// Render the scene.
void D3D12HelloConstBuffers::OnRender()
{
	// Record all the commands we need to render the scene into the command list.
	PopulateCommandList();

	// Execute the command list.
	ID3D12CommandList* ppCommandLists[] = { m_commandList.Get() };
	m_commandQueue->ExecuteCommandLists(_countof(ppCommandLists), ppCommandLists);

	// Present the frame.
	ThrowIfFailed(m_swapChain->Present(1, 0));

	WaitForPreviousFrame();
}
void DeviceManDX12::BeginScene()
{
	WaitForPreviousFrame();
	commandAllocator->Reset();
	commandList->Reset(commandAllocator.Get(), nullptr);
	frameIndex = deviceMan.GetSwapChain()->GetCurrentBackBufferIndex();
	D3D12_RESOURCE_BARRIER barrier = { D3D12_RESOURCE_BARRIER_TYPE_TRANSITION, D3D12_RESOURCE_BARRIER_FLAG_NONE,{ deviceMan.GetRenderTarget().Get(), 0, D3D12_RESOURCE_STATE_PRESENT, D3D12_RESOURCE_STATE_RENDER_TARGET } };
	commandList->ResourceBarrier(1, &barrier);

	DXGI_SWAP_CHAIN_DESC desc;
	deviceMan.GetSwapChain()->GetDesc(&desc);

	D3D12_VIEWPORT vp = {0.f, 0.f, (float)desc.BufferDesc.Width, (float)desc.BufferDesc.Height, 0.f, 1.f};
	D3D12_RECT rc = {0, 0, (LONG)desc.BufferDesc.Width, (LONG)desc.BufferDesc.Height};
	commandList->RSSetViewports(1, &vp);
	commandList->RSSetScissorRects(1, &rc);

	SetRenderTarget();
}
void DeviceManDX12::Destroy()
{
	if (fenceEvent != INVALID_HANDLE_VALUE) {
		WaitForPreviousFrame();
		CloseHandle(fenceEvent);
		fenceEvent = INVALID_HANDLE_VALUE;
	}
	commandList.Reset();
	commandAllocator.Reset();
	commandQueue.Reset();
	swapChain.Reset();
	for (int i = 0; i < numFrameBuffers; i++) {
		renderTargets[i].Reset();
	}
	rtvHeap.Reset();
	factory.Reset();
	fence.Reset();
	fenceValue = 1;
	frameIndex = 0;
	device.Reset();
}
void RenderSysem::LoadAssets()
{
	// Create the command list.
	ThrowIfFailed(m_pD3D12Device->CreateCommandList(0, D3D12_COMMAND_LIST_TYPE_DIRECT, m_pCommandAllocator.Get(), nullptr, IID_PPV_ARGS(&m_pCommandList)));

	// Command lists are created in the recording state, but there is nothing
	// to record yet. The main loop expects it to be closed, so close it now.
	ThrowIfFailed(m_pCommandList->Close());

	// Create and record the bundle.
	{
		auto pPipelineState = m_Triangle.GetPipelineState();
		ThrowIfFailed(m_pD3D12Device->CreateCommandList(0, D3D12_COMMAND_LIST_TYPE_BUNDLE, m_pBundleAllocator.Get(), pPipelineState.Get(), IID_PPV_ARGS(&m_pBundleList)));
		
		m_Triangle.Render(m_pBundleList);

		ThrowIfFailed(m_pBundleList->Close());
	}


	// Create synchronization objects.
	{
		ThrowIfFailed(m_pD3D12Device->CreateFence(0, D3D12_FENCE_FLAG_NONE, IID_PPV_ARGS(&m_pD3D12Fence)));
		m_FenceValue = 1;

		// Create an event handle to use for frame synchronization.
		m_FenceEvent = CreateEventEx(nullptr, FALSE, FALSE, EVENT_ALL_ACCESS);
		if (m_FenceEvent == nullptr)
		{
			ThrowIfFailed(HRESULT_FROM_WIN32(GetLastError()));
		}

		// Wait for the command list to execute; we are reusing the same command 
		// list in our main loop but for now, we just want to wait for setup to 
		// complete before continuing.
		WaitForPreviousFrame();
	}
}
// Load the sample assets.
void D3D12HelloTexture::LoadAssets()
{
	// Create the root signature.
	{
		CD3DX12_DESCRIPTOR_RANGE ranges[1];
		ranges[0].Init(D3D12_DESCRIPTOR_RANGE_TYPE_SRV, 1, 0);

