAG |
      BRW_ADDRESS_ROUNDING_ENABLE_R_MAG;

   return sampler_offset;
}
Beispiel #3
0
static void
upload_clip_state(struct brw_context *brw)
{
   struct intel_context *intel = &brw->intel;
   struct gl_context *ctx = &intel->ctx;
   uint32_t depth_clamp = 0;
   uint32_t provoking, userclip;
   uint32_t nonperspective_barycentric_enable_flag = 0;

   /* CACHE_NEW_WM_PROG */
   if (brw->wm.prog_data->barycentric_interp_modes &
       BRW_WM_NONPERSPECTIVE_BARYCENTRIC_BITS) {
      nonperspective_barycentric_enable_flag =
         GEN6_CLIP_NON_PERSPECTIVE_BARYCENTRIC_ENABLE;
   }

   if (!ctx->Transform.DepthClamp)
      depth_clamp = GEN6_CLIP_Z_TEST;

   /* _NEW_LIGHT */
   if (ctx->Light.ProvokingVertex == GL_FIRST_VERTEX_CONVENTION) {
      provoking =
	 (0 << GEN6_CLIP_TRI_PROVOKE_SHIFT) |
	 (1 << GEN6_CLIP_TRIFAN_PROVOKE_SHIFT) |
	 (0 << GEN6_CLIP_LINE_PROVOKE_SHIFT);
   } else {
      provoking =
	 (2 << GEN6_CLIP_TRI_PROVOKE_SHIFT) |
	 (2 << GEN6_CLIP_TRIFAN_PROVOKE_SHIFT) |
	 (1 << GEN6_CLIP_LINE_PROVOKE_SHIFT);
   }

   /* _NEW_TRANSFORM */
   userclip = ctx->Transform.ClipPlanesEnabled;

   BEGIN_BATCH(4);
   OUT_BATCH(_3DSTATE_CLIP << 16 | (4 - 2));
   OUT_BATCH(GEN6_CLIP_STATISTICS_ENABLE);
   OUT_BATCH(GEN6_CLIP_ENABLE |
	     GEN6_CLIP_API_OGL |
	     GEN6_CLIP_MODE_NORMAL |
             nonperspective_barycentric_enable_flag |
	     GEN6_CLIP_XY_TEST |
	     GEN6_CLIP_GB_TEST |
	     userclip << GEN6_USER_CLIP_CLIP_DISTANCES_SHIFT |
	     depth_clamp |
	     provoking);
   OUT_BATCH(U_FIXED(0.125, 3) << GEN6_CLIP_MIN_POINT_WIDTH_SHIFT |
             U_FIXED(255.875, 3) << GEN6_CLIP_MAX_POINT_WIDTH_SHIFT |
             GEN6_CLIP_FORCE_ZERO_RTAINDEX);
   ADVANCE_BATCH();
}
Beispiel #4
0
static void
upload_sf(struct brw_context *brw)
{
   struct gl_context *ctx = &brw->ctx;
   uint32_t dw1 = 0, dw2 = 0, dw3 = 0;
   float point_size;

   dw1 = GEN6_SF_STATISTICS_ENABLE;

   if (brw->sf.viewport_transform_enable)
       dw1 |= GEN6_SF_VIEWPORT_TRANSFORM_ENABLE;

   /* _NEW_LINE */
   uint32_t line_width_u3_7 = brw_get_line_width(brw);
   if (brw->gen >= 9 || brw->is_cherryview) {
      dw1 |= line_width_u3_7 << GEN9_SF_LINE_WIDTH_SHIFT;
   } else {
      dw2 |= line_width_u3_7 << GEN6_SF_LINE_WIDTH_SHIFT;
   }

   if (ctx->Line.SmoothFlag) {
      dw2 |= GEN6_SF_LINE_END_CAP_WIDTH_1_0;
   }

   /* _NEW_POINT - Clamp to ARB_point_parameters user limits */
   point_size = CLAMP(ctx->Point.Size, ctx->Point.MinSize, ctx->Point.MaxSize);

   /* Clamp to the hardware limits and convert to fixed point */
   dw3 |= U_FIXED(CLAMP(point_size, 0.125f, 255.875f), 3);

   /* _NEW_PROGRAM | _NEW_POINT, BRW_NEW_VUE_MAP_GEOM_OUT */
   if (use_state_point_size(brw))
      dw3 |= GEN6_SF_USE_STATE_POINT_WIDTH;

   /* _NEW_POINT | _NEW_MULTISAMPLE */
   if ((ctx->Point.SmoothFlag || _mesa_is_multisample_enabled(ctx)) &&
       !ctx->Point.PointSprite) {
      dw3 |= GEN8_SF_SMOOTH_POINT_ENABLE;
   }

   dw3 |= GEN6_SF_LINE_AA_MODE_TRUE;

   /* _NEW_LIGHT */
   if (ctx->Light.ProvokingVertex != GL_FIRST_VERTEX_CONVENTION) {
      dw3 |= (2 << GEN6_SF_TRI_PROVOKE_SHIFT) |
             (2 << GEN6_SF_TRIFAN_PROVOKE_SHIFT) |
             (1 << GEN6_SF_LINE_PROVOKE_SHIFT);
   } else {
      dw3 |= (1 << GEN6_SF_TRIFAN_PROVOKE_SHIFT);
   }

   BEGIN_BATCH(4);
   OUT_BATCH(_3DSTATE_SF << 16 | (4 - 2));
   OUT_BATCH(dw1);
   OUT_BATCH(dw2);
   OUT_BATCH(dw3);
   ADVANCE_BATCH();
}
Beispiel #5
0
static void
upload_clip_state(struct brw_context *brw)
{
   struct intel_context *intel = &brw->intel;
   struct gl_context *ctx = &intel->ctx;
   uint32_t depth_clamp = 0;
   uint32_t provoking, userclip;

   if (!ctx->Transform.DepthClamp)
      depth_clamp = GEN6_CLIP_Z_TEST;

   /* _NEW_LIGHT */
   if (ctx->Light.ProvokingVertex == GL_FIRST_VERTEX_CONVENTION) {
      provoking =
	 (0 << GEN6_CLIP_TRI_PROVOKE_SHIFT) |
	 (1 << GEN6_CLIP_TRIFAN_PROVOKE_SHIFT) |
	 (0 << GEN6_CLIP_LINE_PROVOKE_SHIFT);
   } else {
      provoking =
	 (2 << GEN6_CLIP_TRI_PROVOKE_SHIFT) |
	 (2 << GEN6_CLIP_TRIFAN_PROVOKE_SHIFT) |
	 (1 << GEN6_CLIP_LINE_PROVOKE_SHIFT);
   }

   /* _NEW_TRANSFORM */
   userclip = (1 << brw_count_bits(ctx->Transform.ClipPlanesEnabled)) - 1;

   BEGIN_BATCH(4);
   OUT_BATCH(_3DSTATE_CLIP << 16 | (4 - 2));
   OUT_BATCH(GEN6_CLIP_STATISTICS_ENABLE);
   OUT_BATCH(GEN6_CLIP_ENABLE |
	     GEN6_CLIP_API_OGL |
	     GEN6_CLIP_MODE_NORMAL |
	     GEN6_CLIP_XY_TEST |
	     userclip << GEN6_USER_CLIP_CLIP_DISTANCES_SHIFT |
	     depth_clamp |
	     provoking);
   OUT_BATCH(U_FIXED(0.125, 3) << GEN6_CLIP_MIN_POINT_WIDTH_SHIFT |
             U_FIXED(255.875, 3) << GEN6_CLIP_MAX_POINT_WIDTH_SHIFT |
             GEN6_CLIP_FORCE_ZERO_RTAINDEX);
   ADVANCE_BATCH();
}
Beispiel #6
0
static void
upload_clip_state(struct brw_context *brw)
{
   struct gl_context *ctx = &brw->ctx;
   /* BRW_NEW_META_IN_PROGRESS */
   uint32_t dw1 = brw->meta_in_progress ? 0 : GEN6_CLIP_STATISTICS_ENABLE;
   uint32_t dw2 = 0;

   /* _NEW_BUFFERS */
   struct gl_framebuffer *fb = ctx->DrawBuffer;

   /* BRW_NEW_FS_PROG_DATA */
   if (brw->wm.prog_data->barycentric_interp_modes &
       BRW_WM_NONPERSPECTIVE_BARYCENTRIC_BITS) {
      dw2 |= GEN6_CLIP_NON_PERSPECTIVE_BARYCENTRIC_ENABLE;
   }

   dw1 |= brw->vs.prog_data->base.cull_distance_mask;

   if (brw->gen >= 7)
      dw1 |= GEN7_CLIP_EARLY_CULL;

   if (brw->gen == 7) {
      /* _NEW_POLYGON */
      if (ctx->Polygon._FrontBit == _mesa_is_user_fbo(fb))
         dw1 |= GEN7_CLIP_WINDING_CCW;

      if (ctx->Polygon.CullFlag) {
         switch (ctx->Polygon.CullFaceMode) {
         case GL_FRONT:
            dw1 |= GEN7_CLIP_CULLMODE_FRONT;
            break;
         case GL_BACK:
            dw1 |= GEN7_CLIP_CULLMODE_BACK;
            break;
         case GL_FRONT_AND_BACK:
            dw1 |= GEN7_CLIP_CULLMODE_BOTH;
            break;
         default:
            unreachable("Should not get here: invalid CullFlag");
         }
      } else {
         dw1 |= GEN7_CLIP_CULLMODE_NONE;
      }
   }

   if (brw->gen < 8 && !ctx->Transform.DepthClamp)
      dw2 |= GEN6_CLIP_Z_TEST;

   /* _NEW_LIGHT */
   if (ctx->Light.ProvokingVertex == GL_FIRST_VERTEX_CONVENTION) {
      dw2 |=
	 (0 << GEN6_CLIP_TRI_PROVOKE_SHIFT) |
	 (1 << GEN6_CLIP_TRIFAN_PROVOKE_SHIFT) |
	 (0 << GEN6_CLIP_LINE_PROVOKE_SHIFT);
   } else {
      dw2 |=
	 (2 << GEN6_CLIP_TRI_PROVOKE_SHIFT) |
	 (2 << GEN6_CLIP_TRIFAN_PROVOKE_SHIFT) |
	 (1 << GEN6_CLIP_LINE_PROVOKE_SHIFT);
   }

   /* _NEW_TRANSFORM */
   dw2 |= (ctx->Transform.ClipPlanesEnabled <<
           GEN6_USER_CLIP_CLIP_DISTANCES_SHIFT);
   if (ctx->Transform.ClipDepthMode == GL_ZERO_TO_ONE)
      dw2 |= GEN6_CLIP_API_D3D;
   else
      dw2 |= GEN6_CLIP_API_OGL;

   dw2 |= GEN6_CLIP_GB_TEST;

   /* We need to disable guardband clipping if the guardband (which we always
    * program to the maximum screen-space bounding box of 8K x 8K) will be
    * smaller than the viewport.
    *
    * Closely examining the clip determination formulas in the documentation
    * reveals that objects will be discarded entirely if they're outside the
    * (small) guardband, even if they're within the (large) viewport:
    *
    *     TR = TR_GB || TR_VPXY || TR_VPZ || TR_UC || TR_NEGW
    *     TA   = !TR && TA_GB && TA_VPZ && TA_NEGW
    *     MC = !(TA || TR)
    *
    * (TA is "Trivial Accept", TR is "Trivial Reject", MC is "Must Clip".)
    *
    * Disabling guardband clipping removes the TR_GB condition, which means
    * they'll be considered MC ("Must Clip") unless they're rejected for
    * some other reason.
    *
    * Note that there is no TA_VPXY condition.  If there were, objects entirely
    * inside a 16384x16384 viewport would be trivially accepted, breaking the
    * "objects must have a screenspace bounding box not exceeding 8K in the X
    * or Y direction" restriction.  Instead, they're clipped.
    */
   for (unsigned i = 0; i < ctx->Const.MaxViewports; i++) {
      if (ctx->ViewportArray[i].Width > 8192 ||
          ctx->ViewportArray[i].Height > 8192) {
         dw2 &= ~GEN6_CLIP_GB_TEST;
         break;
      }
   }

   /* If the viewport dimensions are smaller than the drawable dimensions,
    * we have to disable guardband clipping prior to Gen8.  We always program
    * the guardband to a fixed size, which is almost always larger than the
    * viewport.  Any geometry which intersects the viewport but lies within
    * the guardband would bypass the 3D clipping stage, so it wouldn't be
    * clipped to the viewport.  Rendering would happen beyond the viewport,
    * but still inside the drawable.
    *
    * Gen8+ introduces a viewport extents test which restricts rendering to
    * the viewport, so we can ignore this restriction.
    */
   if (brw->gen < 8) {
      const float fb_width = (float)_mesa_geometric_width(fb);
      const float fb_height = (float)_mesa_geometric_height(fb);

      for (unsigned i = 0; i < ctx->Const.MaxViewports; i++) {
         if (ctx->ViewportArray[i].X != 0 ||
             ctx->ViewportArray[i].Y != 0 ||
             ctx->ViewportArray[i].Width != fb_width ||
             ctx->ViewportArray[i].Height != fb_height) {
            dw2 &= ~GEN6_CLIP_GB_TEST;
            break;
         }
      }
   }

   /* BRW_NEW_RASTERIZER_DISCARD */
   if (ctx->RasterDiscard) {
      dw2 |= GEN6_CLIP_MODE_REJECT_ALL;
      if (brw->gen == 6) {
         perf_debug("Rasterizer discard is currently implemented via the "
                    "clipper; having the GS not write primitives would "
                    "likely be faster.\n");
      }
   }

   uint32_t enable;
   if (brw->primitive == _3DPRIM_RECTLIST)
      enable = 0;
   else
      enable = GEN6_CLIP_ENABLE;

   if (!is_drawing_points(brw) && !is_drawing_lines(brw))
      dw2 |= GEN6_CLIP_XY_TEST;

   /* BRW_NEW_VUE_MAP_GEOM_OUT */
   const int max_vp_index =
      (brw->vue_map_geom_out.slots_valid & VARYING_BIT_VIEWPORT) != 0 ?
      ctx->Const.MaxViewports : 1;

