void VirtualDisplaySurface::onFrameCommitted() {
    if (mDisplayId < 0)
        return;

    VDS_LOGW_IF(mDbgState != DBG_STATE_HWC,
            "Unexpected onFrameCommitted() in %s state", dbgStateStr());
    mDbgState = DBG_STATE_IDLE;

    sp<Fence> fbFence = mHwc.getAndResetReleaseFence(mDisplayId);
    if (mFbProducerSlot >= 0) {
        // release the scratch buffer back to the pool
        Mutex::Autolock lock(mMutex);
        int sslot = mapProducer2SourceSlot(SOURCE_SCRATCH, mFbProducerSlot);
        VDS_LOGV("onFrameCommitted: release scratch sslot=%d", sslot);
        addReleaseFenceLocked(sslot, mProducerBuffers[mFbProducerSlot], fbFence);
        releaseBufferLocked(sslot, mProducerBuffers[mFbProducerSlot],
                EGL_NO_DISPLAY, EGL_NO_SYNC_KHR);
    }

    if (mOutputProducerSlot >= 0) {
        int sslot = mapProducer2SourceSlot(SOURCE_SINK, mOutputProducerSlot);
        QueueBufferOutput qbo;
        sp<Fence> outFence = mHwc.getLastRetireFence(mDisplayId);
        VDS_LOGV("onFrameCommitted: queue sink sslot=%d", sslot);
        // Allow queuing to sink buffer if mMustRecompose is true or
        // mForceHwcCopy is true. This is required to support Miracast WFD Sink
        // Initiatied Pause/Resume feature support
        if (mForceHwcCopy || mMustRecompose) {
            status_t result = mSource[SOURCE_SINK]->queueBuffer(sslot,
                    QueueBufferInput(
                        systemTime(), false /* isAutoTimestamp */,
                        Rect(mSinkBufferWidth, mSinkBufferHeight),
                        NATIVE_WINDOW_SCALING_MODE_FREEZE, 0 /* transform */,
                        true /* async*/,
                        outFence),
                    &qbo);
            if (result == NO_ERROR) {
                updateQueueBufferOutput(qbo);
            }
        } else {
            // If the surface hadn't actually been updated, then we only went
            // through the motions of updating the display to keep our state
            // machine happy. We cancel the buffer to avoid triggering another
            // re-composition and causing an infinite loop.
            mSource[SOURCE_SINK]->cancelBuffer(sslot, outFence);
        }
    }

    resetPerFrameState();
}
void VirtualDisplaySurface::cancelBuffer(int pslot, const sp<Fence>& fence) {
    VDS_LOGW_IF(mDbgState != DBG_STATE_GLES,
            "Unexpected cancelBuffer(pslot=%d) in %s state", pslot,
            dbgStateStr());
    VDS_LOGV("cancelBuffer pslot=%d", pslot);
    Source source = fbSourceForCompositionType(mCompositionType);
    return mSource[source]->cancelBuffer(
            mapProducer2SourceSlot(source, pslot), fence);
}
status_t VirtualDisplaySurface::queueBuffer(int pslot,
        const QueueBufferInput& input, QueueBufferOutput* output) {
    if (mDisplayId < 0)
        return mSource[SOURCE_SINK]->queueBuffer(pslot, input, output);

    VDS_LOGW_IF(mDbgState != DBG_STATE_GLES,
            "Unexpected queueBuffer(pslot=%d) in %s state", pslot,
            dbgStateStr());
    mDbgState = DBG_STATE_GLES_DONE;

    VDS_LOGV("queueBuffer pslot=%d", pslot);

    status_t result;
    if (mCompositionType == COMPOSITION_MIXED) {
        // Queue the buffer back into the scratch pool
        QueueBufferOutput scratchQBO;
        int sslot = mapProducer2SourceSlot(SOURCE_SCRATCH, pslot);
        result = mSource[SOURCE_SCRATCH]->queueBuffer(sslot, input, &scratchQBO);
        if (result != NO_ERROR)
            return result;