		CD3DX12_ROOT_PARAMETER rootParameters[1];
		rootParameters[0].InitAsDescriptorTable(1, &ranges[0], D3D12_SHADER_VISIBILITY_PIXEL);

		D3D12_STATIC_SAMPLER_DESC sampler = {};
		sampler.Filter = D3D12_FILTER_MIN_MAG_MIP_POINT;
		sampler.AddressU = D3D12_TEXTURE_ADDRESS_MODE_BORDER;
		sampler.AddressV = D3D12_TEXTURE_ADDRESS_MODE_BORDER;
		sampler.AddressW = D3D12_TEXTURE_ADDRESS_MODE_BORDER;
		sampler.MipLODBias = 0;
		sampler.MaxAnisotropy = 0;
		sampler.ComparisonFunc = D3D12_COMPARISON_FUNC_NEVER;
		sampler.BorderColor = D3D12_STATIC_BORDER_COLOR_TRANSPARENT_BLACK;
		sampler.MinLOD = 0.0f;
		sampler.MaxLOD = D3D12_FLOAT32_MAX;
		sampler.ShaderRegister = 0;
		sampler.RegisterSpace = 0;
		sampler.ShaderVisibility = D3D12_SHADER_VISIBILITY_PIXEL;

		CD3DX12_ROOT_SIGNATURE_DESC rootSignatureDesc;
		rootSignatureDesc.Init(_countof(rootParameters), rootParameters, 1, &sampler, D3D12_ROOT_SIGNATURE_FLAG_ALLOW_INPUT_ASSEMBLER_INPUT_LAYOUT);

		ComPtr<ID3DBlob> signature;
		ComPtr<ID3DBlob> error;
		ThrowIfFailed(D3D12SerializeRootSignature(&rootSignatureDesc, D3D_ROOT_SIGNATURE_VERSION_1, &signature, &error));
		ThrowIfFailed(m_device->CreateRootSignature(0, signature->GetBufferPointer(), signature->GetBufferSize(), IID_PPV_ARGS(&m_rootSignature)));
	}

	// Create the pipeline state, which includes compiling and loading shaders.
	{
		ComPtr<ID3DBlob> vertexShader;
		ComPtr<ID3DBlob> pixelShader;

#ifdef _DEBUG
		// Enable better shader debugging with the graphics debugging tools.
		UINT compileFlags = D3DCOMPILE_DEBUG | D3DCOMPILE_SKIP_OPTIMIZATION;
#else
		UINT compileFlags = 0;
#endif

		ThrowIfFailed(D3DCompileFromFile(GetAssetFullPath(L"shaders.hlsl").c_str(), nullptr, nullptr, "VSMain", "vs_5_0", compileFlags, 0, &vertexShader, nullptr));
		ThrowIfFailed(D3DCompileFromFile(GetAssetFullPath(L"shaders.hlsl").c_str(), nullptr, nullptr, "PSMain", "ps_5_0", compileFlags, 0, &pixelShader, nullptr));

		// Define the vertex input layout.
		D3D12_INPUT_ELEMENT_DESC inputElementDescs[] =
		{
			{ "POSITION", 0, DXGI_FORMAT_R32G32B32_FLOAT, 0, 0, D3D12_INPUT_CLASSIFICATION_PER_VERTEX_DATA, 0 },
			{ "TEXCOORD", 0, DXGI_FORMAT_R32G32_FLOAT, 0, 12, D3D12_INPUT_CLASSIFICATION_PER_VERTEX_DATA, 0 }
		};