   BEGIN_BATCH(4);
   OUT_BATCH(_3DSTATE_CLIP << 16 | (4 - 2));
   OUT_BATCH(dw1);
   OUT_BATCH(enable |
	     GEN6_CLIP_MODE_NORMAL |
	     dw2);
   OUT_BATCH(U_FIXED(0.125, 3) << GEN6_CLIP_MIN_POINT_WIDTH_SHIFT |
             U_FIXED(255.875, 3) << GEN6_CLIP_MAX_POINT_WIDTH_SHIFT |
             (_mesa_geometric_layers(fb) > 0 ? 0 : GEN6_CLIP_FORCE_ZERO_RTAINDEX) |
             ((max_vp_index - 1) & GEN6_CLIP_MAX_VP_INDEX_MASK));
   ADVANCE_BATCH();
}
Beispiel #7
0
static void
upload_sf_state(struct brw_context *brw)
{
   struct intel_context *intel = &brw->intel;
   struct gl_context *ctx = &intel->ctx;
   uint32_t urb_entry_read_length;
   /* BRW_NEW_FRAGMENT_PROGRAM */
   uint32_t num_outputs = _mesa_bitcount_64(brw->fragment_program->Base.InputsRead);
   /* _NEW_LIGHT */
   bool shade_model_flat = ctx->Light.ShadeModel == GL_FLAT;
   uint32_t dw1, dw2, dw3, dw4, dw16, dw17;
   int i;
   /* _NEW_BUFFER */
   bool render_to_fbo = brw->intel.ctx.DrawBuffer->Name != 0;
   int attr = 0, input_index = 0;
   int urb_entry_read_offset = 1;
   float point_size;
   uint16_t attr_overrides[FRAG_ATTRIB_MAX];
   uint32_t point_sprite_origin;

   /* CACHE_NEW_VS_PROG */
   urb_entry_read_length = ((brw->vs.prog_data->vue_map.num_slots + 1) / 2 -
			    urb_entry_read_offset);
   if (urb_entry_read_length == 0) {
      /* Setting the URB entry read length to 0 causes undefined behavior, so
       * if we have no URB data to read, set it to 1.
       */
      urb_entry_read_length = 1;
   }

   dw1 =
      GEN6_SF_SWIZZLE_ENABLE |
      num_outputs << GEN6_SF_NUM_OUTPUTS_SHIFT |
      urb_entry_read_length << GEN6_SF_URB_ENTRY_READ_LENGTH_SHIFT |
      urb_entry_read_offset << GEN6_SF_URB_ENTRY_READ_OFFSET_SHIFT;

   dw2 = GEN6_SF_STATISTICS_ENABLE |
         GEN6_SF_VIEWPORT_TRANSFORM_ENABLE;

   dw3 = 0;
   dw4 = 0;
   dw16 = 0;
   dw17 = 0;

   /* _NEW_POLYGON */
   if ((ctx->Polygon.FrontFace == GL_CCW) ^ render_to_fbo)
      dw2 |= GEN6_SF_WINDING_CCW;

   if (ctx->Polygon.OffsetFill)
       dw2 |= GEN6_SF_GLOBAL_DEPTH_OFFSET_SOLID;

   if (ctx->Polygon.OffsetLine)
       dw2 |= GEN6_SF_GLOBAL_DEPTH_OFFSET_WIREFRAME;

   if (ctx->Polygon.OffsetPoint)
       dw2 |= GEN6_SF_GLOBAL_DEPTH_OFFSET_POINT;

   switch (ctx->Polygon.FrontMode) {
   case GL_FILL:
       dw2 |= GEN6_SF_FRONT_SOLID;
       break;

   case GL_LINE:
       dw2 |= GEN6_SF_FRONT_WIREFRAME;
       break;

   case GL_POINT:
       dw2 |= GEN6_SF_FRONT_POINT;
       break;

   default:
       assert(0);
       break;
   }

   switch (ctx->Polygon.BackMode) {
   case GL_FILL:
       dw2 |= GEN6_SF_BACK_SOLID;
       break;

   case GL_LINE:
       dw2 |= GEN6_SF_BACK_WIREFRAME;
       break;

   case GL_POINT:
       dw2 |= GEN6_SF_BACK_POINT;
       break;

   default:
       assert(0);
       break;
   }

   /* _NEW_SCISSOR */
   if (ctx->Scissor.Enabled)
      dw3 |= GEN6_SF_SCISSOR_ENABLE;

   /* _NEW_POLYGON */
   if (ctx->Polygon.CullFlag) {
      switch (ctx->Polygon.CullFaceMode) {
      case GL_FRONT:
	 dw3 |= GEN6_SF_CULL_FRONT;
	 break;
      case GL_BACK:
	 dw3 |= GEN6_SF_CULL_BACK;
	 break;
      case GL_FRONT_AND_BACK:
	 dw3 |= GEN6_SF_CULL_BOTH;
	 break;
      default:
	 assert(0);
	 break;
      }
   } else {
      dw3 |= GEN6_SF_CULL_NONE;
   }

   /* _NEW_LINE */
   dw3 |= U_FIXED(CLAMP(ctx->Line.Width, 0.0, 7.99), 7) <<
      GEN6_SF_LINE_WIDTH_SHIFT;
   if (ctx->Line.SmoothFlag) {
      dw3 |= GEN6_SF_LINE_AA_ENABLE;
      dw3 |= GEN6_SF_LINE_AA_MODE_TRUE;
      dw3 |= GEN6_SF_LINE_END_CAP_WIDTH_1_0;
   }

   /* _NEW_PROGRAM | _NEW_POINT */
   if (!(ctx->VertexProgram.PointSizeEnabled ||
	 ctx->Point._Attenuated))
      dw4 |= GEN6_SF_USE_STATE_POINT_WIDTH;

   /* Clamp to ARB_point_parameters user limits */
   point_size = CLAMP(ctx->Point.Size, ctx->Point.MinSize, ctx->Point.MaxSize);

   /* Clamp to the hardware limits and convert to fixed point */
   dw4 |= U_FIXED(CLAMP(point_size, 0.125, 255.875), 3);

   /*
    * Window coordinates in an FBO are inverted, which means point
    * sprite origin must be inverted, too.
    */
   if ((ctx->Point.SpriteOrigin == GL_LOWER_LEFT) != render_to_fbo) {
      point_sprite_origin = GEN6_SF_POINT_SPRITE_LOWERLEFT;
   } else {
      point_sprite_origin = GEN6_SF_POINT_SPRITE_UPPERLEFT;
   }
   dw1 |= point_sprite_origin;

   /* _NEW_LIGHT */
   if (ctx->Light.ProvokingVertex != GL_FIRST_VERTEX_CONVENTION) {
      dw4 |=
	 (2 << GEN6_SF_TRI_PROVOKE_SHIFT) |
	 (2 << GEN6_SF_TRIFAN_PROVOKE_SHIFT) |
	 (1 << GEN6_SF_LINE_PROVOKE_SHIFT);
   } else {
      dw4 |=
	 (1 << GEN6_SF_TRIFAN_PROVOKE_SHIFT);
   }

   /* Create the mapping from the FS inputs we produce to the VS outputs
    * they source from.
    */
   for (; attr < FRAG_ATTRIB_MAX; attr++) {
      enum glsl_interp_qualifier interp_qualifier =
         brw->fragment_program->InterpQualifier[attr];
      bool is_gl_Color = attr == FRAG_ATTRIB_COL0 || attr == FRAG_ATTRIB_COL1;

      if (!(brw->fragment_program->Base.InputsRead & BITFIELD64_BIT(attr)))
	 continue;

      /* _NEW_POINT */
      if (ctx->Point.PointSprite &&
	  (attr >= FRAG_ATTRIB_TEX0 && attr <= FRAG_ATTRIB_TEX7) &&
	  ctx->Point.CoordReplace[attr - FRAG_ATTRIB_TEX0]) {
	 dw16 |= (1 << input_index);
      }

      if (attr == FRAG_ATTRIB_PNTC)
	 dw16 |= (1 << input_index);

      /* flat shading */
      if (interp_qualifier == INTERP_QUALIFIER_FLAT ||
          (shade_model_flat && is_gl_Color &&
           interp_qualifier == INTERP_QUALIFIER_NONE))
         dw17 |= (1 << input_index);

      /* The hardware can only do the overrides on 16 overrides at a
       * time, and the other up to 16 have to be lined up so that the
       * input index = the output index.  We'll need to do some
       * tweaking to make sure that's the case.
       */
      assert(input_index < 16 || attr == input_index);

      /* CACHE_NEW_VS_PROG | _NEW_LIGHT | _NEW_PROGRAM */
      attr_overrides[input_index++] =
         get_attr_override(&brw->vs.prog_data->vue_map,
			   urb_entry_read_offset, attr,
                           ctx->VertexProgram._TwoSideEnabled);
   }

   for (; input_index < FRAG_ATTRIB_MAX; input_index++)
      attr_overrides[input_index] = 0;

   BEGIN_BATCH(20);
   OUT_BATCH(_3DSTATE_SF << 16 | (20 - 2));
   OUT_BATCH(dw1);
   OUT_BATCH(dw2);
   OUT_BATCH(dw3);
   OUT_BATCH(dw4);
   OUT_BATCH_F(ctx->Polygon.OffsetUnits * 2); /* constant.  copied from gen4 */
   OUT_BATCH_F(ctx->Polygon.OffsetFactor); /* scale */
   OUT_BATCH_F(0.0); /* XXX: global depth offset clamp */
   for (i = 0; i < 8; i++) {
      OUT_BATCH(attr_overrides[i * 2] | attr_overrides[i * 2 + 1] << 16);
   }
   OUT_BATCH(dw16); /* point sprite texcoord bitmask */
   OUT_BATCH(dw17); /* constant interp bitmask */
   OUT_BATCH(0); /* wrapshortest enables 0-7 */
   OUT_BATCH(0); /* wrapshortest enables 8-15 */
   ADVANCE_BATCH();
}
Beispiel #8
0
static void
upload_sf_state(struct brw_context *brw)
{
   struct gl_context *ctx = &brw->ctx;
   uint32_t dw1, dw2, dw3;
   float point_size;
   /* _NEW_BUFFERS */
   bool render_to_fbo = _mesa_is_user_fbo(ctx->DrawBuffer);
   const bool multisampled_fbo = _mesa_geometric_samples(ctx->DrawBuffer) > 1;

   dw1 = GEN6_SF_STATISTICS_ENABLE;

   if (brw->sf.viewport_transform_enable)
       dw1 |= GEN6_SF_VIEWPORT_TRANSFORM_ENABLE;

   /* _NEW_BUFFERS */
   dw1 |= (brw_depthbuffer_format(brw) << GEN7_SF_DEPTH_BUFFER_SURFACE_FORMAT_SHIFT);

   /* _NEW_POLYGON */
   if (ctx->Polygon._FrontBit == render_to_fbo)
      dw1 |= GEN6_SF_WINDING_CCW;

   if (ctx->Polygon.OffsetFill)
       dw1 |= GEN6_SF_GLOBAL_DEPTH_OFFSET_SOLID;

   if (ctx->Polygon.OffsetLine)
       dw1 |= GEN6_SF_GLOBAL_DEPTH_OFFSET_WIREFRAME;

   if (ctx->Polygon.OffsetPoint)
       dw1 |= GEN6_SF_GLOBAL_DEPTH_OFFSET_POINT;

   switch (ctx->Polygon.FrontMode) {
   case GL_FILL:
       dw1 |= GEN6_SF_FRONT_SOLID;
       break;

   case GL_LINE:
       dw1 |= GEN6_SF_FRONT_WIREFRAME;
       break;

   case GL_POINT:
       dw1 |= GEN6_SF_FRONT_POINT;
       break;

   default:
       unreachable("not reached");
   }

   switch (ctx->Polygon.BackMode) {
   case GL_FILL:
       dw1 |= GEN6_SF_BACK_SOLID;
       break;

   case GL_LINE:
       dw1 |= GEN6_SF_BACK_WIREFRAME;
       break;

   case GL_POINT:
       dw1 |= GEN6_SF_BACK_POINT;
       break;

   default:
       unreachable("not reached");
   }

   dw2 = 0;

   if (ctx->Polygon.CullFlag) {
      switch (ctx->Polygon.CullFaceMode) {
      case GL_FRONT:
	 dw2 |= GEN6_SF_CULL_FRONT;
	 break;
      case GL_BACK:
	 dw2 |= GEN6_SF_CULL_BACK;
	 break;
      case GL_FRONT_AND_BACK:
	 dw2 |= GEN6_SF_CULL_BOTH;
	 break;
      default:
	 unreachable("not reached");
      }
   } else {
      dw2 |= GEN6_SF_CULL_NONE;
   }

   /* _NEW_SCISSOR _NEW_POLYGON BRW_NEW_GEOMETRY_PROGRAM BRW_NEW_PRIMITIVE */
   if (ctx->Scissor.EnableFlags ||
       is_drawing_points(brw) || is_drawing_lines(brw))
      dw2 |= GEN6_SF_SCISSOR_ENABLE;

   /* _NEW_LINE */
   {
      uint32_t line_width_u3_7 = brw_get_line_width(brw);
      dw2 |= line_width_u3_7 << GEN6_SF_LINE_WIDTH_SHIFT;
   }
   if (ctx->Line.SmoothFlag) {
      dw2 |= GEN6_SF_LINE_AA_ENABLE;
      dw2 |= GEN6_SF_LINE_END_CAP_WIDTH_1_0;
   }
   if (ctx->Line.StippleFlag && brw->is_haswell) {
      dw2 |= HSW_SF_LINE_STIPPLE_ENABLE;
   }
   /* _NEW_MULTISAMPLE */
   if (multisampled_fbo && ctx->Multisample.Enabled)
      dw2 |= GEN6_SF_MSRAST_ON_PATTERN;

   /* FINISHME: Last Pixel Enable?  Vertex Sub Pixel Precision Select?
    */

   dw3 = GEN6_SF_LINE_AA_MODE_TRUE;

   /* _NEW_PROGRAM | _NEW_POINT */
   if (!(ctx->VertexProgram.PointSizeEnabled || ctx->Point._Attenuated))
      dw3 |= GEN6_SF_USE_STATE_POINT_WIDTH;

   /* Clamp to ARB_point_parameters user limits */
   point_size = CLAMP(ctx->Point.Size, ctx->Point.MinSize, ctx->Point.MaxSize);