        // Now acquire the buffer from the scratch pool -- should be the same
        // slot and fence as we just queued.
        Mutex::Autolock lock(mMutex);
        BufferItem item;
        result = acquireBufferLocked(&item, 0);
        if (result != NO_ERROR)
            return result;
        VDS_LOGW_IF(item.mBuf != sslot,
                "queueBuffer: acquired sslot %d from SCRATCH after queueing sslot %d",
                item.mBuf, sslot);
        mFbProducerSlot = mapSource2ProducerSlot(SOURCE_SCRATCH, item.mBuf);
        mFbFence = mSlots[item.mBuf].mFence;

    } else {
        LOG_FATAL_IF(mCompositionType != COMPOSITION_GLES,
                "Unexpected queueBuffer in state %s for compositionType %s",
                dbgStateStr(), dbgCompositionTypeStr(mCompositionType));

        // Extract the GLES release fence for HWC to acquire
        int64_t timestamp;
        bool isAutoTimestamp;
        android_dataspace dataSpace;
        Rect crop;
        int scalingMode;
        uint32_t transform;
        bool async;
        input.deflate(&timestamp, &isAutoTimestamp, &dataSpace, &crop,
                &scalingMode, &transform, &async, &mFbFence);

        mFbProducerSlot = pslot;
        mOutputFence = mFbFence;
    }

    *output = mQueueBufferOutput;
    return NO_ERROR;
}
status_t VirtualDisplaySurface::dequeueBuffer(Source source,
        uint32_t format, uint32_t usage, int* sslot, sp<Fence>* fence) {
    LOG_FATAL_IF(mDisplayId < 0, "mDisplayId=%d but should not be < 0.", mDisplayId);
    // Don't let a slow consumer block us
    bool async = (source == SOURCE_SINK);

    status_t result = mSource[source]->dequeueBuffer(sslot, fence, async,
            mSinkBufferWidth, mSinkBufferHeight, format, usage);
    if (result < 0)
        return result;
    int pslot = mapSource2ProducerSlot(source, *sslot);
    VDS_LOGV("dequeueBuffer(%s): sslot=%d pslot=%d result=%d",
            dbgSourceStr(source), *sslot, pslot, result);
    uint64_t sourceBit = static_cast<uint64_t>(source) << pslot;

    if ((mProducerSlotSource & (1ULL << pslot)) != sourceBit) {
        // This slot was previously dequeued from the other source; must
        // re-request the buffer.
        result |= BUFFER_NEEDS_REALLOCATION;
        mProducerSlotSource &= ~(1ULL << pslot);
        mProducerSlotSource |= sourceBit;
    }

    if (result & RELEASE_ALL_BUFFERS) {
        for (uint32_t i = 0; i < BufferQueue::NUM_BUFFER_SLOTS; i++) {
            if ((mProducerSlotSource & (1ULL << i)) == sourceBit)
                mProducerBuffers[i].clear();
        }
    }
    if (result & BUFFER_NEEDS_REALLOCATION) {
        result = mSource[source]->requestBuffer(*sslot, &mProducerBuffers[pslot]);
        if (result < 0) {
            mProducerBuffers[pslot].clear();
            mSource[source]->cancelBuffer(*sslot, *fence);
            return result;
        }
        VDS_LOGV("dequeueBuffer(%s): buffers[%d]=%p fmt=%d usage=%#x",
                dbgSourceStr(source), pslot, mProducerBuffers[pslot].get(),
                mProducerBuffers[pslot]->getPixelFormat(),
                mProducerBuffers[pslot]->getUsage());
    }

    return result;
}
status_t VirtualDisplaySurface::advanceFrame() {
    if (mDisplayId < 0)
        return NO_ERROR;