		// Describe and create the graphics pipeline state object (PSO).
		D3D12_GRAPHICS_PIPELINE_STATE_DESC psoDesc = {};
		psoDesc.InputLayout = { inputElementDescs, _countof(inputElementDescs) };
		psoDesc.pRootSignature = m_rootSignature.Get();
		psoDesc.VS = { reinterpret_cast<UINT8*>(vertexShader->GetBufferPointer()), vertexShader->GetBufferSize() };
		psoDesc.PS = { reinterpret_cast<UINT8*>(pixelShader->GetBufferPointer()), pixelShader->GetBufferSize() };
		psoDesc.RasterizerState = CD3DX12_RASTERIZER_DESC(D3D12_DEFAULT);
		psoDesc.BlendState = CD3DX12_BLEND_DESC(D3D12_DEFAULT);
		psoDesc.DepthStencilState.DepthEnable = FALSE;
		psoDesc.DepthStencilState.StencilEnable = FALSE;
		psoDesc.SampleMask = UINT_MAX;
		psoDesc.PrimitiveTopologyType = D3D12_PRIMITIVE_TOPOLOGY_TYPE_TRIANGLE;
		psoDesc.NumRenderTargets = 1;
		psoDesc.RTVFormats[0] = DXGI_FORMAT_R8G8B8A8_UNORM;
		psoDesc.SampleDesc.Count = 1;
		ThrowIfFailed(m_device->CreateGraphicsPipelineState(&psoDesc, IID_PPV_ARGS(&m_pipelineState)));
	}

	// Create the command list.
	ThrowIfFailed(m_device->CreateCommandList(0, D3D12_COMMAND_LIST_TYPE_DIRECT, m_commandAllocator.Get(), m_pipelineState.Get(), IID_PPV_ARGS(&m_commandList)));

	// Create the vertex buffer.
	{
		// Define the geometry for a triangle.
		Vertex triangleVertices[] =
		{
			{ { 0.0f, 0.25f * m_aspectRatio, 0.0f }, { 0.5f, 0.0f } },
			{ { 0.25f, -0.25f * m_aspectRatio, 0.0f }, { 1.0f, 1.0f } },
			{ { -0.25f, -0.25f * m_aspectRatio, 0.0f }, { 0.0f, 1.0f } }
		};

		const UINT vertexBufferSize = sizeof(triangleVertices);

		// Note: using upload heaps to transfer static data like vert buffers is not 
		// recommended. Every time the GPU needs it, the upload heap will be marshalled 
		// over. Please read up on Default Heap usage. An upload heap is used here for 
		// code simplicity and because there are very few verts to actually transfer.
		ThrowIfFailed(m_device->CreateCommittedResource(
			&CD3DX12_HEAP_PROPERTIES(D3D12_HEAP_TYPE_UPLOAD),
			D3D12_HEAP_FLAG_NONE,
			&CD3DX12_RESOURCE_DESC::Buffer(vertexBufferSize),
			D3D12_RESOURCE_STATE_GENERIC_READ,
			nullptr,
			IID_PPV_ARGS(&m_vertexBuffer)));

		// Copy the triangle data to the vertex buffer.
		UINT8* pVertexDataBegin;
		ThrowIfFailed(m_vertexBuffer->Map(0, nullptr, reinterpret_cast<void**>(&pVertexDataBegin)));
		memcpy(pVertexDataBegin, triangleVertices, sizeof(triangleVertices));
		m_vertexBuffer->Unmap(0, nullptr);

		// Initialize the vertex buffer view.
		m_vertexBufferView.BufferLocation = m_vertexBuffer->GetGPUVirtualAddress();
		m_vertexBufferView.StrideInBytes = sizeof(Vertex);
		m_vertexBufferView.SizeInBytes = vertexBufferSize;
	}

	// Create an upload heap to load the texture onto the GPU. ComPtr's are CPU objects
	// but this heap needs to stay in scope until the GPU work is complete. We will
	// synchronize with the GPU at the end of this method before the ComPtr is destroyed.
	ComPtr<ID3D12Resource> textureUploadHeap;

	// Create the texture.
	{
		// Describe and create a Texture2D.
		D3D12_RESOURCE_DESC textureDesc = {};
		textureDesc.MipLevels = 1;
		textureDesc.Format = DXGI_FORMAT_R8G8B8A8_UNORM;
		textureDesc.Width = TextureWidth;
		textureDesc.Height = TextureHeight;
		textureDesc.Flags = D3D12_RESOURCE_FLAG_NONE;
		textureDesc.DepthOrArraySize = 1;
		textureDesc.SampleDesc.Count = 1;
		textureDesc.SampleDesc.Quality = 0;
		textureDesc.Dimension = D3D12_RESOURCE_DIMENSION_TEXTURE2D;