   /* Clamp to the hardware limits and convert to fixed point */
   dw3 |= U_FIXED(CLAMP(point_size, 0.125f, 255.875f), 3);

   /* _NEW_LIGHT */
   if (ctx->Light.ProvokingVertex != GL_FIRST_VERTEX_CONVENTION) {
      dw3 |=
	 (2 << GEN6_SF_TRI_PROVOKE_SHIFT) |
	 (2 << GEN6_SF_TRIFAN_PROVOKE_SHIFT) |
	 (1 << GEN6_SF_LINE_PROVOKE_SHIFT);
   } else {
      dw3 |= (1 << GEN6_SF_TRIFAN_PROVOKE_SHIFT);
   }

   BEGIN_BATCH(7);
   OUT_BATCH(_3DSTATE_SF << 16 | (7 - 2));
   OUT_BATCH(dw1);
   OUT_BATCH(dw2);
   OUT_BATCH(dw3);
   OUT_BATCH_F(ctx->Polygon.OffsetUnits * 2); /* constant.  copied from gen4 */
   OUT_BATCH_F(ctx->Polygon.OffsetFactor); /* scale */
   OUT_BATCH_F(ctx->Polygon.OffsetClamp); /* global depth offset clamp */
   ADVANCE_BATCH();
}
Beispiel #9
0
static void
upload_clip_state(struct brw_context *brw)
{
   struct intel_context *intel = &brw->intel;
   struct gl_context *ctx = &intel->ctx;
   uint32_t dw1 = brw->meta_in_progress ? 0 : GEN6_CLIP_STATISTICS_ENABLE;
   uint32_t dw2 = 0;

   /* _NEW_BUFFERS */
   struct gl_framebuffer *fb = ctx->DrawBuffer;

   /* CACHE_NEW_WM_PROG */
   if (brw->wm.prog_data->barycentric_interp_modes &
       BRW_WM_NONPERSPECTIVE_BARYCENTRIC_BITS) {
      dw2 |= GEN6_CLIP_NON_PERSPECTIVE_BARYCENTRIC_ENABLE;
   }

   if (!ctx->Transform.DepthClamp)
      dw2 |= GEN6_CLIP_Z_TEST;

   /* _NEW_LIGHT */
   if (ctx->Light.ProvokingVertex == GL_FIRST_VERTEX_CONVENTION) {
      dw2 |=
	 (0 << GEN6_CLIP_TRI_PROVOKE_SHIFT) |
	 (1 << GEN6_CLIP_TRIFAN_PROVOKE_SHIFT) |
	 (0 << GEN6_CLIP_LINE_PROVOKE_SHIFT);
   } else {
      dw2 |=
	 (2 << GEN6_CLIP_TRI_PROVOKE_SHIFT) |
	 (2 << GEN6_CLIP_TRIFAN_PROVOKE_SHIFT) |
	 (1 << GEN6_CLIP_LINE_PROVOKE_SHIFT);
   }

   /* _NEW_TRANSFORM */
   dw2 |= (ctx->Transform.ClipPlanesEnabled <<
           GEN6_USER_CLIP_CLIP_DISTANCES_SHIFT);

   if (ctx->Viewport.X == 0 &&
       ctx->Viewport.Y == 0 &&
       ctx->Viewport.Width == fb->Width &&
       ctx->Viewport.Height == fb->Height) {
      dw2 |= GEN6_CLIP_GB_TEST;
   }

   /* BRW_NEW_RASTERIZER_DISCARD */
   if (ctx->RasterDiscard) {
      dw2 |= GEN6_CLIP_MODE_REJECT_ALL;
      perf_debug("Rasterizer discard is currently implemented via the clipper; "
                 "having the GS not write primitives would likely be faster.");
   }

   BEGIN_BATCH(4);
   OUT_BATCH(_3DSTATE_CLIP << 16 | (4 - 2));
   OUT_BATCH(dw1);
   OUT_BATCH(GEN6_CLIP_ENABLE |
	     GEN6_CLIP_API_OGL |
	     GEN6_CLIP_MODE_NORMAL |
	     GEN6_CLIP_XY_TEST |
	     dw2);
   OUT_BATCH(U_FIXED(0.125, 3) << GEN6_CLIP_MIN_POINT_WIDTH_SHIFT |
             U_FIXED(255.875, 3) << GEN6_CLIP_MAX_POINT_WIDTH_SHIFT |
             GEN6_CLIP_FORCE_ZERO_RTAINDEX);
   ADVANCE_BATCH();
}
Beispiel #10
0
/* Recalculate all state from scratch.  Perhaps not the most
 * efficient, but this has gotten complex enough that we need
 * something which is understandable and reliable.
 */
static bool
i915_update_tex_unit(struct intel_context *intel, GLuint unit, GLuint ss3)
{
   struct gl_context *ctx = &intel->ctx;
   struct i915_context *i915 = i915_context(ctx);
   struct gl_texture_unit *tUnit = &ctx->Texture.Unit[unit];
   struct gl_texture_object *tObj = tUnit->_Current;
   struct intel_texture_object *intelObj = intel_texture_object(tObj);
   struct gl_texture_image *firstImage;
   struct gl_sampler_object *sampler = _mesa_get_samplerobj(ctx, unit);
   GLuint *state = i915->state.Tex[unit], format, pitch;
   GLint lodbias, aniso = 0;
   GLubyte border[4];
   GLfloat maxlod;

   memset(state, 0, sizeof(state));

   /*We need to refcount these. */

   if (i915->state.tex_buffer[unit] != NULL) {
       drm_intel_bo_unreference(i915->state.tex_buffer[unit]);
       i915->state.tex_buffer[unit] = NULL;
   }

   if (!intel_finalize_mipmap_tree(intel, unit))
      return false;

   /* Get first image here, since intelObj->firstLevel will get set in
    * the intel_finalize_mipmap_tree() call above.
    */
   firstImage = tObj->Image[0][tObj->BaseLevel];

   drm_intel_bo_reference(intelObj->mt->region->bo);
   i915->state.tex_buffer[unit] = intelObj->mt->region->bo;
   i915->state.tex_offset[unit] = intelObj->mt->offset;

   format = translate_texture_format(firstImage->TexFormat,
				     tObj->DepthMode);
   pitch = intelObj->mt->region->pitch * intelObj->mt->cpp;

   state[I915_TEXREG_MS3] =
      (((firstImage->Height - 1) << MS3_HEIGHT_SHIFT) |
       ((firstImage->Width - 1) << MS3_WIDTH_SHIFT) | format);

   if (intelObj->mt->region->tiling != I915_TILING_NONE) {
      state[I915_TEXREG_MS3] |= MS3_TILED_SURFACE;
      if (intelObj->mt->region->tiling == I915_TILING_Y)
	 state[I915_TEXREG_MS3] |= MS3_TILE_WALK;
   }

   /* We get one field with fraction bits for the maximum addressable
    * (lowest resolution) LOD.  Use it to cover both MAX_LEVEL and
    * MAX_LOD.
    */
   maxlod = MIN2(sampler->MaxLod, tObj->_MaxLevel - tObj->BaseLevel);
   state[I915_TEXREG_MS4] =
      ((((pitch / 4) - 1) << MS4_PITCH_SHIFT) |
       MS4_CUBE_FACE_ENA_MASK |
       (U_FIXED(CLAMP(maxlod, 0.0, 11.0), 2) << MS4_MAX_LOD_SHIFT) |
       ((firstImage->Depth - 1) << MS4_VOLUME_DEPTH_SHIFT));


   {
      GLuint minFilt, mipFilt, magFilt;

      switch (sampler->MinFilter) {
      case GL_NEAREST:
         minFilt = FILTER_NEAREST;
         mipFilt = MIPFILTER_NONE;
         break;
      case GL_LINEAR:
         minFilt = FILTER_LINEAR;
         mipFilt = MIPFILTER_NONE;
         break;
      case GL_NEAREST_MIPMAP_NEAREST:
         minFilt = FILTER_NEAREST;
         mipFilt = MIPFILTER_NEAREST;
         break;
      case GL_LINEAR_MIPMAP_NEAREST:
         minFilt = FILTER_LINEAR;
         mipFilt = MIPFILTER_NEAREST;
         break;
      case GL_NEAREST_MIPMAP_LINEAR:
         minFilt = FILTER_NEAREST;
         mipFilt = MIPFILTER_LINEAR;
         break;
      case GL_LINEAR_MIPMAP_LINEAR:
         minFilt = FILTER_LINEAR;
         mipFilt = MIPFILTER_LINEAR;
         break;
      default:
         return false;
      }

      if (sampler->MaxAnisotropy > 1.0) {
         minFilt = FILTER_ANISOTROPIC;
         magFilt = FILTER_ANISOTROPIC;
         if (sampler->MaxAnisotropy > 2.0)
            aniso = SS2_MAX_ANISO_4;
         else
            aniso = SS2_MAX_ANISO_2;
      }
      else {
         switch (sampler->MagFilter) {
         case GL_NEAREST:
            magFilt = FILTER_NEAREST;
            break;
         case GL_LINEAR:
            magFilt = FILTER_LINEAR;
            break;
         default:
            return false;
         }
      }

      lodbias = (int) ((tUnit->LodBias + sampler->LodBias) * 16.0);
      if (lodbias < -256)
          lodbias = -256;
      if (lodbias > 255)
          lodbias = 255;
      state[I915_TEXREG_SS2] = ((lodbias << SS2_LOD_BIAS_SHIFT) & 
                                SS2_LOD_BIAS_MASK);

      /* YUV conversion:
       */
      if (firstImage->TexFormat == MESA_FORMAT_YCBCR ||
          firstImage->TexFormat == MESA_FORMAT_YCBCR_REV)
         state[I915_TEXREG_SS2] |= SS2_COLORSPACE_CONVERSION;

      /* Shadow:
       */
      if (sampler->CompareMode == GL_COMPARE_R_TO_TEXTURE_ARB &&
          tObj->Target != GL_TEXTURE_3D) {
         if (tObj->Target == GL_TEXTURE_1D) 
            return false;

         state[I915_TEXREG_SS2] |=
            (SS2_SHADOW_ENABLE |
             intel_translate_shadow_compare_func(sampler->CompareFunc));

         minFilt = FILTER_4X4_FLAT;
         magFilt = FILTER_4X4_FLAT;
      }

      state[I915_TEXREG_SS2] |= ((minFilt << SS2_MIN_FILTER_SHIFT) |
                                 (mipFilt << SS2_MIP_FILTER_SHIFT) |
                                 (magFilt << SS2_MAG_FILTER_SHIFT) |
                                 aniso);
   }

   {
      GLenum ws = sampler->WrapS;
      GLenum wt = sampler->WrapT;
      GLenum wr = sampler->WrapR;
      float minlod;

      /* We program 1D textures as 2D textures, so the 2D texcoord could
       * result in sampling border values if we don't set the T wrap to
       * repeat.
       */
      if (tObj->Target == GL_TEXTURE_1D)
	 wt = GL_REPEAT;

      /* 3D textures don't seem to respect the border color.
       * Fallback if there's ever a danger that they might refer to
       * it.  
       * 
       * Effectively this means fallback on 3D clamp or
       * clamp_to_border.
       */
      if (tObj->Target == GL_TEXTURE_3D &&
          (sampler->MinFilter != GL_NEAREST ||
           sampler->MagFilter != GL_NEAREST) &&
          (ws == GL_CLAMP ||
           wt == GL_CLAMP ||
           wr == GL_CLAMP ||
           ws == GL_CLAMP_TO_BORDER ||
           wt == GL_CLAMP_TO_BORDER || wr == GL_CLAMP_TO_BORDER))
         return false;

      /* Only support TEXCOORDMODE_CLAMP_EDGE and TEXCOORDMODE_CUBE (not 
       * used) when using cube map texture coordinates
       */
      if (tObj->Target == GL_TEXTURE_CUBE_MAP_ARB &&
          (((ws != GL_CLAMP) && (ws != GL_CLAMP_TO_EDGE)) ||
           ((wt != GL_CLAMP) && (wt != GL_CLAMP_TO_EDGE))))
          return false;

      /*
       * According to 3DSTATE_MAP_STATE at page of 104 in Bspec
       * Vol3d 3D Instructions:
       *   [DevGDG and DevAlv]: Must be a power of 2 for cube maps.
       *   [DevLPT, DevCST and DevBLB]: If not a power of 2, cube maps
       *      must have all faces enabled.
       *
       * But, as I tested on pineview(DevBLB derived), the rendering is
       * bad(you will find the color isn't samplered right in some
       * fragments). After checking, it seems that the texture layout is
       * wrong: making the width and height align of 4(although this
       * doesn't make much sense) will fix this issue and also broke some
       * others. Well, Bspec mentioned nothing about the layout alignment
       * and layout for NPOT cube map.  I guess the Bspec just assume it's
       * a POT cube map.
       *
       * Thus, I guess we need do this for other platforms as well.
       */
      if (tObj->Target == GL_TEXTURE_CUBE_MAP_ARB &&
          !is_power_of_two(firstImage->Height))
         return false;

      state[I915_TEXREG_SS3] = ss3;     /* SS3_NORMALIZED_COORDS */

      state[I915_TEXREG_SS3] |=
         ((translate_wrap_mode(ws) << SS3_TCX_ADDR_MODE_SHIFT) |
          (translate_wrap_mode(wt) << SS3_TCY_ADDR_MODE_SHIFT) |
          (translate_wrap_mode(wr) << SS3_TCZ_ADDR_MODE_SHIFT));

      minlod = MIN2(sampler->MinLod, tObj->_MaxLevel - tObj->BaseLevel);
      state[I915_TEXREG_SS3] |= (unit << SS3_TEXTUREMAP_INDEX_SHIFT);
      state[I915_TEXREG_SS3] |= (U_FIXED(CLAMP(minlod, 0.0, 11.0), 4) <<
				 SS3_MIN_LOD_SHIFT);