    // When mForceHwcCopy is true, we override the composition type to MIXED.
    // Therefore, we need to check whether we are in this scenario and add
    // checks to satisfy the state machine requirements and reduce log spam.
    // In particular, by setting mForceHwcCopy we can now expect to get an
    // advanceFrame when composition type is MIXED and our previous state was
    // PREPARED or GLES_DONE.
    if (mForceHwcCopy && (mCompositionType == COMPOSITION_MIXED)) {
        bool isValidState = (mDbgState == DBG_STATE_PREPARED) ||
                (mDbgState == DBG_STATE_GLES_DONE);
        VDS_LOGW_IF(!isValidState,
                "Unexpected advanceFrame() in %s state on %s frame",
                dbgStateStr(),
                (mDbgState == DBG_STATE_PREPARED) ? "HWC" : "GLES/MIXED");
    } else if (mCompositionType == COMPOSITION_HWC) {
        VDS_LOGW_IF(mDbgState != DBG_STATE_PREPARED,
                "Unexpected advanceFrame() in %s state on HWC frame",
                dbgStateStr());
    } else {
        VDS_LOGW_IF(mDbgState != DBG_STATE_GLES_DONE,
                "Unexpected advanceFrame() in %s state on GLES/MIXED frame",
                dbgStateStr());
    }
    mDbgState = DBG_STATE_HWC;

    if (mOutputProducerSlot < 0) {
        // Last chance bailout if something bad happened earlier. For example,
        // in a GLES configuration, if the sink disappears then dequeueBuffer
        // will fail, the GLES driver won't queue a buffer, but SurfaceFlinger
        // will soldier on. So we end up here without a buffer. There should
        // be lots of scary messages in the log just before this.
        VDS_LOGE("advanceFrame: no buffer, bailing out");
        return NO_MEMORY;
    }

    sp<GraphicBuffer> fbBuffer = mFbProducerSlot >= 0 ?
            mProducerBuffers[mFbProducerSlot] : sp<GraphicBuffer>(NULL);
    sp<GraphicBuffer> outBuffer = mProducerBuffers[mOutputProducerSlot];
    VDS_LOGV("advanceFrame: fb=%d(%p) out=%d(%p)",
            mFbProducerSlot, fbBuffer.get(),
            mOutputProducerSlot, outBuffer.get());

    // At this point we know the output buffer acquire fence,
    // so update HWC state with it.
    mHwc.setOutputBuffer(mDisplayId, mOutputFence, outBuffer);

    status_t result = NO_ERROR;
    if (fbBuffer != NULL) {
        result = mHwc.fbPost(mDisplayId, mFbFence, fbBuffer);
    }

    return result;
}
void VirtualDisplaySurface::onFrameCommitted() {
    if (mDisplayId < 0)
        return;

    VDS_LOGW_IF(mDbgState != DBG_STATE_HWC,
            "Unexpected onFrameCommitted() in %s state", dbgStateStr());
    mDbgState = DBG_STATE_IDLE;

    sp<Fence> fbFence = mHwc.getAndResetReleaseFence(mDisplayId);
    if (mCompositionType == COMPOSITION_MIXED && mFbProducerSlot >= 0) {
        // release the scratch buffer back to the pool
        Mutex::Autolock lock(mMutex);
        int sslot = mapProducer2SourceSlot(SOURCE_SCRATCH, mFbProducerSlot);
        VDS_LOGV("onFrameCommitted: release scratch sslot=%d", sslot);
        addReleaseFenceLocked(sslot, mProducerBuffers[mFbProducerSlot], fbFence);
        releaseBufferLocked(sslot, mProducerBuffers[mFbProducerSlot],
                EGL_NO_DISPLAY, EGL_NO_SYNC_KHR);
    }