		ThrowIfFailed(m_device->CreateCommittedResource(
			&CD3DX12_HEAP_PROPERTIES(D3D12_HEAP_TYPE_DEFAULT),
			D3D12_HEAP_FLAG_NONE,
			&textureDesc,
			D3D12_RESOURCE_STATE_COPY_DEST,
			nullptr,
			IID_PPV_ARGS(&m_texture)));

		const UINT64 uploadBufferSize = GetRequiredIntermediateSize(m_texture.Get(), 0, 1);

		// Create the GPU upload buffer.
		ThrowIfFailed(m_device->CreateCommittedResource(
			&CD3DX12_HEAP_PROPERTIES(D3D12_HEAP_TYPE_UPLOAD),
			D3D12_HEAP_FLAG_NONE,
			&CD3DX12_RESOURCE_DESC::Buffer(uploadBufferSize),
			D3D12_RESOURCE_STATE_GENERIC_READ,
			nullptr,
			IID_PPV_ARGS(&textureUploadHeap)));

		// Copy data to the intermediate upload heap and then schedule a copy 
		// from the upload heap to the Texture2D.
		std::vector<UINT8> texture = GenerateTextureData();

		D3D12_SUBRESOURCE_DATA textureData = {};
		textureData.pData = &texture[0];
		textureData.RowPitch = TextureWidth * TexturePixelSize;
		textureData.SlicePitch = textureData.RowPitch * TextureHeight;

		UpdateSubresources(m_commandList.Get(), m_texture.Get(), textureUploadHeap.Get(), 0, 0, 1, &textureData);
		m_commandList->ResourceBarrier(1, &CD3DX12_RESOURCE_BARRIER::Transition(m_texture.Get(), D3D12_RESOURCE_STATE_COPY_DEST, D3D12_RESOURCE_STATE_PIXEL_SHADER_RESOURCE));

		// Describe and create a SRV for the texture.
		D3D12_SHADER_RESOURCE_VIEW_DESC srvDesc = {};
		srvDesc.Shader4ComponentMapping = D3D12_DEFAULT_SHADER_4_COMPONENT_MAPPING;
		srvDesc.Format = textureDesc.Format;
		srvDesc.ViewDimension = D3D12_SRV_DIMENSION_TEXTURE2D;
		srvDesc.Texture2D.MipLevels = 1;
		m_device->CreateShaderResourceView(m_texture.Get(), &srvDesc, m_srvHeap->GetCPUDescriptorHandleForHeapStart());
	}
	
	// Close the command list and execute it to begin the initial GPU setup.
	ThrowIfFailed(m_commandList->Close());
	ID3D12CommandList* ppCommandLists[] = { m_commandList.Get() };
	m_commandQueue->ExecuteCommandLists(_countof(ppCommandLists), ppCommandLists);

	// Create synchronization objects and wait until assets have been uploaded to the GPU.
	{
		ThrowIfFailed(m_device->CreateFence(0, D3D12_FENCE_FLAG_NONE, IID_PPV_ARGS(&m_fence)));
		m_fenceValue = 1;

		// Create an event handle to use for frame synchronization.
		m_fenceEvent = CreateEventEx(nullptr, FALSE, FALSE, EVENT_ALL_ACCESS);
		if (m_fenceEvent == nullptr)
		{
			ThrowIfFailed(HRESULT_FROM_WIN32(GetLastError()));
		}

		// Wait for the command list to execute; we are reusing the same command 
		// list in our main loop but for now, we just want to wait for setup to 
		// complete before continuing.
		WaitForPreviousFrame();
	}
}
// Load the sample assets.
void D3D12HelloConstBuffers::LoadAssets()
{
	// Create a root signature consisting of a single CBV parameter.
	{
		CD3DX12_DESCRIPTOR_RANGE ranges[1];
		CD3DX12_ROOT_PARAMETER rootParameters[1];

		ranges[0].Init(D3D12_DESCRIPTOR_RANGE_TYPE_CBV, 1, 0);
		rootParameters[0].InitAsDescriptorTable(1, &ranges[0], D3D12_SHADER_VISIBILITY_VERTEX);