   }

   /* convert border color from float to ubyte */
   CLAMPED_FLOAT_TO_UBYTE(border[0], sampler->BorderColor.f[0]);
   CLAMPED_FLOAT_TO_UBYTE(border[1], sampler->BorderColor.f[1]);
   CLAMPED_FLOAT_TO_UBYTE(border[2], sampler->BorderColor.f[2]);
   CLAMPED_FLOAT_TO_UBYTE(border[3], sampler->BorderColor.f[3]);

   if (firstImage->_BaseFormat == GL_DEPTH_COMPONENT) {
      /* GL specs that border color for depth textures is taken from the
       * R channel, while the hardware uses A.  Spam R into all the channels
       * for safety.
       */
      state[I915_TEXREG_SS4] = PACK_COLOR_8888(border[0],
					       border[0],
					       border[0],
					       border[0]);
   } else {
      state[I915_TEXREG_SS4] = PACK_COLOR_8888(border[3],
					       border[0],
					       border[1],
					       border[2]);
   }


   I915_ACTIVESTATE(i915, I915_UPLOAD_TEX(unit), true);
   /* memcmp was already disabled, but definitely won't work as the
    * region might now change and that wouldn't be detected:
    */
   I915_STATECHANGE(i915, I915_UPLOAD_TEX(unit));


#if 0
   DBG(TEXTURE, "state[I915_TEXREG_SS2] = 0x%x\n", state[I915_TEXREG_SS2]);
   DBG(TEXTURE, "state[I915_TEXREG_SS3] = 0x%x\n", state[I915_TEXREG_SS3]);
   DBG(TEXTURE, "state[I915_TEXREG_SS4] = 0x%x\n", state[I915_TEXREG_SS4]);
   DBG(TEXTURE, "state[I915_TEXREG_MS2] = 0x%x\n", state[I915_TEXREG_MS2]);
   DBG(TEXTURE, "state[I915_TEXREG_MS3] = 0x%x\n", state[I915_TEXREG_MS3]);
   DBG(TEXTURE, "state[I915_TEXREG_MS4] = 0x%x\n", state[I915_TEXREG_MS4]);
#endif

   return true;
}
Beispiel #11
0
static void
upload_sf_state(struct brw_context *brw)
{
   struct gl_context *ctx = &brw->ctx;
   /* CACHE_NEW_WM_PROG */
   uint32_t num_outputs = brw->wm.prog_data->num_varying_inputs;
   uint32_t dw1, dw2, dw3, dw4;
   uint32_t point_sprite_enables;
   uint32_t flat_enables;
   int i;
   /* _NEW_BUFFER */
   bool render_to_fbo = _mesa_is_user_fbo(ctx->DrawBuffer);
   bool multisampled_fbo = ctx->DrawBuffer->Visual.samples > 1;

   const int urb_entry_read_offset = BRW_SF_URB_ENTRY_READ_OFFSET;
   float point_size;
   uint16_t attr_overrides[16];
   uint32_t point_sprite_origin;

   dw1 = GEN6_SF_SWIZZLE_ENABLE | num_outputs << GEN6_SF_NUM_OUTPUTS_SHIFT;

   dw2 = GEN6_SF_STATISTICS_ENABLE |
         GEN6_SF_VIEWPORT_TRANSFORM_ENABLE;

   dw3 = 0;
   dw4 = 0;

   /* _NEW_POLYGON */
   if ((ctx->Polygon.FrontFace == GL_CCW) ^ render_to_fbo)
      dw2 |= GEN6_SF_WINDING_CCW;

   if (ctx->Polygon.OffsetFill)
       dw2 |= GEN6_SF_GLOBAL_DEPTH_OFFSET_SOLID;

   if (ctx->Polygon.OffsetLine)
       dw2 |= GEN6_SF_GLOBAL_DEPTH_OFFSET_WIREFRAME;

   if (ctx->Polygon.OffsetPoint)
       dw2 |= GEN6_SF_GLOBAL_DEPTH_OFFSET_POINT;

   switch (ctx->Polygon.FrontMode) {
   case GL_FILL:
       dw2 |= GEN6_SF_FRONT_SOLID;
       break;

   case GL_LINE:
       dw2 |= GEN6_SF_FRONT_WIREFRAME;
       break;

   case GL_POINT:
       dw2 |= GEN6_SF_FRONT_POINT;
       break;

   default:
       assert(0);
       break;
   }

   switch (ctx->Polygon.BackMode) {
   case GL_FILL:
       dw2 |= GEN6_SF_BACK_SOLID;
       break;

   case GL_LINE:
       dw2 |= GEN6_SF_BACK_WIREFRAME;
       break;

   case GL_POINT:
       dw2 |= GEN6_SF_BACK_POINT;
       break;

   default:
       assert(0);
       break;
   }

   /* _NEW_SCISSOR */
   if (ctx->Scissor.Enabled)
      dw3 |= GEN6_SF_SCISSOR_ENABLE;

   /* _NEW_POLYGON */
   if (ctx->Polygon.CullFlag) {
      switch (ctx->Polygon.CullFaceMode) {
      case GL_FRONT:
	 dw3 |= GEN6_SF_CULL_FRONT;
	 break;
      case GL_BACK:
	 dw3 |= GEN6_SF_CULL_BACK;
	 break;
      case GL_FRONT_AND_BACK:
	 dw3 |= GEN6_SF_CULL_BOTH;
	 break;
      default:
	 assert(0);
	 break;
      }
   } else {
      dw3 |= GEN6_SF_CULL_NONE;
   }

   /* _NEW_LINE */
   {
      uint32_t line_width_u3_7 = U_FIXED(CLAMP(ctx->Line.Width, 0.0, 7.99), 7);
      /* TODO: line width of 0 is not allowed when MSAA enabled */
      if (line_width_u3_7 == 0)
         line_width_u3_7 = 1;
      dw3 |= line_width_u3_7 << GEN6_SF_LINE_WIDTH_SHIFT;
   }
   if (ctx->Line.SmoothFlag) {
      dw3 |= GEN6_SF_LINE_AA_ENABLE;
      dw3 |= GEN6_SF_LINE_AA_MODE_TRUE;
      dw3 |= GEN6_SF_LINE_END_CAP_WIDTH_1_0;
   }
   /* _NEW_MULTISAMPLE */
   if (multisampled_fbo && ctx->Multisample.Enabled)
      dw3 |= GEN6_SF_MSRAST_ON_PATTERN;

   /* _NEW_PROGRAM | _NEW_POINT */
   if (!(ctx->VertexProgram.PointSizeEnabled ||
	 ctx->Point._Attenuated))
      dw4 |= GEN6_SF_USE_STATE_POINT_WIDTH;

   /* Clamp to ARB_point_parameters user limits */
   point_size = CLAMP(ctx->Point.Size, ctx->Point.MinSize, ctx->Point.MaxSize);

   /* Clamp to the hardware limits and convert to fixed point */
   dw4 |= U_FIXED(CLAMP(point_size, 0.125, 255.875), 3);

   /*
    * Window coordinates in an FBO are inverted, which means point
    * sprite origin must be inverted, too.
    */
   if ((ctx->Point.SpriteOrigin == GL_LOWER_LEFT) != render_to_fbo) {
      point_sprite_origin = GEN6_SF_POINT_SPRITE_LOWERLEFT;
   } else {
      point_sprite_origin = GEN6_SF_POINT_SPRITE_UPPERLEFT;
   }
   dw1 |= point_sprite_origin;

   /* _NEW_LIGHT */
   if (ctx->Light.ProvokingVertex != GL_FIRST_VERTEX_CONVENTION) {
      dw4 |=
	 (2 << GEN6_SF_TRI_PROVOKE_SHIFT) |
	 (2 << GEN6_SF_TRIFAN_PROVOKE_SHIFT) |
	 (1 << GEN6_SF_LINE_PROVOKE_SHIFT);
   } else {
      dw4 |=
	 (1 << GEN6_SF_TRIFAN_PROVOKE_SHIFT);
   }

   /* BRW_NEW_VUE_MAP_GEOM_OUT | _NEW_POINT | _NEW_LIGHT | _NEW_PROGRAM |
    * CACHE_NEW_WM_PROG
    */
   uint32_t urb_entry_read_length;
   calculate_attr_overrides(brw, attr_overrides, &point_sprite_enables,
                            &flat_enables, &urb_entry_read_length);
   dw1 |= (urb_entry_read_length << GEN6_SF_URB_ENTRY_READ_LENGTH_SHIFT |
           urb_entry_read_offset << GEN6_SF_URB_ENTRY_READ_OFFSET_SHIFT);

   BEGIN_BATCH(20);
   OUT_BATCH(_3DSTATE_SF << 16 | (20 - 2));
   OUT_BATCH(dw1);
   OUT_BATCH(dw2);
   OUT_BATCH(dw3);
   OUT_BATCH(dw4);
   OUT_BATCH_F(ctx->Polygon.OffsetUnits * 2); /* constant.  copied from gen4 */
   OUT_BATCH_F(ctx->Polygon.OffsetFactor); /* scale */
   OUT_BATCH_F(0.0); /* XXX: global depth offset clamp */
   for (i = 0; i < 8; i++) {
      OUT_BATCH(attr_overrides[i * 2] | attr_overrides[i * 2 + 1] << 16);
   }
   OUT_BATCH(point_sprite_enables); /* dw16 */
   OUT_BATCH(flat_enables);
   OUT_BATCH(0); /* wrapshortest enables 0-7 */
   OUT_BATCH(0); /* wrapshortest enables 8-15 */
   ADVANCE_BATCH();
}
Beispiel #12
0
static void
upload_clip_state(struct brw_context *brw)
{
   struct intel_context *intel = &brw->intel;
   struct gl_context *ctx = &intel->ctx;
   uint32_t depth_clamp = 0;
   uint32_t provoking, userclip;
   uint32_t dw1 = GEN6_CLIP_STATISTICS_ENABLE;
   uint32_t nonperspective_barycentric_enable_flag = 0;

   /* _NEW_BUFFERS */
   bool render_to_fbo = brw->intel.ctx.DrawBuffer->Name != 0;

   /* CACHE_NEW_WM_PROG */
   if (brw->wm.prog_data->barycentric_interp_modes &
       (1 << BRW_WM_NONPERSPECTIVE_PIXEL_BARYCENTRIC)) {
      nonperspective_barycentric_enable_flag =
         GEN6_CLIP_NON_PERSPECTIVE_BARYCENTRIC_ENABLE;
   }

   dw1 |= GEN7_CLIP_EARLY_CULL;

   /* _NEW_POLYGON */
   if ((ctx->Polygon.FrontFace == GL_CCW) ^ render_to_fbo)
      dw1 |= GEN7_CLIP_WINDING_CCW;

   if (ctx->Polygon.CullFlag) {
      switch (ctx->Polygon.CullFaceMode) {
      case GL_FRONT:
	 dw1 |= GEN7_CLIP_CULLMODE_FRONT;
	 break;
      case GL_BACK:
	 dw1 |= GEN7_CLIP_CULLMODE_BACK;
	 break;
      case GL_FRONT_AND_BACK:
	 dw1 |= GEN7_CLIP_CULLMODE_BOTH;
	 break;
      default:
	 assert(!"Should not get here: invalid CullFlag");
	 break;
      }
   } else {
      dw1 |= GEN7_CLIP_CULLMODE_NONE;
   }

   /* _NEW_TRANSFORM */
   if (!ctx->Transform.DepthClamp)
      depth_clamp = GEN6_CLIP_Z_TEST;

   /* _NEW_LIGHT */
   if (ctx->Light.ProvokingVertex == GL_FIRST_VERTEX_CONVENTION) {
      provoking =
	 (0 << GEN6_CLIP_TRI_PROVOKE_SHIFT) |
	 (1 << GEN6_CLIP_TRIFAN_PROVOKE_SHIFT) |
	 (0 << GEN6_CLIP_LINE_PROVOKE_SHIFT);
   } else {
      provoking =
	 (2 << GEN6_CLIP_TRI_PROVOKE_SHIFT) |
	 (2 << GEN6_CLIP_TRIFAN_PROVOKE_SHIFT) |
	 (1 << GEN6_CLIP_LINE_PROVOKE_SHIFT);
   }

   /* _NEW_TRANSFORM */
   userclip = ctx->Transform.ClipPlanesEnabled;

   BEGIN_BATCH(4);
   OUT_BATCH(_3DSTATE_CLIP << 16 | (4 - 2));
   OUT_BATCH(dw1);
   OUT_BATCH(GEN6_CLIP_ENABLE |
	     GEN6_CLIP_API_OGL |
	     GEN6_CLIP_MODE_NORMAL |
             nonperspective_barycentric_enable_flag |
	     GEN6_CLIP_XY_TEST |
	     userclip << GEN6_USER_CLIP_CLIP_DISTANCES_SHIFT |
	     depth_clamp |
	     provoking);
   OUT_BATCH(U_FIXED(0.125, 3) << GEN6_CLIP_MIN_POINT_WIDTH_SHIFT |
             U_FIXED(255.875, 3) << GEN6_CLIP_MAX_POINT_WIDTH_SHIFT |
             GEN6_CLIP_FORCE_ZERO_RTAINDEX);
   ADVANCE_BATCH();
}
Beispiel #13
0
/* Recalculate all state from scratch.  Perhaps not the most
 * efficient, but this has gotten complex enough that we need
 * something which is understandable and reliable.
 */
static bool
i830_update_tex_unit(struct intel_context *intel, GLuint unit, GLuint ss3)
{
   struct gl_context *ctx = &intel->ctx;
   struct i830_context *i830 = i830_context(ctx);
   struct gl_texture_unit *tUnit = &ctx->Texture.Unit[unit];
   struct gl_texture_object *tObj = tUnit->_Current;
   struct intel_texture_object *intelObj = intel_texture_object(tObj);
   struct gl_texture_image *firstImage;
   struct gl_sampler_object *sampler = _mesa_get_samplerobj(ctx, unit);
   GLuint *state = i830->state.Tex[unit], format, pitch;
   GLint lodbias;
   GLubyte border[4];
   GLuint dst_x, dst_y;

   memset(state, 0, sizeof(*state));

   /*We need to refcount these. */

   if (i830->state.tex_buffer[unit] != NULL) {
       drm_intel_bo_unreference(i830->state.tex_buffer[unit]);
       i830->state.tex_buffer[unit] = NULL;
   }

   if (!intel_finalize_mipmap_tree(intel, unit))
      return false;