    if (mOutputProducerSlot >= 0) {
        int sslot = mapProducer2SourceSlot(SOURCE_SINK, mOutputProducerSlot);
        QueueBufferOutput qbo;
        sp<Fence> outFence = mHwc.getLastRetireFence(mDisplayId);
        VDS_LOGV("onFrameCommitted: queue sink sslot=%d", sslot);
        status_t result = mSource[SOURCE_SINK]->queueBuffer(sslot,
                QueueBufferInput(
                    systemTime(), false /* isAutoTimestamp */,
                    Rect(mSinkBufferWidth, mSinkBufferHeight),
                    NATIVE_WINDOW_SCALING_MODE_FREEZE, 0 /* transform */,
                    true /* async*/,
                    outFence),
                &qbo);
        if (result == NO_ERROR) {
            updateQueueBufferOutput(qbo);
        }
    }

    resetPerFrameState();
}
status_t VirtualDisplaySurface::prepareFrame(CompositionType compositionType) {
    if (mDisplayId < 0)
        return NO_ERROR;

    VDS_LOGW_IF(mDbgState != DBG_STATE_BEGUN,
            "Unexpected prepareFrame() in %s state", dbgStateStr());
    mDbgState = DBG_STATE_PREPARED;

    mCompositionType = compositionType;
    if (sForceHwcCopy && mCompositionType == COMPOSITION_GLES) {
        // Some hardware can do RGB->YUV conversion more efficiently in hardware
        // controlled by HWC than in hardware controlled by the video encoder.
        // Forcing GLES-composed frames to go through an extra copy by the HWC
        // allows the format conversion to happen there, rather than passing RGB
        // directly to the consumer.
        //
        // On the other hand, when the consumer prefers RGB or can consume RGB
        // inexpensively, this forces an unnecessary copy.
        mCompositionType = COMPOSITION_MIXED;
    }

    if (mCompositionType != mDbgLastCompositionType) {
        VDS_LOGV("prepareFrame: composition type changed to %s",
                dbgCompositionTypeStr(mCompositionType));
        mDbgLastCompositionType = mCompositionType;
    }

    if (mCompositionType != COMPOSITION_GLES &&
            (mOutputFormat != mDefaultOutputFormat ||
             mOutputUsage != GRALLOC_USAGE_HW_COMPOSER)) {
        // We must have just switched from GLES-only to MIXED or HWC
        // composition. Stop using the format and usage requested by the GLES
        // driver; they may be suboptimal when HWC is writing to the output
        // buffer. For example, if the output is going to a video encoder, and
        // HWC can write directly to YUV, some hardware can skip a
        // memory-to-memory RGB-to-YUV conversion step.
        //
        // If we just switched *to* GLES-only mode, we'll change the
        // format/usage and get a new buffer when the GLES driver calls
        // dequeueBuffer().
        mOutputFormat = mDefaultOutputFormat;
        mOutputUsage = GRALLOC_USAGE_HW_COMPOSER;
        refreshOutputBuffer();
    }

    return NO_ERROR;
}
status_t VirtualDisplaySurface::advanceFrame() {
    if (mDisplayId < 0)
        return NO_ERROR;

    if (mCompositionType == COMPOSITION_HWC) {
        VDS_LOGW_IF(mDbgState != DBG_STATE_PREPARED,
                "Unexpected advanceFrame() in %s state on HWC frame",
                dbgStateStr());
    } else {
        VDS_LOGW_IF(mDbgState != DBG_STATE_GLES_DONE,
                "Unexpected advanceFrame() in %s state on GLES/MIXED frame",
                dbgStateStr());
    }
    mDbgState = DBG_STATE_HWC;

    if (mOutputProducerSlot < 0 ||
            (mCompositionType != COMPOSITION_HWC && mFbProducerSlot < 0)) {
        // Last chance bailout if something bad happened earlier. For example,
        // in a GLES configuration, if the sink disappears then dequeueBuffer
        // will fail, the GLES driver won't queue a buffer, but SurfaceFlinger
        // will soldier on. So we end up here without a buffer. There should
        // be lots of scary messages in the log just before this.
        VDS_LOGE("advanceFrame: no buffer, bailing out");
        return NO_MEMORY;
    }

