Beispiel #1
0
/// Generic implementation of 'ORSA':
/// A Probabilistic Criterion to Detect Rigid Point Matches
///    Between Two Images and Estimate the Fundamental Matrix.
/// Bibtex :
/// @article{DBLP:journals/ijcv/MoisanS04,
///  author    = {Lionel Moisan and B{\'e}renger Stival},
///  title     = {A Probabilistic Criterion to Detect Rigid Point Matches
///    Between Two Images and Estimate the Fundamental Matrix},
///  journal   = {International Journal of Computer Vision},
///  volume    = {57},
///  number    = {3},
///  year      = {2004},
///  pages     = {201-218},
///  ee        = {http://dx.doi.org/10.1023/B:VISI.0000013094.38752.54},
///  bibsource = {DBLP, http://dblp.uni-trier.de}
///}
/// 
/// ORSA is based on an a contrario criterion of
/// inlier/outlier discrimination, is parameter free and relies on an optimized
/// random sampling procedure. It returns the log of NFA and optionally
/// the best estimated model.
///
/// \param vec_inliers Output vector of inlier indices.
/// \param nIter The number of iterations.
/// \param precision (input/output) threshold for inlier discrimination.
/// \param model The best computed model.
/// \param bVerbose Display optimization statistics.
double OrsaModel::orsa(std::vector<int> & vec_inliers,
                       size_t nIter,
                       double *precision,
                       Model *model,
                       bool bVerbose) const {
  vec_inliers.clear();

  const int sizeSample = SizeSample();
  const int nData = x1_.ncol();
  if(nData <= sizeSample)
    return std::numeric_limits<double>::infinity();

  const double maxThreshold = (precision && *precision>0)?
    *precision * *precision *N2_(0,0)*N2_(0,0): // Square max error
    std::numeric_limits<double>::infinity();

  std::vector<ErrorIndex> vec_residuals(nData); // [residual,index]
  std::vector<int> vec_sample(sizeSample); // Sample indices

  // Possible sampling indices (could change in the optimization phase)
  std::vector<int> vec_index(nData);
  for (int i = 0; i < nData; ++i)
    vec_index[i] = i;

  // Precompute log combi
  double loge0 = log10((double)NbModels() * (nData-sizeSample));
  std::vector<float> vec_logc_n, vec_logc_k;
  makelogcombi_n(nData, vec_logc_n);
  makelogcombi_k(sizeSample,nData, vec_logc_k);

  // Reserve 10% of iterations for focused sampling
  size_t nIterReserve=nIter/10;
  nIter -= nIterReserve;

  // Output parameters
  double minNFA = std::numeric_limits<double>::infinity();
  double errorMax = 0;
  int side=0;

  // Main estimation loop.
  for (size_t iter=0; iter < nIter; iter++) {
    UniformSample(sizeSample, vec_index, &vec_sample); // Get random sample

    std::vector<Model> vec_models; // Up to max_models solutions
    Fit(vec_sample, &vec_models);

    // Evaluate models
    bool better=false;
    for (size_t k = 0; k < vec_models.size(); ++k)
    {
      // Residuals computation and ordering
      for (int i = 0; i < nData; ++i)
      {
        int s;
        double error = Error(vec_models[k], i, &s);
        vec_residuals[i] = ErrorIndex(error, i, s);
      }
      std::sort(vec_residuals.begin(), vec_residuals.end());

      // Most meaningful discrimination inliers/outliers
      ErrorIndex best = bestNFA(vec_residuals, loge0, maxThreshold,
                                vec_logc_n, vec_logc_k);
      if(best.error < minNFA) // A better model was found
      {
        better = true;
        minNFA = best.error;
        side = best.side;
        vec_inliers.resize(best.index);
        for (int i=0; i<best.index; ++i)
          vec_inliers[i] = vec_residuals[i].index;
        errorMax = vec_residuals[best.index-1].error; // Error threshold
        if(best.error<0 && model) *model = vec_models[k];
        if(bVerbose)
        {
          std::cout << "  nfa=" << minNFA
                    << " inliers=" << vec_inliers.size()
                    << " precision=" << denormalizeError(errorMax, side)
                    << " im" << side+1
                    << " (iter=" << iter;
          if(best.error<0) {
            std::cout << ",sample=" << vec_sample.front();
            std::vector<int>::const_iterator it=vec_sample.begin();
            for(++it; it != vec_sample.end(); ++it)
              std::cout << ',' << *it;
          }
          std::cout << ")" <<std::endl;
        }
      }
    }
    // ORSA optimization: draw samples among best set of inliers so far
    if((better && minNFA<0) || (iter+1==nIter && nIterReserve)) {
        if(vec_inliers.empty()) { // No model found at all so far
            nIter++; // Continue to look for any model, even not meaningful
            nIterReserve--;
        } else {
            vec_index = vec_inliers;
            if(nIterReserve) {
                nIter = iter+1+nIterReserve;
                nIterReserve=0;
            }
        }
    }
  }

  if(minNFA >= 0)
    vec_inliers.clear();

  if(bConvergence)
    refineUntilConvergence(vec_logc_n, vec_logc_k, loge0,
                           maxThreshold, minNFA, model, bVerbose, vec_inliers,
                           errorMax, side);

  if(precision)
    *precision = denormalizeError(errorMax, side);
  if(model && !vec_inliers.empty())
    Unnormalize(model);
  return minNFA;
}
	void _stdcall UNNORMALIZE( NormalizeParam* normParam, REAL* prData, int& n )
	{
		Unnormalize( normParam, prData, n );
	}