   /* Get first image here, since intelObj->firstLevel will get set in
    * the intel_finalize_mipmap_tree() call above.
    */
   firstImage = tObj->Image[0][tObj->BaseLevel];

   intel_miptree_get_image_offset(intelObj->mt, tObj->BaseLevel, 0,
				  &dst_x, &dst_y);

   drm_intel_bo_reference(intelObj->mt->region->bo);
   i830->state.tex_buffer[unit] = intelObj->mt->region->bo;
   pitch = intelObj->mt->region->pitch;

   /* XXX: This calculation is probably broken for tiled images with
    * a non-page-aligned offset.
    */
   i830->state.tex_offset[unit] = dst_x * intelObj->mt->cpp + dst_y * pitch;

   format = translate_texture_format(firstImage->TexFormat);

   state[I830_TEXREG_TM0LI] = (_3DSTATE_LOAD_STATE_IMMEDIATE_2 |
                               (LOAD_TEXTURE_MAP0 << unit) | 4);

   state[I830_TEXREG_TM0S1] =
      (((firstImage->Height - 1) << TM0S1_HEIGHT_SHIFT) |
       ((firstImage->Width - 1) << TM0S1_WIDTH_SHIFT) | format);

   if (intelObj->mt->region->tiling != I915_TILING_NONE) {
      state[I830_TEXREG_TM0S1] |= TM0S1_TILED_SURFACE;
      if (intelObj->mt->region->tiling == I915_TILING_Y)
	 state[I830_TEXREG_TM0S1] |= TM0S1_TILE_WALK;
   }

   state[I830_TEXREG_TM0S2] =
      ((((pitch / 4) - 1) << TM0S2_PITCH_SHIFT) | TM0S2_CUBE_FACE_ENA_MASK);

   {
      if (tObj->Target == GL_TEXTURE_CUBE_MAP)
         state[I830_TEXREG_CUBE] = (_3DSTATE_MAP_CUBE | MAP_UNIT(unit) |
                                    CUBE_NEGX_ENABLE |
                                    CUBE_POSX_ENABLE |
                                    CUBE_NEGY_ENABLE |
                                    CUBE_POSY_ENABLE |
                                    CUBE_NEGZ_ENABLE | CUBE_POSZ_ENABLE);
      else
         state[I830_TEXREG_CUBE] = (_3DSTATE_MAP_CUBE | MAP_UNIT(unit));
   }




   {
      GLuint minFilt, mipFilt, magFilt;
      float maxlod;
      uint32_t minlod_fixed, maxlod_fixed;

      switch (sampler->MinFilter) {
      case GL_NEAREST:
         minFilt = FILTER_NEAREST;
         mipFilt = MIPFILTER_NONE;
         break;
      case GL_LINEAR:
         minFilt = FILTER_LINEAR;
         mipFilt = MIPFILTER_NONE;
         break;
      case GL_NEAREST_MIPMAP_NEAREST:
         minFilt = FILTER_NEAREST;
         mipFilt = MIPFILTER_NEAREST;
         break;
      case GL_LINEAR_MIPMAP_NEAREST:
         minFilt = FILTER_LINEAR;
         mipFilt = MIPFILTER_NEAREST;
         break;
      case GL_NEAREST_MIPMAP_LINEAR:
         minFilt = FILTER_NEAREST;
         mipFilt = MIPFILTER_LINEAR;
         break;
      case GL_LINEAR_MIPMAP_LINEAR:
         minFilt = FILTER_LINEAR;
         mipFilt = MIPFILTER_LINEAR;
         break;
      default:
         return false;
      }

      if (sampler->MaxAnisotropy > 1.0) {
         minFilt = FILTER_ANISOTROPIC;
         magFilt = FILTER_ANISOTROPIC;
      }
      else {
         switch (sampler->MagFilter) {
         case GL_NEAREST:
            magFilt = FILTER_NEAREST;
            break;
         case GL_LINEAR:
            magFilt = FILTER_LINEAR;
            break;
         default:
            return false;
         }
      }

      lodbias = (int) ((tUnit->LodBias + sampler->LodBias) * 16.0);
      if (lodbias < -64)
          lodbias = -64;
      if (lodbias > 63)
          lodbias = 63;
      
      state[I830_TEXREG_TM0S3] = ((lodbias << TM0S3_LOD_BIAS_SHIFT) & 
                                  TM0S3_LOD_BIAS_MASK);
#if 0
      /* YUV conversion:
       */
      if (firstImage->TexFormat->MesaFormat == MESA_FORMAT_YCBCR ||
          firstImage->TexFormat->MesaFormat == MESA_FORMAT_YCBCR_REV)
         state[I830_TEXREG_TM0S3] |= SS2_COLORSPACE_CONVERSION;
#endif

      /* We get one field with fraction bits for the maximum
       * addressable (smallest resolution) LOD.  Use it to cover both
       * MAX_LEVEL and MAX_LOD.
       */
      minlod_fixed = U_FIXED(CLAMP(sampler->MinLod, 0.0, 11), 4);
      maxlod = MIN2(sampler->MaxLod, tObj->_MaxLevel - tObj->BaseLevel);
      if (intel->intelScreen->deviceID == PCI_CHIP_I855_GM ||
	  intel->intelScreen->deviceID == PCI_CHIP_I865_G) {
	 maxlod_fixed = U_FIXED(CLAMP(maxlod, 0.0, 11.75), 2);
	 maxlod_fixed = MAX2(maxlod_fixed, (minlod_fixed + 3) >> 2);
	 state[I830_TEXREG_TM0S3] |= maxlod_fixed << TM0S3_MIN_MIP_SHIFT;
	 state[I830_TEXREG_TM0S2] |= TM0S2_LOD_PRECLAMP;
      } else {
Beispiel #14
0
#endif

      /* We get one field with fraction bits for the maximum
       * addressable (smallest resolution) LOD.  Use it to cover both
       * MAX_LEVEL and MAX_LOD.
       */
      minlod_fixed = U_FIXED(CLAMP(sampler->MinLod, 0.0, 11), 4);
      maxlod = MIN2(sampler->MaxLod, tObj->_MaxLevel - tObj->BaseLevel);
      if (intel->intelScreen->deviceID == PCI_CHIP_I855_GM ||
	  intel->intelScreen->deviceID == PCI_CHIP_I865_G) {
	 maxlod_fixed = U_FIXED(CLAMP(maxlod, 0.0, 11.75), 2);
	 maxlod_fixed = MAX2(maxlod_fixed, (minlod_fixed + 3) >> 2);
	 state[I830_TEXREG_TM0S3] |= maxlod_fixed << TM0S3_MIN_MIP_SHIFT;
	 state[I830_TEXREG_TM0S2] |= TM0S2_LOD_PRECLAMP;
      } else {
	 maxlod_fixed = U_FIXED(CLAMP(maxlod, 0.0, 11), 0);
	 maxlod_fixed = MAX2(maxlod_fixed, (minlod_fixed + 15) >> 4);
	 state[I830_TEXREG_TM0S3] |= maxlod_fixed << TM0S3_MIN_MIP_SHIFT_830;
      }
      state[I830_TEXREG_TM0S3] |= minlod_fixed << TM0S3_MAX_MIP_SHIFT;
      state[I830_TEXREG_TM0S3] |= ((minFilt << TM0S3_MIN_FILTER_SHIFT) |
                                   (mipFilt << TM0S3_MIP_FILTER_SHIFT) |
                                   (magFilt << TM0S3_MAG_FILTER_SHIFT));
   }

   {
      GLenum ws = sampler->WrapS;
      GLenum wt = sampler->WrapT;


      /* 3D textures not available on i830
Beispiel #15
0
/**
 * Sets the sampler state for a single unit.
 */
static void
gen7_update_sampler_state(struct brw_context *brw, int unit,
			  struct gen7_sampler_state *sampler)
{
   struct intel_context *intel = &brw->intel;
   struct gl_context *ctx = &intel->ctx;
   struct gl_texture_unit *texUnit = &ctx->Texture.Unit[unit];
   struct gl_texture_object *texObj = texUnit->_Current;
   struct gl_sampler_object *gl_sampler = _mesa_get_samplerobj(ctx, unit);
   bool using_nearest = false;

   switch (gl_sampler->MinFilter) {
   case GL_NEAREST:
      sampler->ss0.min_filter = BRW_MAPFILTER_NEAREST;
      sampler->ss0.mip_filter = BRW_MIPFILTER_NONE;
      using_nearest = true;
      break;
   case GL_LINEAR:
      sampler->ss0.min_filter = BRW_MAPFILTER_LINEAR;
      sampler->ss0.mip_filter = BRW_MIPFILTER_NONE;
      break;
   case GL_NEAREST_MIPMAP_NEAREST:
      sampler->ss0.min_filter = BRW_MAPFILTER_NEAREST;
      sampler->ss0.mip_filter = BRW_MIPFILTER_NEAREST;
      break;
   case GL_LINEAR_MIPMAP_NEAREST:
      sampler->ss0.min_filter = BRW_MAPFILTER_LINEAR;
      sampler->ss0.mip_filter = BRW_MIPFILTER_NEAREST;
      break;
   case GL_NEAREST_MIPMAP_LINEAR:
      sampler->ss0.min_filter = BRW_MAPFILTER_NEAREST;
      sampler->ss0.mip_filter = BRW_MIPFILTER_LINEAR;
      break;
   case GL_LINEAR_MIPMAP_LINEAR:
      sampler->ss0.min_filter = BRW_MAPFILTER_LINEAR;
      sampler->ss0.mip_filter = BRW_MIPFILTER_LINEAR;
      break;
   default:
      break;
   }

   /* Set Anisotropy: */
   if (gl_sampler->MaxAnisotropy > 1.0) {
      sampler->ss0.min_filter = BRW_MAPFILTER_ANISOTROPIC;
      sampler->ss0.mag_filter = BRW_MAPFILTER_ANISOTROPIC;

      if (gl_sampler->MaxAnisotropy > 2.0) {
	 sampler->ss3.max_aniso = MIN2((gl_sampler->MaxAnisotropy - 2) / 2,
				       BRW_ANISORATIO_16);
      }
   }
   else {
      switch (gl_sampler->MagFilter) {
      case GL_NEAREST:
	 sampler->ss0.mag_filter = BRW_MAPFILTER_NEAREST;
	 using_nearest = true;
	 break;
      case GL_LINEAR:
	 sampler->ss0.mag_filter = BRW_MAPFILTER_LINEAR;
	 break;
      default:
	 break;
      }
   }

   sampler->ss3.r_wrap_mode = translate_wrap_mode(gl_sampler->WrapR,
						  using_nearest);
   sampler->ss3.s_wrap_mode = translate_wrap_mode(gl_sampler->WrapS,
						  using_nearest);
   sampler->ss3.t_wrap_mode = translate_wrap_mode(gl_sampler->WrapT,
						  using_nearest);

   /* Cube-maps on 965 and later must use the same wrap mode for all 3
    * coordinate dimensions.  Futher, only CUBE and CLAMP are valid.
    */
   if (texObj->Target == GL_TEXTURE_CUBE_MAP) {
      if (ctx->Texture.CubeMapSeamless &&
	  (gl_sampler->MinFilter != GL_NEAREST ||
	   gl_sampler->MagFilter != GL_NEAREST)) {
	 sampler->ss3.r_wrap_mode = BRW_TEXCOORDMODE_CUBE;
	 sampler->ss3.s_wrap_mode = BRW_TEXCOORDMODE_CUBE;
	 sampler->ss3.t_wrap_mode = BRW_TEXCOORDMODE_CUBE;
      } else {
	 sampler->ss3.r_wrap_mode = BRW_TEXCOORDMODE_CLAMP;
	 sampler->ss3.s_wrap_mode = BRW_TEXCOORDMODE_CLAMP;
	 sampler->ss3.t_wrap_mode = BRW_TEXCOORDMODE_CLAMP;
      }
   } else if (texObj->Target == GL_TEXTURE_1D) {
      /* There's a bug in 1D texture sampling - it actually pays
       * attention to the wrap_t value, though it should not.
       * Override the wrap_t value here to GL_REPEAT to keep
       * any nonexistent border pixels from floating in.
       */
      sampler->ss3.t_wrap_mode = BRW_TEXCOORDMODE_WRAP;
   }

   /* Set shadow function: */
   if (gl_sampler->CompareMode == GL_COMPARE_R_TO_TEXTURE_ARB) {
      /* Shadowing is "enabled" by emitting a particular sampler
       * message (sample_c).  So need to recompile WM program when
       * shadow comparison is enabled on each/any texture unit.
       */
      sampler->ss1.shadow_function =
	 intel_translate_shadow_compare_func(gl_sampler->CompareFunc);
   }

   /* Set LOD bias: */
   sampler->ss0.lod_bias = S_FIXED(CLAMP(texUnit->LodBias +
					 gl_sampler->LodBias, -16, 15), 8);

   sampler->ss0.lod_preclamp = 1; /* OpenGL mode */
   sampler->ss0.default_color_mode = 0; /* OpenGL/DX10 mode */

