Beispiel #1
0
EpidStatus EpidSignBasic(MemberCtx const* ctx, void const* msg, size_t msg_len,
                         void const* basename, size_t basename_len,
                         BasicSignature* sig, BigNumStr* rnd_bsn) {
  EpidStatus sts = kEpidErr;

  EcPoint* B = NULL;
  EcPoint* t = NULL;  // temp value in G1
  EcPoint* k = NULL;
  EcPoint* e = NULL;
  FfElement* R2 = NULL;
  FfElement* p2y = NULL;
  FfElement* t1 = NULL;
  FfElement* t2 = NULL;

  FfElement* a = NULL;
  FfElement* b = NULL;
  FfElement* rx = NULL;
  FfElement* ra = NULL;
  FfElement* rb = NULL;

  struct p2x_t {
    uint32_t i;
    uint8_t bsn[1];
  }* p2x = NULL;

  FfElement* t3 = NULL;  // temporary for multiplication
  FfElement* c = NULL;
  uint8_t* digest = NULL;

  PreComputedSignature curr_presig = {0};

  if (!ctx || !sig) {
    return kEpidBadArgErr;
  }
  if (!msg && (0 != msg_len)) {
    // if message is non-empty it must have both length and content
    return kEpidBadArgErr;
  }
  if (!basename && (0 != basename_len)) {
    // if basename is non-empty it must have both length and content
    return kEpidBadArgErr;
  }
  if (!ctx->epid2_params) {
    return kEpidBadArgErr;
  }

  do {
    FiniteField* Fp = ctx->epid2_params->Fp;
    SignCommitOutput commit_out = {0};
    FpElemStr c_str = {0};
    EcGroup* G1 = ctx->epid2_params->G1;
    FiniteField* GT = ctx->epid2_params->GT;

    FiniteField* Fq = ctx->epid2_params->Fq;
    PairingState* ps_ctx = ctx->epid2_params->pairing_state;
    const BigNumStr kOne = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
                            0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1};
    BigNumStr t1_str = {0};
    BigNumStr t2_str = {0};
    size_t digest_size = 0;
    uint16_t* rf_ctr = (uint16_t*)&ctx->rf_ctr;
    FfElement const* x = ctx->x;

    if (basename) {
      if (!IsBasenameAllowed(ctx->allowed_basenames, basename, basename_len)) {
        sts = kEpidBadArgErr;
        BREAK_ON_EPID_ERROR(sts);
      }
    }

    sts = NewEcPoint(G1, &B);
    BREAK_ON_EPID_ERROR(sts);
    sts = NewEcPoint(G1, &k);
    BREAK_ON_EPID_ERROR(sts);
    sts = NewEcPoint(G1, &t);
    BREAK_ON_EPID_ERROR(sts);
    sts = NewEcPoint(G1, &e);
    BREAK_ON_EPID_ERROR(sts);
    sts = NewFfElement(GT, &R2);
    BREAK_ON_EPID_ERROR(sts);
    sts = NewFfElement(Fq, &p2y);
    BREAK_ON_EPID_ERROR(sts);
    sts = NewFfElement(Fp, &t1);
    BREAK_ON_EPID_ERROR(sts);
    sts = NewFfElement(Fp, &t2);
    BREAK_ON_EPID_ERROR(sts);
    p2x = (struct p2x_t*)SAFE_ALLOC(sizeof(struct p2x_t) + basename_len - 1);
    if (!p2x) {
      sts = kEpidMemAllocErr;
      break;
    }

    sts = NewFfElement(Fp, &a);
    BREAK_ON_EPID_ERROR(sts);
    sts = NewFfElement(Fp, &b);
    BREAK_ON_EPID_ERROR(sts);
    sts = NewFfElement(Fp, &rx);
    BREAK_ON_EPID_ERROR(sts);
    sts = NewFfElement(Fp, &ra);
    BREAK_ON_EPID_ERROR(sts);
    sts = NewFfElement(Fp, &rb);
    BREAK_ON_EPID_ERROR(sts);

    sts = MemberGetPreSig((MemberCtx*)ctx, &curr_presig);
    BREAK_ON_EPID_ERROR(sts);