		// Allow input layout and deny uneccessary access to certain pipeline stages.
		D3D12_ROOT_SIGNATURE_FLAGS rootSignatureFlags =
			D3D12_ROOT_SIGNATURE_FLAG_ALLOW_INPUT_ASSEMBLER_INPUT_LAYOUT |
			D3D12_ROOT_SIGNATURE_FLAG_DENY_HULL_SHADER_ROOT_ACCESS |
			D3D12_ROOT_SIGNATURE_FLAG_DENY_DOMAIN_SHADER_ROOT_ACCESS |
			D3D12_ROOT_SIGNATURE_FLAG_DENY_GEOMETRY_SHADER_ROOT_ACCESS |
			D3D12_ROOT_SIGNATURE_FLAG_DENY_PIXEL_SHADER_ROOT_ACCESS;

		CD3DX12_ROOT_SIGNATURE_DESC rootSignatureDesc;
		rootSignatureDesc.Init(_countof(rootParameters), rootParameters, 0, nullptr, rootSignatureFlags);

		ComPtr<ID3DBlob> signature;
		ComPtr<ID3DBlob> error;
		ThrowIfFailed(D3D12SerializeRootSignature(&rootSignatureDesc, D3D_ROOT_SIGNATURE_VERSION_1, &signature, &error));
		ThrowIfFailed(m_device->CreateRootSignature(0, signature->GetBufferPointer(), signature->GetBufferSize(), IID_PPV_ARGS(&m_rootSignature)));
	}

	// Create the pipeline state, which includes compiling and loading shaders.
	{
		ComPtr<ID3DBlob> vertexShader;
		ComPtr<ID3DBlob> pixelShader;

#if DEBUG
		// Enable better shader debugging with the graphics debugging tools.
		UINT compileFlags = D3DCOMPILE_DEBUG | D3DCOMPILE_SKIP_OPTIMIZATION;
#else
		UINT compileFlags = 0;
#endif

		ThrowIfFailed(D3DCompileFromFile(GetAssetFullPath(L"shaders.hlsl").c_str(), nullptr, nullptr, "VSMain", "vs_5_0", compileFlags, 0, &vertexShader, nullptr));
		ThrowIfFailed(D3DCompileFromFile(GetAssetFullPath(L"shaders.hlsl").c_str(), nullptr, nullptr, "PSMain", "ps_5_0", compileFlags, 0, &pixelShader, nullptr));

		// Define the vertex input layout.
		D3D12_INPUT_ELEMENT_DESC inputElementDescs[] =
		{
			{ "POSITION", 0, DXGI_FORMAT_R32G32B32_FLOAT, 0, 0, D3D12_INPUT_CLASSIFICATION_PER_VERTEX_DATA, 0 },
			{ "COLOR", 0, DXGI_FORMAT_R32G32B32A32_FLOAT, 0, 12, D3D12_INPUT_CLASSIFICATION_PER_VERTEX_DATA, 0 }
		};

		// Describe and create the graphics pipeline state object (PSO).
		D3D12_GRAPHICS_PIPELINE_STATE_DESC psoDesc = {};
		psoDesc.InputLayout = { inputElementDescs, _countof(inputElementDescs) };
		psoDesc.pRootSignature = m_rootSignature.Get();
		psoDesc.VS = { reinterpret_cast<UINT8*>(vertexShader->GetBufferPointer()), vertexShader->GetBufferSize() };
		psoDesc.PS = { reinterpret_cast<UINT8*>(pixelShader->GetBufferPointer()), pixelShader->GetBufferSize() };
		psoDesc.RasterizerState = CD3DX12_RASTERIZER_DESC(D3D12_DEFAULT);
		psoDesc.BlendState = CD3DX12_BLEND_DESC(D3D12_DEFAULT);
		psoDesc.DepthStencilState.DepthEnable = FALSE;
		psoDesc.DepthStencilState.StencilEnable = FALSE;
		psoDesc.SampleMask = UINT_MAX;
		psoDesc.PrimitiveTopologyType = D3D12_PRIMITIVE_TOPOLOGY_TYPE_TRIANGLE;
		psoDesc.NumRenderTargets = 1;
		psoDesc.RTVFormats[0] = DXGI_FORMAT_R8G8B8A8_UNORM;
		psoDesc.SampleDesc.Count = 1;

		ThrowIfFailed(m_device->CreateGraphicsPipelineState(&psoDesc, IID_PPV_ARGS(&m_pipelineState)));
	}