   /* Set BaseMipLevel, MaxLOD, MinLOD:
    *
    * XXX: I don't think that using firstLevel, lastLevel works,
    * because we always setup the surface state as if firstLevel ==
    * level zero.  Probably have to subtract firstLevel from each of
    * these:
    */
   sampler->ss0.base_level = U_FIXED(0, 1);

   sampler->ss1.max_lod = U_FIXED(CLAMP(gl_sampler->MaxLod, 0, 13), 8);
   sampler->ss1.min_lod = U_FIXED(CLAMP(gl_sampler->MinLod, 0, 13), 8);

   upload_default_color(brw, gl_sampler, unit);

   sampler->ss2.default_color_pointer = brw->wm.sdc_offset[unit] >> 5;
}
static void brw_update_sampler_state( const struct pipe_sampler_state *pipe_sampler,
				      unsigned sdc_gs_offset,
				      struct brw_sampler_state *sampler)
{
   memset(sampler, 0, sizeof(*sampler));

   switch (pipe_sampler->min_mip_filter) {
   case PIPE_TEX_FILTER_NEAREST:
      sampler->ss0.min_filter = BRW_MAPFILTER_NEAREST;
      break;
   case PIPE_TEX_FILTER_LINEAR:
      sampler->ss0.min_filter = BRW_MAPFILTER_LINEAR;
      break;
   case PIPE_TEX_FILTER_ANISO:
      sampler->ss0.min_filter = BRW_MAPFILTER_ANISOTROPIC;
      break;
   default:
      break;
   }

   switch (pipe_sampler->min_mip_filter) {
   case PIPE_TEX_MIPFILTER_NEAREST:
      sampler->ss0.mip_filter = BRW_MIPFILTER_NEAREST;
      break;
   case PIPE_TEX_MIPFILTER_LINEAR:
      sampler->ss0.mip_filter = BRW_MIPFILTER_LINEAR;
      break;
   case PIPE_TEX_MIPFILTER_NONE:
      sampler->ss0.mip_filter = BRW_MIPFILTER_NONE;
      break;
   default:
      break;
   }
   /* Set Anisotropy:
    */
   switch (pipe_sampler->mag_img_filter) {
   case PIPE_TEX_FILTER_NEAREST:
      sampler->ss0.mag_filter = BRW_MAPFILTER_NEAREST;
      break;
   case PIPE_TEX_FILTER_LINEAR:
      sampler->ss0.mag_filter = BRW_MAPFILTER_LINEAR;
      break;
   case PIPE_TEX_FILTER_ANISO:
      sampler->ss0.mag_filter = BRW_MAPFILTER_LINEAR;
      break;
   default:
      break;
   }

   if (pipe_sampler->max_anisotropy > 2.0) {
      sampler->ss3.max_aniso = MAX2((pipe_sampler->max_anisotropy - 2) / 2,
                                    BRW_ANISORATIO_16);
   }

   sampler->ss1.s_wrap_mode = translate_wrap_mode(pipe_sampler->wrap_s);
   sampler->ss1.r_wrap_mode = translate_wrap_mode(pipe_sampler->wrap_r);
   sampler->ss1.t_wrap_mode = translate_wrap_mode(pipe_sampler->wrap_t);

   /* Fulsim complains if I don't do this.  Hardware doesn't mind:
    */
#if 0
   if (texObj->Target == GL_TEXTURE_CUBE_MAP_ARB) {
      sampler->ss1.r_wrap_mode = BRW_TEXCOORDMODE_CUBE;
      sampler->ss1.s_wrap_mode = BRW_TEXCOORDMODE_CUBE;
      sampler->ss1.t_wrap_mode = BRW_TEXCOORDMODE_CUBE;
   }
#endif

   /* Set shadow function:
    */
   if (pipe_sampler->compare_mode == PIPE_TEX_COMPARE_R_TO_TEXTURE) {
      /* Shadowing is "enabled" by emitting a particular sampler
       * message (sample_c).  So need to recompile WM program when
       * shadow comparison is enabled on each/any texture unit.
       */
      sampler->ss0.shadow_function = intel_translate_shadow_compare_func(pipe_sampler->compare_func);
   }

   /* Set LOD bias:
    */
   sampler->ss0.lod_bias = S_FIXED(CLAMP(pipe_sampler->lod_bias, -16, 15), 6);

   sampler->ss0.lod_preclamp = 1; /* OpenGL mode */
   sampler->ss0.default_color_mode = 0; /* OpenGL/DX10 mode */

   /* Set BaseMipLevel, MaxLOD, MinLOD:
    *
    * XXX: I don't think that using firstLevel, lastLevel works,
    * because we always setup the surface state as if firstLevel ==
    * level zero.  Probably have to subtract firstLevel from each of
    * these:
    */
   sampler->ss0.base_level = U_FIXED(0, 1);

   sampler->ss1.max_lod = U_FIXED(MIN2(MAX2(pipe_sampler->max_lod, 0), 13), 6);
   sampler->ss1.min_lod = U_FIXED(MIN2(MAX2(pipe_sampler->min_lod, 0), 13), 6);

   sampler->ss2.default_color_pointer = sdc_gs_offset >> 5;
}
Beispiel #17
0
/**
 * Sets the sampler state for a single unit.
 */
static void
gen7_update_sampler_state(struct brw_context *brw, int unit, int ss_index,
			  struct gen7_sampler_state *sampler,
                          uint32_t *sdc_offset)
{
   struct gl_context *ctx = &brw->ctx;
   struct gl_texture_unit *texUnit = &ctx->Texture.Unit[unit];
   struct gl_texture_object *texObj = texUnit->_Current;
   struct gl_sampler_object *gl_sampler = _mesa_get_samplerobj(ctx, unit);
   bool using_nearest = false;

   /* These don't use samplers at all. */
   if (texObj->Target == GL_TEXTURE_BUFFER)
      return;

   switch (gl_sampler->MinFilter) {
   case GL_NEAREST:
      sampler->ss0.min_filter = BRW_MAPFILTER_NEAREST;
      sampler->ss0.mip_filter = BRW_MIPFILTER_NONE;
      using_nearest = true;
      break;
   case GL_LINEAR:
      sampler->ss0.min_filter = BRW_MAPFILTER_LINEAR;
      sampler->ss0.mip_filter = BRW_MIPFILTER_NONE;
      break;
   case GL_NEAREST_MIPMAP_NEAREST:
      sampler->ss0.min_filter = BRW_MAPFILTER_NEAREST;
      sampler->ss0.mip_filter = BRW_MIPFILTER_NEAREST;
      break;
   case GL_LINEAR_MIPMAP_NEAREST:
      sampler->ss0.min_filter = BRW_MAPFILTER_LINEAR;
      sampler->ss0.mip_filter = BRW_MIPFILTER_NEAREST;
      break;
   case GL_NEAREST_MIPMAP_LINEAR:
      sampler->ss0.min_filter = BRW_MAPFILTER_NEAREST;
      sampler->ss0.mip_filter = BRW_MIPFILTER_LINEAR;
      break;
   case GL_LINEAR_MIPMAP_LINEAR:
      sampler->ss0.min_filter = BRW_MAPFILTER_LINEAR;
      sampler->ss0.mip_filter = BRW_MIPFILTER_LINEAR;
      break;
   default:
      break;
   }

   /* Set Anisotropy: */
   if (gl_sampler->MaxAnisotropy > 1.0) {
      sampler->ss0.min_filter = BRW_MAPFILTER_ANISOTROPIC;
      sampler->ss0.mag_filter = BRW_MAPFILTER_ANISOTROPIC;
      sampler->ss0.aniso_algorithm = 1;

      if (gl_sampler->MaxAnisotropy > 2.0) {
	 sampler->ss3.max_aniso = MIN2((gl_sampler->MaxAnisotropy - 2) / 2,
				       BRW_ANISORATIO_16);
      }
   }
   else {
      switch (gl_sampler->MagFilter) {
      case GL_NEAREST:
	 sampler->ss0.mag_filter = BRW_MAPFILTER_NEAREST;
	 using_nearest = true;
	 break;
      case GL_LINEAR:
	 sampler->ss0.mag_filter = BRW_MAPFILTER_LINEAR;
	 break;
      default:
	 break;
      }
   }

   sampler->ss3.r_wrap_mode = translate_wrap_mode(gl_sampler->WrapR,
						  using_nearest);
   sampler->ss3.s_wrap_mode = translate_wrap_mode(gl_sampler->WrapS,
						  using_nearest);
   sampler->ss3.t_wrap_mode = translate_wrap_mode(gl_sampler->WrapT,
						  using_nearest);

   /* Cube-maps on 965 and later must use the same wrap mode for all 3
    * coordinate dimensions.  Futher, only CUBE and CLAMP are valid.
    */
   if (texObj->Target == GL_TEXTURE_CUBE_MAP ||
       texObj->Target == GL_TEXTURE_CUBE_MAP_ARRAY) {
      if ((ctx->Texture.CubeMapSeamless || gl_sampler->CubeMapSeamless) &&
	  (gl_sampler->MinFilter != GL_NEAREST ||
	   gl_sampler->MagFilter != GL_NEAREST)) {
	 sampler->ss3.r_wrap_mode = BRW_TEXCOORDMODE_CUBE;
	 sampler->ss3.s_wrap_mode = BRW_TEXCOORDMODE_CUBE;
	 sampler->ss3.t_wrap_mode = BRW_TEXCOORDMODE_CUBE;
      } else {
	 sampler->ss3.r_wrap_mode = BRW_TEXCOORDMODE_CLAMP;
	 sampler->ss3.s_wrap_mode = BRW_TEXCOORDMODE_CLAMP;
	 sampler->ss3.t_wrap_mode = BRW_TEXCOORDMODE_CLAMP;
      }
   } else if (texObj->Target == GL_TEXTURE_1D) {
      /* There's a bug in 1D texture sampling - it actually pays
       * attention to the wrap_t value, though it should not.
       * Override the wrap_t value here to GL_REPEAT to keep
       * any nonexistent border pixels from floating in.
       */
      sampler->ss3.t_wrap_mode = BRW_TEXCOORDMODE_WRAP;
   }

   /* Set shadow function: */
   if (gl_sampler->CompareMode == GL_COMPARE_R_TO_TEXTURE_ARB) {
      /* Shadowing is "enabled" by emitting a particular sampler
       * message (sample_c).  So need to recompile WM program when
       * shadow comparison is enabled on each/any texture unit.
       */
      sampler->ss1.shadow_function =
	 intel_translate_shadow_compare_func(gl_sampler->CompareFunc);
   }

   /* Set LOD bias: */
   sampler->ss0.lod_bias = S_FIXED(CLAMP(texUnit->LodBias +
					 gl_sampler->LodBias, -16, 15), 8);

   sampler->ss0.lod_preclamp = 1; /* OpenGL mode */
   sampler->ss0.default_color_mode = 0; /* OpenGL/DX10 mode */

   sampler->ss0.base_level = U_FIXED(0, 1);

   sampler->ss1.max_lod = U_FIXED(CLAMP(gl_sampler->MaxLod, 0, 13), 8);
   sampler->ss1.min_lod = U_FIXED(CLAMP(gl_sampler->MinLod, 0, 13), 8);

   /* The sampler can handle non-normalized texture rectangle coordinates
    * natively
    */
   if (texObj->Target == GL_TEXTURE_RECTANGLE) {
      sampler->ss3.non_normalized_coord = 1;
   }

   upload_default_color(brw, gl_sampler, unit, sdc_offset);

   sampler->ss2.default_color_pointer = *sdc_offset >> 5;

   if (sampler->ss0.min_filter != BRW_MAPFILTER_NEAREST)
      sampler->ss3.address_round |= BRW_ADDRESS_ROUNDING_ENABLE_U_MIN |
                                    BRW_ADDRESS_ROUNDING_ENABLE_V_MIN |
                                    BRW_ADDRESS_ROUNDING_ENABLE_R_MIN;
   if (sampler->ss0.mag_filter != BRW_MAPFILTER_NEAREST)
      sampler->ss3.address_round |= BRW_ADDRESS_ROUNDING_ENABLE_U_MAG |
                                    BRW_ADDRESS_ROUNDING_ENABLE_V_MAG |
                                    BRW_ADDRESS_ROUNDING_ENABLE_R_MAG;
}
Beispiel #18
0
static void
upload_sf_state(struct brw_context *brw)
{
   struct intel_context *intel = &brw->intel;
   struct gl_context *ctx = &intel->ctx;
   uint32_t dw1, dw2, dw3;
   float point_size;
   /* _NEW_BUFFERS */
   bool render_to_fbo = _mesa_is_user_fbo(brw->intel.ctx.DrawBuffer);
   bool multisampled_fbo = ctx->DrawBuffer->Visual.samples > 1;

   dw1 = GEN6_SF_STATISTICS_ENABLE |
         GEN6_SF_VIEWPORT_TRANSFORM_ENABLE;

   /* _NEW_BUFFERS */
   dw1 |= (brw_depthbuffer_format(brw) << GEN7_SF_DEPTH_BUFFER_SURFACE_FORMAT_SHIFT);

   /* _NEW_POLYGON */
   if ((ctx->Polygon.FrontFace == GL_CCW) ^ render_to_fbo)
      dw1 |= GEN6_SF_WINDING_CCW;

   if (ctx->Polygon.OffsetFill)
       dw1 |= GEN6_SF_GLOBAL_DEPTH_OFFSET_SOLID;

   if (ctx->Polygon.OffsetLine)
       dw1 |= GEN6_SF_GLOBAL_DEPTH_OFFSET_WIREFRAME;

   if (ctx->Polygon.OffsetPoint)
       dw1 |= GEN6_SF_GLOBAL_DEPTH_OFFSET_POINT;

   switch (ctx->Polygon.FrontMode) {
   case GL_FILL:
       dw1 |= GEN6_SF_FRONT_SOLID;
       break;

   case GL_LINE:
       dw1 |= GEN6_SF_FRONT_WIREFRAME;
       break;

   case GL_POINT:
       dw1 |= GEN6_SF_FRONT_POINT;
       break;

   default:
       assert(0);
       break;
   }

   switch (ctx->Polygon.BackMode) {
   case GL_FILL:
       dw1 |= GEN6_SF_BACK_SOLID;
       break;

   case GL_LINE:
       dw1 |= GEN6_SF_BACK_WIREFRAME;
       break;

   case GL_POINT:
       dw1 |= GEN6_SF_BACK_POINT;
       break;

   default:
       assert(0);
       break;
   }

   dw2 = 0;

   if (ctx->Polygon.CullFlag) {
      switch (ctx->Polygon.CullFaceMode) {
      case GL_FRONT:
	 dw2 |= GEN6_SF_CULL_FRONT;
	 break;
      case GL_BACK:
	 dw2 |= GEN6_SF_CULL_BACK;
	 break;
      case GL_FRONT_AND_BACK:
	 dw2 |= GEN6_SF_CULL_BOTH;
	 break;
      default:
	 assert(0);
	 break;
      }
   } else {
      dw2 |= GEN6_SF_CULL_NONE;
   }

   /* _NEW_SCISSOR */
   if (ctx->Scissor.Enabled)
      dw2 |= GEN6_SF_SCISSOR_ENABLE;