    sp<GraphicBuffer> fbBuffer = mFbProducerSlot >= 0 ?
            mProducerBuffers[mFbProducerSlot] : sp<GraphicBuffer>(NULL);
    sp<GraphicBuffer> outBuffer = mProducerBuffers[mOutputProducerSlot];
    VDS_LOGV("advanceFrame: fb=%d(%p) out=%d(%p)",
            mFbProducerSlot, fbBuffer.get(),
            mOutputProducerSlot, outBuffer.get());

    // At this point we know the output buffer acquire fence,
    // so update HWC state with it.
    mHwc.setOutputBuffer(mDisplayId, mOutputFence, outBuffer);

    status_t result = NO_ERROR;
    if (fbBuffer != NULL) {
        result = mHwc.fbPost(mDisplayId, mFbFence, fbBuffer);
    }

    return result;
}
status_t VirtualDisplaySurface::dequeueBuffer(int* pslot, sp<Fence>* fence, bool async,
        uint32_t w, uint32_t h, uint32_t format, uint32_t usage) {
    VDS_LOGW_IF(mDbgState != DBG_STATE_PREPARED,
            "Unexpected dequeueBuffer() in %s state", dbgStateStr());
    mDbgState = DBG_STATE_GLES;

    VDS_LOGW_IF(!async, "EGL called dequeueBuffer with !async despite eglSwapInterval(0)");
    VDS_LOGV("dequeueBuffer %dx%d fmt=%d usage=%#x", w, h, format, usage);

    status_t result = NO_ERROR;
    Source source = fbSourceForCompositionType(mCompositionType);

    if (source == SOURCE_SINK) {

        if (mOutputProducerSlot < 0) {
            // Last chance bailout if something bad happened earlier. For example,
            // in a GLES configuration, if the sink disappears then dequeueBuffer
            // will fail, the GLES driver won't queue a buffer, but SurfaceFlinger
            // will soldier on. So we end up here without a buffer. There should
            // be lots of scary messages in the log just before this.
            VDS_LOGE("dequeueBuffer: no buffer, bailing out");
            return NO_MEMORY;
        }

        // We already dequeued the output buffer. If the GLES driver wants
        // something incompatible, we have to cancel and get a new one. This
        // will mean that HWC will see a different output buffer between
        // prepare and set, but since we're in GLES-only mode already it
        // shouldn't matter.

        usage |= GRALLOC_USAGE_HW_COMPOSER;
        const sp<GraphicBuffer>& buf = mProducerBuffers[mOutputProducerSlot];
        if ((usage & ~buf->getUsage()) != 0 ||
                (format != 0 && format != (uint32_t)buf->getPixelFormat()) ||
                (w != 0 && w != mSinkBufferWidth) ||
                (h != 0 && h != mSinkBufferHeight)) {
            VDS_LOGV("dequeueBuffer: dequeueing new output buffer: "
                    "want %dx%d fmt=%d use=%#x, "
                    "have %dx%d fmt=%d use=%#x",
                    w, h, format, usage,
                    mSinkBufferWidth, mSinkBufferHeight,
                    buf->getPixelFormat(), buf->getUsage());
            mOutputFormat = format;
            mOutputUsage = usage;
            result = refreshOutputBuffer();
            if (result < 0)
                return result;
        }
    }