    // 3.  If the pre-computed signature pre-sigma exists, the member
    //     loads (B, K, T, a, b, rx, rf, ra, rb, R1, R2) from
    //     pre-sigma. Refer to Section 4.4 for the computation of
    //     these values.
    sts = ReadFfElement(Fp, &curr_presig.a, sizeof(curr_presig.a), a);
    BREAK_ON_EPID_ERROR(sts);
    sts = ReadFfElement(Fp, &curr_presig.b, sizeof(curr_presig.b), b);
    BREAK_ON_EPID_ERROR(sts);
    sts = ReadFfElement(Fp, &curr_presig.rx, sizeof(curr_presig.rx), rx);
    BREAK_ON_EPID_ERROR(sts);
    sts = ReadFfElement(Fp, &curr_presig.ra, sizeof(curr_presig.ra), ra);
    BREAK_ON_EPID_ERROR(sts);
    sts = ReadFfElement(Fp, &curr_presig.rb, sizeof(curr_presig.rb), rb);
    BREAK_ON_EPID_ERROR(sts);

    // If the basename is provided, use it, otherwise use presig B
    if (basename) {
      // 3.a. The member computes (B, i2, y2) = G1.tpmHash(bsn).
      sts = EcHash(G1, basename, basename_len, ctx->hash_alg, B, &p2x->i);
      BREAK_ON_EPID_ERROR(sts);
      p2x->i = htonl(p2x->i);
      sts = WriteEcPoint(G1, B, &commit_out.B, sizeof(commit_out.B));
      BREAK_ON_EPID_ERROR(sts);
      sts = ReadFfElement(Fq, &commit_out.B.y, sizeof(commit_out.B.y), p2y);
      BREAK_ON_EPID_ERROR(sts);

      // b.i. (KTPM, LTPM, ETPM, counterTPM) = TPM2_Commit(P1=h1,(s2, y2) = (i2
      // || bsn, y2)).
      // b.ii.K = KTPM.
      if (0 !=
          memcpy_S((void*)p2x->bsn, basename_len, basename, basename_len)) {
        sts = kEpidBadArgErr;
        break;
      }
      sts =
          Tpm2Commit(ctx->tpm2_ctx, ctx->h1, p2x, sizeof(p2x->i) + basename_len,
                     p2y, k, t, e, (uint16_t*)&ctx->rf_ctr);
      BREAK_ON_EPID_ERROR(sts);
      sts = WriteEcPoint(G1, k, &commit_out.K, sizeof(commit_out.K));
      BREAK_ON_EPID_ERROR(sts);
      // c.i. The member computes R1 = LTPM.
      sts = WriteEcPoint(G1, t, &commit_out.R1, sizeof(commit_out.R1));
      BREAK_ON_EPID_ERROR(sts);
      // c.ii. e12rf = pairing(ETPM, g2)
      sts = Pairing(ps_ctx, e, ctx->epid2_params->g2, R2);
      BREAK_ON_EPID_ERROR(sts);
      // c.iii. R2 = GT.sscmMultiExp(ea2, t1, e12rf, 1, e22, t2, e2w,ra).
      // 4.i. The member computes t1 = (- rx) mod p.
      sts = FfNeg(Fp, rx, t1);
      BREAK_ON_EPID_ERROR(sts);
      // 4.j. The member computes t2 = (rb - a * rx) mod p.
      sts = FfMul(Fp, a, rx, t2);
      BREAK_ON_EPID_ERROR(sts);
      sts = FfNeg(Fp, t2, t2);
      BREAK_ON_EPID_ERROR(sts);
      sts = FfAdd(Fp, rb, t2, t2);
      BREAK_ON_EPID_ERROR(sts);

      sts = WriteFfElement(Fp, t1, &t1_str, sizeof(t1_str));
      BREAK_ON_EPID_ERROR(sts);
      sts = WriteFfElement(Fp, t2, &t2_str, sizeof(t2_str));
      BREAK_ON_EPID_ERROR(sts);
      {
        FfElement const* points[4];
        BigNumStr const* exponents[4];
        points[0] = ctx->ea2;
        points[1] = R2;
        points[2] = ctx->e22;
        points[3] = ctx->e2w;
        exponents[0] = &t1_str;
        exponents[1] = &kOne;
        exponents[2] = &t2_str;
        exponents[3] = (BigNumStr*)&curr_presig.ra;
        sts = FfMultiExp(GT, points, exponents, COUNT_OF(points), R2);
        BREAK_ON_EPID_ERROR(sts);
      }