   /* _NEW_LINE */
   {
      uint32_t line_width_u3_7 = U_FIXED(CLAMP(ctx->Line.Width, 0.0, 7.99), 7);
      /* TODO: line width of 0 is not allowed when MSAA enabled */
      if (line_width_u3_7 == 0)
         line_width_u3_7 = 1;
      dw2 |= line_width_u3_7 << GEN6_SF_LINE_WIDTH_SHIFT;
   }
   if (ctx->Line.SmoothFlag) {
      dw2 |= GEN6_SF_LINE_AA_ENABLE;
      dw2 |= GEN6_SF_LINE_END_CAP_WIDTH_1_0;
   }
   if (ctx->Line.StippleFlag && intel->is_haswell) {
      dw2 |= HSW_SF_LINE_STIPPLE_ENABLE;
   }
   /* _NEW_MULTISAMPLE */
   if (multisampled_fbo && ctx->Multisample.Enabled)
      dw2 |= GEN6_SF_MSRAST_ON_PATTERN;

   /* FINISHME: Last Pixel Enable?  Vertex Sub Pixel Precision Select?
    */

   dw3 = GEN6_SF_LINE_AA_MODE_TRUE;

   /* _NEW_PROGRAM | _NEW_POINT */
   if (!(ctx->VertexProgram.PointSizeEnabled || ctx->Point._Attenuated))
      dw3 |= GEN6_SF_USE_STATE_POINT_WIDTH;

   /* Clamp to ARB_point_parameters user limits */
   point_size = CLAMP(ctx->Point.Size, ctx->Point.MinSize, ctx->Point.MaxSize);

   /* Clamp to the hardware limits and convert to fixed point */
   dw3 |= U_FIXED(CLAMP(point_size, 0.125, 255.875), 3);

   /* _NEW_LIGHT */
   if (ctx->Light.ProvokingVertex != GL_FIRST_VERTEX_CONVENTION) {
      dw3 |=
	 (2 << GEN6_SF_TRI_PROVOKE_SHIFT) |
	 (2 << GEN6_SF_TRIFAN_PROVOKE_SHIFT) |
	 (1 << GEN6_SF_LINE_PROVOKE_SHIFT);
   } else {
      dw3 |= (1 << GEN6_SF_TRIFAN_PROVOKE_SHIFT);
   }

   BEGIN_BATCH(7);
   OUT_BATCH(_3DSTATE_SF << 16 | (7 - 2));
   OUT_BATCH(dw1);
   OUT_BATCH(dw2);
   OUT_BATCH(dw3);
   OUT_BATCH_F(ctx->Polygon.OffsetUnits * 2); /* constant.  copied from gen4 */
   OUT_BATCH_F(ctx->Polygon.OffsetFactor); /* scale */
   OUT_BATCH_F(0.0); /* XXX: global depth offset clamp */
   ADVANCE_BATCH();
}
Beispiel #19
0
static void
upload_sf_state(struct brw_context *brw)
{
   struct intel_context *intel = &brw->intel;
   struct gl_context *ctx = &intel->ctx;
   /* BRW_NEW_FRAGMENT_PROGRAM */
   uint32_t num_outputs = _mesa_bitcount_64(brw->fragment_program->Base.InputsRead);
   /* _NEW_LIGHT */
   bool shade_model_flat = ctx->Light.ShadeModel == GL_FLAT;
   uint32_t dw1, dw2, dw3, dw4, dw16, dw17;
   int i;
   /* _NEW_BUFFER */
   bool render_to_fbo = _mesa_is_user_fbo(brw->intel.ctx.DrawBuffer);
   bool multisampled_fbo = ctx->DrawBuffer->Visual.samples > 1;

   int attr = 0, input_index = 0;
   int urb_entry_read_offset = 1;
   float point_size;
   uint16_t attr_overrides[FRAG_ATTRIB_MAX];
   uint32_t point_sprite_origin;

   dw1 = GEN6_SF_SWIZZLE_ENABLE | num_outputs << GEN6_SF_NUM_OUTPUTS_SHIFT;

   dw2 = GEN6_SF_STATISTICS_ENABLE |
         GEN6_SF_VIEWPORT_TRANSFORM_ENABLE;

   dw3 = 0;
   dw4 = 0;
   dw16 = 0;
   dw17 = 0;

   /* _NEW_POLYGON */
   if ((ctx->Polygon.FrontFace == GL_CCW) ^ render_to_fbo)
      dw2 |= GEN6_SF_WINDING_CCW;

   if (ctx->Polygon.OffsetFill)
       dw2 |= GEN6_SF_GLOBAL_DEPTH_OFFSET_SOLID;

   if (ctx->Polygon.OffsetLine)
       dw2 |= GEN6_SF_GLOBAL_DEPTH_OFFSET_WIREFRAME;

   if (ctx->Polygon.OffsetPoint)
       dw2 |= GEN6_SF_GLOBAL_DEPTH_OFFSET_POINT;

   switch (ctx->Polygon.FrontMode) {
   case GL_FILL:
       dw2 |= GEN6_SF_FRONT_SOLID;
       break;

   case GL_LINE:
       dw2 |= GEN6_SF_FRONT_WIREFRAME;
       break;

   case GL_POINT:
       dw2 |= GEN6_SF_FRONT_POINT;
       break;

   default:
       assert(0);
       break;
   }

   switch (ctx->Polygon.BackMode) {
   case GL_FILL:
       dw2 |= GEN6_SF_BACK_SOLID;
       break;

   case GL_LINE:
       dw2 |= GEN6_SF_BACK_WIREFRAME;
       break;

   case GL_POINT:
       dw2 |= GEN6_SF_BACK_POINT;
       break;

   default:
       assert(0);
       break;
   }

   /* _NEW_SCISSOR */
   if (ctx->Scissor.Enabled)
      dw3 |= GEN6_SF_SCISSOR_ENABLE;

   /* _NEW_POLYGON */
   if (ctx->Polygon.CullFlag) {
      switch (ctx->Polygon.CullFaceMode) {
      case GL_FRONT:
	 dw3 |= GEN6_SF_CULL_FRONT;
	 break;
      case GL_BACK:
	 dw3 |= GEN6_SF_CULL_BACK;
	 break;
      case GL_FRONT_AND_BACK:
	 dw3 |= GEN6_SF_CULL_BOTH;
	 break;
      default:
	 assert(0);
	 break;
      }
   } else {
      dw3 |= GEN6_SF_CULL_NONE;
   }

   /* _NEW_LINE */
   {
      uint32_t line_width_u3_7 = U_FIXED(CLAMP(ctx->Line.Width, 0.0, 7.99), 7);
      /* TODO: line width of 0 is not allowed when MSAA enabled */
      if (line_width_u3_7 == 0)
         line_width_u3_7 = 1;
      dw3 |= line_width_u3_7 << GEN6_SF_LINE_WIDTH_SHIFT;
   }
   if (ctx->Line.SmoothFlag) {
      dw3 |= GEN6_SF_LINE_AA_ENABLE;
      dw3 |= GEN6_SF_LINE_AA_MODE_TRUE;
      dw3 |= GEN6_SF_LINE_END_CAP_WIDTH_1_0;
   }
   /* _NEW_MULTISAMPLE */
   if (multisampled_fbo && ctx->Multisample.Enabled)
      dw3 |= GEN6_SF_MSRAST_ON_PATTERN;

   /* _NEW_PROGRAM | _NEW_POINT */
   if (!(ctx->VertexProgram.PointSizeEnabled ||
	 ctx->Point._Attenuated))
      dw4 |= GEN6_SF_USE_STATE_POINT_WIDTH;

   /* Clamp to ARB_point_parameters user limits */
   point_size = CLAMP(ctx->Point.Size, ctx->Point.MinSize, ctx->Point.MaxSize);

   /* Clamp to the hardware limits and convert to fixed point */
   dw4 |= U_FIXED(CLAMP(point_size, 0.125, 255.875), 3);

   /*
    * Window coordinates in an FBO are inverted, which means point
    * sprite origin must be inverted, too.
    */
   if ((ctx->Point.SpriteOrigin == GL_LOWER_LEFT) != render_to_fbo) {
      point_sprite_origin = GEN6_SF_POINT_SPRITE_LOWERLEFT;
   } else {
      point_sprite_origin = GEN6_SF_POINT_SPRITE_UPPERLEFT;
   }
   dw1 |= point_sprite_origin;

   /* _NEW_LIGHT */
   if (ctx->Light.ProvokingVertex != GL_FIRST_VERTEX_CONVENTION) {
      dw4 |=
	 (2 << GEN6_SF_TRI_PROVOKE_SHIFT) |
	 (2 << GEN6_SF_TRIFAN_PROVOKE_SHIFT) |
	 (1 << GEN6_SF_LINE_PROVOKE_SHIFT);
   } else {
      dw4 |=
	 (1 << GEN6_SF_TRIFAN_PROVOKE_SHIFT);
   }

   /* Create the mapping from the FS inputs we produce to the VS outputs
    * they source from.
    */
   uint32_t max_source_attr = 0;
   for (; attr < FRAG_ATTRIB_MAX; attr++) {
      enum glsl_interp_qualifier interp_qualifier =
         brw->fragment_program->InterpQualifier[attr];
      bool is_gl_Color = attr == FRAG_ATTRIB_COL0 || attr == FRAG_ATTRIB_COL1;

      if (!(brw->fragment_program->Base.InputsRead & BITFIELD64_BIT(attr)))
	 continue;

      /* _NEW_POINT */
      if (ctx->Point.PointSprite &&
	  (attr >= FRAG_ATTRIB_TEX0 && attr <= FRAG_ATTRIB_TEX7) &&
	  ctx->Point.CoordReplace[attr - FRAG_ATTRIB_TEX0]) {
	 dw16 |= (1 << input_index);
      }

      if (attr == FRAG_ATTRIB_PNTC)
	 dw16 |= (1 << input_index);

      /* flat shading */
      if (interp_qualifier == INTERP_QUALIFIER_FLAT ||
          (shade_model_flat && is_gl_Color &&
           interp_qualifier == INTERP_QUALIFIER_NONE))
         dw17 |= (1 << input_index);

      /* The hardware can only do the overrides on 16 overrides at a
       * time, and the other up to 16 have to be lined up so that the
       * input index = the output index.  We'll need to do some
       * tweaking to make sure that's the case.
       */
      assert(input_index < 16 || attr == input_index);

      /* CACHE_NEW_VS_PROG | _NEW_LIGHT | _NEW_PROGRAM */
      attr_overrides[input_index++] =
         get_attr_override(&brw->vs.prog_data->vue_map,
			   urb_entry_read_offset, attr,
                           ctx->VertexProgram._TwoSideEnabled,
                           &max_source_attr);
   }

   for (; input_index < FRAG_ATTRIB_MAX; input_index++)
      attr_overrides[input_index] = 0;

   /* From the Sandy Bridge PRM, Volume 2, Part 1, documentation for
    * 3DSTATE_SF DWord 1 bits 15:11, "Vertex URB Entry Read Length":
    *
    * "This field should be set to the minimum length required to read the
    *  maximum source attribute.  The maximum source attribute is indicated
    *  by the maximum value of the enabled Attribute # Source Attribute if
    *  Attribute Swizzle Enable is set, Number of Output Attributes-1 if
    *  enable is not set.
    *  read_length = ceiling((max_source_attr + 1) / 2)
    *
    *  [errata] Corruption/Hang possible if length programmed larger than
    *  recommended"
    */
   uint32_t urb_entry_read_length = ALIGN(max_source_attr + 1, 2) / 2;
      dw1 |= urb_entry_read_length << GEN6_SF_URB_ENTRY_READ_LENGTH_SHIFT |
             urb_entry_read_offset << GEN6_SF_URB_ENTRY_READ_OFFSET_SHIFT;

   BEGIN_BATCH(20);
   OUT_BATCH(_3DSTATE_SF << 16 | (20 - 2));
   OUT_BATCH(dw1);
   OUT_BATCH(dw2);
   OUT_BATCH(dw3);
   OUT_BATCH(dw4);
   OUT_BATCH_F(ctx->Polygon.OffsetUnits * 2); /* constant.  copied from gen4 */
   OUT_BATCH_F(ctx->Polygon.OffsetFactor); /* scale */
   OUT_BATCH_F(0.0); /* XXX: global depth offset clamp */
   for (i = 0; i < 8; i++) {
      OUT_BATCH(attr_overrides[i * 2] | attr_overrides[i * 2 + 1] << 16);
   }
   OUT_BATCH(dw16); /* point sprite texcoord bitmask */
   OUT_BATCH(dw17); /* constant interp bitmask */
   OUT_BATCH(0); /* wrapshortest enables 0-7 */
   OUT_BATCH(0); /* wrapshortest enables 8-15 */
   ADVANCE_BATCH();
}
/* Recalculate all state from scratch.  Perhaps not the most
 * efficient, but this has gotten complex enough that we need
 * something which is understandable and reliable.
 */
static GLboolean
i915_update_tex_unit(struct intel_context *intel, GLuint unit, GLuint ss3)
{
   struct gl_context *ctx = &intel->ctx;
   struct i915_context *i915 = i915_context(ctx);
   struct gl_texture_unit *tUnit = &ctx->Texture.Unit[unit];
   struct gl_texture_object *tObj = tUnit->_Current;
   struct intel_texture_object *intelObj = intel_texture_object(tObj);
   struct gl_texture_image *firstImage;
   GLuint *state = i915->state.Tex[unit], format, pitch;
   GLint lodbias, aniso = 0;
   GLubyte border[4];
   GLfloat maxlod;

   memset(state, 0, sizeof(state));

   /*We need to refcount these. */

   if (i915->state.tex_buffer[unit] != NULL) {
       drm_intel_bo_unreference(i915->state.tex_buffer[unit]);
       i915->state.tex_buffer[unit] = NULL;
   }

   if (!intel_finalize_mipmap_tree(intel, unit))
      return GL_FALSE;

   /* Get first image here, since intelObj->firstLevel will get set in
    * the intel_finalize_mipmap_tree() call above.
    */
   firstImage = tObj->Image[0][intelObj->firstLevel];

   drm_intel_bo_reference(intelObj->mt->region->buffer);
   i915->state.tex_buffer[unit] = intelObj->mt->region->buffer;
   i915->state.tex_offset[unit] = 0; /* Always the origin of the miptree */

   format = translate_texture_format(firstImage->TexFormat,
				     firstImage->InternalFormat,
				     tObj->DepthMode);
   pitch = intelObj->mt->region->pitch * intelObj->mt->cpp;

   state[I915_TEXREG_MS3] =
      (((firstImage->Height - 1) << MS3_HEIGHT_SHIFT) |
       ((firstImage->Width - 1) << MS3_WIDTH_SHIFT) | format);

   if (intelObj->mt->region->tiling != I915_TILING_NONE) {
      state[I915_TEXREG_MS3] |= MS3_TILED_SURFACE;
      if (intelObj->mt->region->tiling == I915_TILING_Y)
	 state[I915_TEXREG_MS3] |= MS3_TILE_WALK;
   }