	// Create the command list.
	ThrowIfFailed(m_device->CreateCommandList(0, D3D12_COMMAND_LIST_TYPE_DIRECT, m_commandAllocator.Get(), m_pipelineState.Get(), IID_PPV_ARGS(&m_commandList)));

	// Command lists are created in the recording state, but there is nothing
	// to record yet. The main loop expects it to be closed, so close it now.
	ThrowIfFailed(m_commandList->Close());

	// Create the vertex buffer.
	{
		// Define the geometry for a triangle.
		Vertex triangleVertices[] =
		{
			{ { 0.0f, 0.25f * m_aspectRatio, 0.0f }, { 1.0f, 0.0f, 0.0f, 1.0f } },
			{ { 0.25f, -0.25f * m_aspectRatio, 0.0f }, { 0.0f, 1.0f, 0.0f, 1.0f } },
			{ { -0.25f, -0.25f * m_aspectRatio, 0.0f }, { 0.0f, 0.0f, 1.0f, 1.0f } }
		};

		const UINT vertexBufferSize = sizeof(triangleVertices);

		// Note: using upload heaps to transfer static data like vert buffers is not 
		// recommended. Every time the GPU needs it, the upload heap will be marshalled 
		// over. Please read up on Default Heap usage. An upload heap is used here for 
		// code simplicity and because there are very few verts to actually transfer.
		ThrowIfFailed(m_device->CreateCommittedResource(
			&CD3DX12_HEAP_PROPERTIES(D3D12_HEAP_TYPE_UPLOAD),
			D3D12_HEAP_FLAG_NONE,
			&CD3DX12_RESOURCE_DESC::Buffer(vertexBufferSize),
			D3D12_RESOURCE_STATE_GENERIC_READ,
			nullptr,
			IID_PPV_ARGS(&m_vertexBuffer)));

		// Copy the triangle data to the vertex buffer.
		UINT8* pVertexDataBegin;
		ThrowIfFailed(m_vertexBuffer->Map(0, nullptr, reinterpret_cast<void**>(&pVertexDataBegin)));
		memcpy(pVertexDataBegin, triangleVertices, sizeof(triangleVertices));
		m_vertexBuffer->Unmap(0, nullptr);

		// Initialize the vertex buffer view.
		m_vertexBufferView.BufferLocation = m_vertexBuffer->GetGPUVirtualAddress();
		m_vertexBufferView.StrideInBytes = sizeof(Vertex);
		m_vertexBufferView.SizeInBytes = vertexBufferSize;
	}

	// Create the constant buffer.
	{
		ThrowIfFailed(m_device->CreateCommittedResource(
			&CD3DX12_HEAP_PROPERTIES(D3D12_HEAP_TYPE_UPLOAD),
			D3D12_HEAP_FLAG_NONE,
			&CD3DX12_RESOURCE_DESC::Buffer(1024 * 64),
			D3D12_RESOURCE_STATE_GENERIC_READ,
			nullptr,
			IID_PPV_ARGS(&m_constantBuffer)));

		// Describe and create a constant buffer view.
		D3D12_CONSTANT_BUFFER_VIEW_DESC cbvDesc = {};
		cbvDesc.BufferLocation = m_constantBuffer->GetGPUVirtualAddress();
		cbvDesc.SizeInBytes = (sizeof(ConstantBuffer) + 255) & ~255;	// CB size is required to be 256-byte aligned.
		m_device->CreateConstantBufferView(&cbvDesc, m_cbvHeap->GetCPUDescriptorHandleForHeapStart());

		// Initialize and map the constant buffers. We don't unmap this until the
		// app closes. Keeping things mapped for the lifetime of the resource is okay.
		ZeroMemory(&m_constantBufferData, sizeof(m_constantBufferData));
		ThrowIfFailed(m_constantBuffer->Map(0, nullptr, reinterpret_cast<void**>(&m_pCbvDataBegin)));
		memcpy(m_pCbvDataBegin, &m_constantBufferData, sizeof(m_constantBufferData));
	}