    if (source == SOURCE_SINK) {
        *pslot = mOutputProducerSlot;
        *fence = mOutputFence;
    } else {
        int sslot;
        result = dequeueBuffer(source, format, usage, &sslot, fence);
        if (result >= 0) {
            *pslot = mapSource2ProducerSlot(source, sslot);
        }
    }
    return result;
}
VirtualDisplaySurface::VirtualDisplaySurface(HWComposer& hwc,
        int32_t &hwcDisplayId,
        const sp<IGraphicBufferProducer>& sink,
        const sp<IGraphicBufferProducer>& bqProducer,
        const sp<IGraphicBufferConsumer>& bqConsumer,
        const String8& name,
        bool secure)
:   ConsumerBase(bqConsumer),
    mHwc(hwc),
    mDisplayId(NO_MEMORY),
    mDisplayName(name),
    mOutputUsage(GRALLOC_USAGE_HW_COMPOSER),
    mProducerSlotSource(0),
    mDbgState(DBG_STATE_IDLE),
    mDbgLastCompositionType(COMPOSITION_UNKNOWN),
    mMustRecompose(false),
    mForceHwcCopy(false),
    mSecure(false)
{
    mSource[SOURCE_SINK] = sink;
    mSource[SOURCE_SCRATCH] = bqProducer;

    int sinkWidth, sinkHeight, sinkFormat, sinkUsage;
    sink->query(NATIVE_WINDOW_WIDTH, &sinkWidth);
    sink->query(NATIVE_WINDOW_HEIGHT, &sinkHeight);
    sink->query(NATIVE_WINDOW_FORMAT, &sinkFormat);
    sink->query(NATIVE_WINDOW_CONSUMER_USAGE_BITS, &sinkUsage);

    mSinkBufferWidth = sinkWidth;
    mSinkBufferHeight = sinkHeight;

    // Pick the buffer format to request from the sink when not rendering to it
    // with GLES. If the consumer needs CPU access, use the default format
    // set by the consumer. Otherwise allow gralloc to decide the format based
    // on usage bits.
    mDefaultOutputFormat = sinkFormat;
    if((sinkUsage & GRALLOC_USAGE_HW_VIDEO_ENCODER)
#ifdef QCOM_BSP
            && (sinkUsage & GRALLOC_USAGE_PRIVATE_WFD)
#endif
      )
    {
        mDefaultOutputFormat = HAL_PIXEL_FORMAT_IMPLEMENTATION_DEFINED;
        mForceHwcCopy = true;
        //Set secure flag only if the session requires HW protection, currently
        //there is no other way to distinguish different security protection levels
        //This allows Level-3 sessions(eg.simulated displayes) to get
        //buffers from IOMMU heap and not MM (secure) heap.
        mSecure = secure;
    }

    // XXX: With this debug property we can allow screenrecord to be composed
    // via HWC. This is useful for debugging purposes, for example when WFD
    // is not working on a particular build.
    char value[PROPERTY_VALUE_MAX];
    if( (property_get("debug.hwc.screenrecord", value, NULL) > 0) &&
        ((!strncmp(value, "1", strlen("1"))) ||
        !strncasecmp(value, "true", strlen("true")))) {
        mForceHwcCopy = true;
    }

    // Once the mForceHwcCopy flag is set, we can freely allocate an HWC
    // display ID.
    if (mForceHwcCopy &&  mHwc.isVDSEnabled())
        mDisplayId =  mHwc.allocateDisplayId();

    hwcDisplayId = mDisplayId; //update display id for device creation in SF

    mOutputFormat = mDefaultOutputFormat;
    // TODO: need to add the below logs as part of dumpsys output
    VDS_LOGV("creation: sinkFormat: 0x%x sinkUsage: 0x%x mForceHwcCopy: %d",
            mOutputFormat, sinkUsage, mForceHwcCopy);

    setOutputUsage();
    resetPerFrameState();

    ConsumerBase::mName = String8::format("VDS: %s", mDisplayName.string());
    mConsumer->setConsumerName(ConsumerBase::mName);
    mConsumer->setConsumerUsageBits(GRALLOC_USAGE_HW_COMPOSER);
    mConsumer->setDefaultBufferSize(sinkWidth, sinkHeight);
    mConsumer->setDefaultMaxBufferCount(2);
}