   /* We get one field with fraction bits for the maximum addressable
    * (lowest resolution) LOD.  Use it to cover both MAX_LEVEL and
    * MAX_LOD.
    */
   maxlod = MIN2(tObj->MaxLod, tObj->_MaxLevel - tObj->BaseLevel);
   state[I915_TEXREG_MS4] =
      ((((pitch / 4) - 1) << MS4_PITCH_SHIFT) |
       MS4_CUBE_FACE_ENA_MASK |
       (U_FIXED(CLAMP(maxlod, 0.0, 11.0), 2) << MS4_MAX_LOD_SHIFT) |
       ((firstImage->Depth - 1) << MS4_VOLUME_DEPTH_SHIFT));


   {
      GLuint minFilt, mipFilt, magFilt;

      switch (tObj->MinFilter) {
      case GL_NEAREST:
         minFilt = FILTER_NEAREST;
         mipFilt = MIPFILTER_NONE;
         break;
      case GL_LINEAR:
         minFilt = FILTER_LINEAR;
         mipFilt = MIPFILTER_NONE;
         break;
      case GL_NEAREST_MIPMAP_NEAREST:
         minFilt = FILTER_NEAREST;
         mipFilt = MIPFILTER_NEAREST;
         break;
      case GL_LINEAR_MIPMAP_NEAREST:
         minFilt = FILTER_LINEAR;
         mipFilt = MIPFILTER_NEAREST;
         break;
      case GL_NEAREST_MIPMAP_LINEAR:
         minFilt = FILTER_NEAREST;
         mipFilt = MIPFILTER_LINEAR;
         break;
      case GL_LINEAR_MIPMAP_LINEAR:
         minFilt = FILTER_LINEAR;
         mipFilt = MIPFILTER_LINEAR;
         break;
      default:
         return GL_FALSE;
      }

      if (tObj->MaxAnisotropy > 1.0) {
         minFilt = FILTER_ANISOTROPIC;
         magFilt = FILTER_ANISOTROPIC;
         if (tObj->MaxAnisotropy > 2.0)
            aniso = SS2_MAX_ANISO_4;
         else
            aniso = SS2_MAX_ANISO_2;
      }
      else {
         switch (tObj->MagFilter) {
         case GL_NEAREST:
            magFilt = FILTER_NEAREST;
            break;
         case GL_LINEAR:
            magFilt = FILTER_LINEAR;
            break;
         default:
            return GL_FALSE;
         }
      }

      lodbias = (int) ((tUnit->LodBias + tObj->LodBias) * 16.0);
      if (lodbias < -256)
          lodbias = -256;
      if (lodbias > 255)
          lodbias = 255;
      state[I915_TEXREG_SS2] = ((lodbias << SS2_LOD_BIAS_SHIFT) & 
                                SS2_LOD_BIAS_MASK);

      /* YUV conversion:
       */
      if (firstImage->TexFormat == MESA_FORMAT_YCBCR ||
          firstImage->TexFormat == MESA_FORMAT_YCBCR_REV)
         state[I915_TEXREG_SS2] |= SS2_COLORSPACE_CONVERSION;

      /* Shadow:
       */
      if (tObj->CompareMode == GL_COMPARE_R_TO_TEXTURE_ARB &&
          tObj->Target != GL_TEXTURE_3D) {
         if (tObj->Target == GL_TEXTURE_1D) 
            return GL_FALSE;

         state[I915_TEXREG_SS2] |=
            (SS2_SHADOW_ENABLE |
             intel_translate_shadow_compare_func(tObj->CompareFunc));

         minFilt = FILTER_4X4_FLAT;
         magFilt = FILTER_4X4_FLAT;
      }

      state[I915_TEXREG_SS2] |= ((minFilt << SS2_MIN_FILTER_SHIFT) |
                                 (mipFilt << SS2_MIP_FILTER_SHIFT) |
                                 (magFilt << SS2_MAG_FILTER_SHIFT) |
                                 aniso);
   }

   {
      GLenum ws = tObj->WrapS;
      GLenum wt = tObj->WrapT;
      GLenum wr = tObj->WrapR;
      float minlod;

      /* We program 1D textures as 2D textures, so the 2D texcoord could
       * result in sampling border values if we don't set the T wrap to
       * repeat.
       */
      if (tObj->Target == GL_TEXTURE_1D)
	 wt = GL_REPEAT;

      /* 3D textures don't seem to respect the border color.
       * Fallback if there's ever a danger that they might refer to
       * it.  
       * 
       * Effectively this means fallback on 3D clamp or
       * clamp_to_border.
       */
      if (tObj->Target == GL_TEXTURE_3D &&
          (tObj->MinFilter != GL_NEAREST ||
           tObj->MagFilter != GL_NEAREST) &&
          (ws == GL_CLAMP ||
           wt == GL_CLAMP ||
           wr == GL_CLAMP ||
           ws == GL_CLAMP_TO_BORDER ||
           wt == GL_CLAMP_TO_BORDER || wr == GL_CLAMP_TO_BORDER))
         return GL_FALSE;

      /* Only support TEXCOORDMODE_CLAMP_EDGE and TEXCOORDMODE_CUBE (not 
       * used) when using cube map texture coordinates
       */
      if (tObj->Target == GL_TEXTURE_CUBE_MAP_ARB &&
          (((ws != GL_CLAMP) && (ws != GL_CLAMP_TO_EDGE)) ||
           ((wt != GL_CLAMP) && (wt != GL_CLAMP_TO_EDGE))))
          return GL_FALSE;

      state[I915_TEXREG_SS3] = ss3;     /* SS3_NORMALIZED_COORDS */

      state[I915_TEXREG_SS3] |=
         ((translate_wrap_mode(ws) << SS3_TCX_ADDR_MODE_SHIFT) |
          (translate_wrap_mode(wt) << SS3_TCY_ADDR_MODE_SHIFT) |
          (translate_wrap_mode(wr) << SS3_TCZ_ADDR_MODE_SHIFT));

      minlod = MIN2(tObj->MinLod, tObj->_MaxLevel - tObj->BaseLevel);
      state[I915_TEXREG_SS3] |= (unit << SS3_TEXTUREMAP_INDEX_SHIFT);
      state[I915_TEXREG_SS3] |= (U_FIXED(CLAMP(minlod, 0.0, 11.0), 4) <<
				 SS3_MIN_LOD_SHIFT);

   }

   /* convert border color from float to ubyte */
   CLAMPED_FLOAT_TO_UBYTE(border[0], tObj->BorderColor.f[0]);
   CLAMPED_FLOAT_TO_UBYTE(border[1], tObj->BorderColor.f[1]);
   CLAMPED_FLOAT_TO_UBYTE(border[2], tObj->BorderColor.f[2]);
   CLAMPED_FLOAT_TO_UBYTE(border[3], tObj->BorderColor.f[3]);

   if (firstImage->_BaseFormat == GL_DEPTH_COMPONENT) {
      /* GL specs that border color for depth textures is taken from the
       * R channel, while the hardware uses A.  Spam R into all the channels
       * for safety.
       */
      state[I915_TEXREG_SS4] = PACK_COLOR_8888(border[0],
					       border[0],
					       border[0],
					       border[0]);
   } else {
      state[I915_TEXREG_SS4] = PACK_COLOR_8888(border[3],
					       border[0],
					       border[1],
					       border[2]);
   }


   I915_ACTIVESTATE(i915, I915_UPLOAD_TEX(unit), GL_TRUE);
   /* memcmp was already disabled, but definitely won't work as the
    * region might now change and that wouldn't be detected:
    */
   I915_STATECHANGE(i915, I915_UPLOAD_TEX(unit));


#if 0
   DBG(TEXTURE, "state[I915_TEXREG_SS2] = 0x%x\n", state[I915_TEXREG_SS2]);
   DBG(TEXTURE, "state[I915_TEXREG_SS3] = 0x%x\n", state[I915_TEXREG_SS3]);
   DBG(TEXTURE, "state[I915_TEXREG_SS4] = 0x%x\n", state[I915_TEXREG_SS4]);
   DBG(TEXTURE, "state[I915_TEXREG_MS2] = 0x%x\n", state[I915_TEXREG_MS2]);
   DBG(TEXTURE, "state[I915_TEXREG_MS3] = 0x%x\n", state[I915_TEXREG_MS3]);
   DBG(TEXTURE, "state[I915_TEXREG_MS4] = 0x%x\n", state[I915_TEXREG_MS4]);
#endif

   return GL_TRUE;
}
Beispiel #21
0
static void
upload_sf_state(struct brw_context *brw)
{
   struct intel_context *intel = &brw->intel;
   GLcontext *ctx = &intel->ctx;
   /* CACHE_NEW_VS_PROG */
   uint32_t num_inputs = brw_count_bits(brw->vs.prog_data->outputs_written);
   uint32_t num_outputs = brw_count_bits(brw->fragment_program->Base.InputsRead);
   uint32_t dw1, dw2, dw3, dw4, dw16;
   int i;
   /* _NEW_BUFFER */
   GLboolean render_to_fbo = brw->intel.ctx.DrawBuffer->Name != 0;
   int attr = 0;

   dw1 =
      num_outputs << GEN6_SF_NUM_OUTPUTS_SHIFT |
      (num_inputs + 1) / 2 << GEN6_SF_URB_ENTRY_READ_LENGTH_SHIFT |
      1 << GEN6_SF_URB_ENTRY_READ_OFFSET_SHIFT;
   dw2 = GEN6_SF_VIEWPORT_TRANSFORM_ENABLE |
      GEN6_SF_STATISTICS_ENABLE;
   dw3 = 0;
   dw4 = 0;
   dw16 = 0;

   /* _NEW_POLYGON */
   if ((ctx->Polygon.FrontFace == GL_CCW) ^ render_to_fbo)
      dw2 |= GEN6_SF_WINDING_CCW;

   if (ctx->Polygon.OffsetFill)
       dw2 |= GEN6_SF_GLOBAL_DEPTH_OFFSET_SOLID;

   /* _NEW_SCISSOR */
   if (ctx->Scissor.Enabled)
      dw3 |= GEN6_SF_SCISSOR_ENABLE;

   /* _NEW_POLYGON */
   if (ctx->Polygon.CullFlag) {
      switch (ctx->Polygon.CullFaceMode) {
      case GL_FRONT:
	 dw3 |= GEN6_SF_CULL_FRONT;
	 break;
      case GL_BACK:
	 dw3 |= GEN6_SF_CULL_BACK;
	 break;
      case GL_FRONT_AND_BACK:
	 dw3 |= GEN6_SF_CULL_BOTH;
	 break;
      default:
	 assert(0);
	 break;
      }
   } else {
      dw3 |= GEN6_SF_CULL_NONE;
   }

   /* _NEW_LINE */
   dw3 |= U_FIXED(CLAMP(ctx->Line.Width, 0.0, 7.99), 7) <<
      GEN6_SF_LINE_WIDTH_SHIFT;
   if (ctx->Line.SmoothFlag) {
      dw3 |= GEN6_SF_LINE_AA_ENABLE;
      dw3 |= GEN6_SF_LINE_AA_MODE_TRUE;
      dw3 |= GEN6_SF_LINE_END_CAP_WIDTH_1_0;
   }

   /* _NEW_POINT */
   if (ctx->Point._Attenuated)
      dw4 |= GEN6_SF_USE_STATE_POINT_WIDTH;

   dw4 |= U_FIXED(CLAMP(ctx->Point.Size, 0.125, 225.875), 3) <<
      GEN6_SF_POINT_WIDTH_SHIFT;
   if (ctx->Point.SpriteOrigin == GL_LOWER_LEFT)
      dw1 |= GEN6_SF_POINT_SPRITE_LOWERLEFT;

   /* _NEW_LIGHT */
   if (ctx->Light.ProvokingVertex != GL_FIRST_VERTEX_CONVENTION) {
      dw4 |=
	 (2 << GEN6_SF_TRI_PROVOKE_SHIFT) |
	 (2 << GEN6_SF_TRIFAN_PROVOKE_SHIFT) |
	 (1 << GEN6_SF_LINE_PROVOKE_SHIFT);
   } else {
      dw4 |=
	 (1 << GEN6_SF_TRIFAN_PROVOKE_SHIFT);
   }

   if (ctx->Point.PointSprite) {
       for (i = 0; i < 8; i++) { 
	   if (ctx->Point.CoordReplace[i])
	       dw16 |= (1 << i);
       }
   }

   BEGIN_BATCH(20);
   OUT_BATCH(CMD_3D_SF_STATE << 16 | (20 - 2));
   OUT_BATCH(dw1);
   OUT_BATCH(dw2);
   OUT_BATCH(dw3);
   OUT_BATCH(dw4);
   OUT_BATCH_F(ctx->Polygon.OffsetUnits * 2); /* constant.  copied from gen4 */
   OUT_BATCH_F(ctx->Polygon.OffsetFactor); /* scale */
   OUT_BATCH_F(0.0); /* XXX: global depth offset clamp */
   for (i = 0; i < 8; i++) {
      uint32_t attr_overrides = 0;

      for (; attr < 64; attr++) {
	 if (brw->fragment_program->Base.InputsRead & BITFIELD64_BIT(attr)) {
	    attr_overrides |= get_attr_override(brw, attr);
	    attr++;
	    break;
	 }
      }

      for (; attr < 64; attr++) {
	 if (brw->fragment_program->Base.InputsRead & BITFIELD64_BIT(attr)) {
	    attr_overrides |= get_attr_override(brw, attr) << 16;
	    attr++;
	    break;
	 }
      }
      OUT_BATCH(attr_overrides);
   }
   OUT_BATCH(dw16); /* point sprite texcoord bitmask */
   OUT_BATCH(0); /* constant interp bitmask */
   OUT_BATCH(0); /* wrapshortest enables 0-7 */
   OUT_BATCH(0); /* wrapshortest enables 8-15 */
   ADVANCE_BATCH();

   intel_batchbuffer_emit_mi_flush(intel->batch);
}