	// Create and record the bundle.
	{
		ThrowIfFailed(m_device->CreateCommandList(0, D3D12_COMMAND_LIST_TYPE_BUNDLE, m_bundleAllocator.Get(), m_pipelineState.Get(), IID_PPV_ARGS(&m_bundle)));
		m_bundle->SetDescriptorHeaps(1, m_cbvHeap.GetAddressOf());
		m_bundle->SetGraphicsRootSignature(m_rootSignature.Get());
		m_bundle->IASetPrimitiveTopology(D3D_PRIMITIVE_TOPOLOGY_TRIANGLELIST);
		m_bundle->IASetVertexBuffers(0, 1, &m_vertexBufferView);
		m_bundle->SetGraphicsRootDescriptorTable(0, m_cbvHeap->GetGPUDescriptorHandleForHeapStart());
		m_bundle->DrawInstanced(3, 1, 0, 0);
		ThrowIfFailed(m_bundle->Close());
	}

	// Create synchronization objects and wait until assets have been uploaded to the GPU.
	{
		ThrowIfFailed(m_device->CreateFence(0, D3D12_FENCE_FLAG_NONE, IID_PPV_ARGS(&m_fence)));
		m_fenceValue = 1;

		// Create an event handle to use for frame synchronization.
		m_fenceEvent = CreateEventEx(nullptr, FALSE, FALSE, EVENT_ALL_ACCESS);
		if (m_fenceEvent == nullptr)
		{
			ThrowIfFailed(HRESULT_FROM_WIN32(GetLastError()));
		}

		// Wait for the command list to execute; we are reusing the same command 
		// list in our main loop but for now, we just want to wait for setup to 
		// complete before continuing.
		WaitForPreviousFrame();
	}
}
// Load the sample assets.
void D3D12HelloTriangle::LoadAssets()
{
    // Create an empty root signature.
    {
        CD3DX12_ROOT_SIGNATURE_DESC rootSignatureDesc;
        rootSignatureDesc.Init(0, nullptr, 0, nullptr, D3D12_ROOT_SIGNATURE_FLAG_ALLOW_INPUT_ASSEMBLER_INPUT_LAYOUT);

        ComPtr<ID3DBlob> signature;
        ComPtr<ID3DBlob> error;
        ThrowIfFailed(D3D12SerializeRootSignature(&rootSignatureDesc, D3D_ROOT_SIGNATURE_VERSION_1, &signature, &error));
        ThrowIfFailed(m_device->CreateRootSignature(0, signature->GetBufferPointer(), signature->GetBufferSize(), IID_PPV_ARGS(&m_rootSignature)));
    }

    // Create the pipeline state, which includes compiling and loading shaders.
    {
        ComPtr<ID3DBlob> vertexShader;
        ComPtr<ID3DBlob> pixelShader;

#if defined(_DEBUG)
        // Enable better shader debugging with the graphics debugging tools.
        UINT compileFlags = D3DCOMPILE_DEBUG | D3DCOMPILE_SKIP_OPTIMIZATION;
#else
        UINT compileFlags = 0;
#endif

        ThrowIfFailed(D3DCompileFromFile(GetAssetFullPath(L"shaders.hlsl").c_str(), nullptr, nullptr, "VSMain", "vs_5_0", compileFlags, 0, &vertexShader, nullptr));
        ThrowIfFailed(D3DCompileFromFile(GetAssetFullPath(L"shaders.hlsl").c_str(), nullptr, nullptr, "PSMain", "ps_5_0", compileFlags, 0, &pixelShader, nullptr));

        // Define the vertex input layout.
        D3D12_INPUT_ELEMENT_DESC inputElementDescs[] =
        {
            { "POSITION", 0, DXGI_FORMAT_R32G32B32_FLOAT, 0, 0, D3D12_INPUT_CLASSIFICATION_PER_VERTEX_DATA, 0 },
            { "COLOR", 0, DXGI_FORMAT_R32G32B32A32_FLOAT, 0, 12, D3D12_INPUT_CLASSIFICATION_PER_VERTEX_DATA, 0 }
        };

        // Describe and create the graphics pipeline state object (PSO).
        D3D12_GRAPHICS_PIPELINE_STATE_DESC psoDesc = {};
        psoDesc.InputLayout = { inputElementDescs, _countof(inputElementDescs) };
        psoDesc.pRootSignature = m_rootSignature.Get();
        psoDesc.VS = { reinterpret_cast<UINT8*>(vertexShader->GetBufferPointer()), vertexShader->GetBufferSize() };
        psoDesc.PS = { reinterpret_cast<UINT8*>(pixelShader->GetBufferPointer()), pixelShader->GetBufferSize() };
        psoDesc.RasterizerState = CD3DX12_RASTERIZER_DESC(D3D12_DEFAULT);
        psoDesc.BlendState = CD3DX12_BLEND_DESC(D3D12_DEFAULT);
        psoDesc.DepthStencilState.DepthEnable = FALSE;
        psoDesc.DepthStencilState.StencilEnable = FALSE;
        psoDesc.SampleMask = UINT_MAX;
        psoDesc.PrimitiveTopologyType = D3D12_PRIMITIVE_TOPOLOGY_TYPE_TRIANGLE;
        psoDesc.NumRenderTargets = 1;
        psoDesc.RTVFormats[0] = DXGI_FORMAT_R8G8B8A8_UNORM;
        psoDesc.SampleDesc.Count = 1;
        ThrowIfFailed(m_device->CreateGraphicsPipelineState(&psoDesc, IID_PPV_ARGS(&m_pipelineState)));
    }

    // Create the command list.
    ThrowIfFailed(m_device->CreateCommandList(0, D3D12_COMMAND_LIST_TYPE_DIRECT, m_commandAllocator.Get(), m_pipelineState.Get(), IID_PPV_ARGS(&m_commandList)));

    // Command lists are created in the recording state, but there is nothing
    // to record yet. The main loop expects it to be closed, so close it now.
    ThrowIfFailed(m_commandList->Close());

    // Create the vertex buffer.
    {
        // Define the geometry for a triangle.
        Vertex triangleVertices[] =
        {
            { { 0.0f, 0.25f * m_aspectRatio, 0.0f }, { 1.0f, 0.0f, 0.0f, 1.0f } },
            { { 0.25f, -0.25f * m_aspectRatio, 0.0f }, { 0.0f, 1.0f, 0.0f, 1.0f } },
            { { -0.25f, -0.25f * m_aspectRatio, 0.0f }, { 0.0f, 0.0f, 1.0f, 1.0f } }
        };

        const UINT vertexBufferSize = sizeof(triangleVertices);

        // Note: using upload heaps to transfer static data like vert buffers is not
        // recommended. Every time the GPU needs it, the upload heap will be marshalled
        // over. Please read up on Default Heap usage. An upload heap is used here for
        // code simplicity and because there are very few verts to actually transfer.
        ThrowIfFailed(m_device->CreateCommittedResource(
                          &CD3DX12_HEAP_PROPERTIES(D3D12_HEAP_TYPE_UPLOAD),
                          D3D12_HEAP_FLAG_NONE,
                          &CD3DX12_RESOURCE_DESC::Buffer(vertexBufferSize),
                          D3D12_RESOURCE_STATE_GENERIC_READ,
                          nullptr,
                          IID_PPV_ARGS(&m_vertexBuffer)));

        // Copy the triangle data to the vertex buffer.
        UINT8* pVertexDataBegin;
        CD3DX12_RANGE readRange(0, 0);		// We do not intend to read from this resource on the CPU.
        ThrowIfFailed(m_vertexBuffer->Map(0, &readRange, reinterpret_cast<void**>(&pVertexDataBegin)));
        memcpy(pVertexDataBegin, triangleVertices, sizeof(triangleVertices));
        m_vertexBuffer->Unmap(0, nullptr);

        // Initialize the vertex buffer view.
        m_vertexBufferView.BufferLocation = m_vertexBuffer->GetGPUVirtualAddress();
        m_vertexBufferView.StrideInBytes = sizeof(Vertex);
        m_vertexBufferView.SizeInBytes = vertexBufferSize;
    }

    // Create synchronization objects and wait until assets have been uploaded to the GPU.
    {
        ThrowIfFailed(m_device->CreateFence(0, D3D12_FENCE_FLAG_NONE, IID_PPV_ARGS(&m_fence)));
        m_fenceValue = 1;

        // Create an event handle to use for frame synchronization.
        m_fenceEvent = CreateEvent(nullptr, FALSE, FALSE, nullptr);
        if (m_fenceEvent == nullptr)
        {
            ThrowIfFailed(HRESULT_FROM_WIN32(GetLastError()));
        }

        // Wait for the command list to execute; we are reusing the same command
        // list in our main loop but for now, we just want to wait for setup to
        // complete before continuing.
        WaitForPreviousFrame();
    }
}