      sts = WriteFfElement(GT, R2, &commit_out.R2, sizeof(commit_out.R2));
      BREAK_ON_EPID_ERROR(sts);
      // d. The member over-writes the counterTPM, B, K, R1 and R2 values.
    } else {
      if (!rnd_bsn) {
        sts = kEpidBadArgErr;
        break;
      }
      sts = ReadEcPoint(G1, &curr_presig.B, sizeof(curr_presig.B), B);
      BREAK_ON_EPID_ERROR(sts);
      commit_out.B = curr_presig.B;
      commit_out.K = curr_presig.K;
      commit_out.R1 = curr_presig.R1;
      ((MemberCtx*)ctx)->rf_ctr = curr_presig.rf_ctr;
      commit_out.R2 = curr_presig.R2;
      *rnd_bsn = curr_presig.rnd_bsn;
    }

    commit_out.T = curr_presig.T;

    sts = HashSignCommitment(Fp, ctx->hash_alg, &ctx->pub_key, &commit_out, msg,
                             msg_len, &c_str);
    BREAK_ON_EPID_ERROR(sts);

    digest_size = EpidGetHashSize(ctx->hash_alg);
    digest = (uint8_t*)SAFE_ALLOC(digest_size);
    if (!digest) {
      sts = kEpidNoMemErr;
      break;
    }
    memcpy_S(digest + digest_size - sizeof(c_str), sizeof(c_str), &c_str,
             sizeof(c_str));

    sts = NewFfElement(Fp, &t3);
    BREAK_ON_EPID_ERROR(sts);

    sts = NewFfElement(Fp, &c);
    BREAK_ON_EPID_ERROR(sts);

    sts = ReadFfElement(Fp, &c_str, sizeof(c_str), c);
    BREAK_ON_EPID_ERROR(sts);

    // 7.  The member computes sx = (rx + c * x) mod p.
    sts = FfMul(Fp, c, x, t3);
    BREAK_ON_EPID_ERROR(sts);
    sts = FfAdd(Fp, rx, t3, t3);
    BREAK_ON_EPID_ERROR(sts);
    sts = WriteFfElement(Fp, t3, &sig->sx, sizeof(sig->sx));
    BREAK_ON_EPID_ERROR(sts);

    // 8.  The member computes sf = (rf + c * f) mod p.
    sts = Tpm2Sign(ctx->tpm2_ctx, digest, digest_size, *rf_ctr, NULL, t3);
    BREAK_ON_EPID_ERROR(sts);
    sts = WriteFfElement(Fp, t3, &sig->sf, sizeof(sig->sf));
    BREAK_ON_EPID_ERROR(sts);

    // 9.  The member computes sa = (ra + c * a) mod p.
    sts = FfMul(Fp, c, a, t3);
    BREAK_ON_EPID_ERROR(sts);
    sts = FfAdd(Fp, ra, t3, t3);
    BREAK_ON_EPID_ERROR(sts);
    sts = WriteFfElement(Fp, t3, &sig->sa, sizeof(sig->sa));
    BREAK_ON_EPID_ERROR(sts);

    // 10. The member computes sb = (rb + c * b) mod p.
    sts = FfMul(Fp, c, b, t3);
    BREAK_ON_EPID_ERROR(sts);
    sts = FfAdd(Fp, rb, t3, t3);
    BREAK_ON_EPID_ERROR(sts);
    sts = WriteFfElement(Fp, t3, &sig->sb, sizeof(sig->sb));
    BREAK_ON_EPID_ERROR(sts);

    sig->B = commit_out.B;
    sig->K = commit_out.K;
    sig->T = commit_out.T;
    sig->c = c_str;

    sts = kEpidNoErr;
  } while (0);

  if (sts != kEpidNoErr) {
    (void)Tpm2ReleaseCounter(ctx->tpm2_ctx, (uint16_t)ctx->rf_ctr);
    (void)Tpm2ReleaseCounter(ctx->tpm2_ctx, curr_presig.rf_ctr);
  } else if (basename) {
    (void)Tpm2ReleaseCounter(ctx->tpm2_ctx, curr_presig.rf_ctr);
  }

  EpidZeroMemory(&curr_presig, sizeof(curr_presig));

  DeleteEcPoint(&B);
  DeleteEcPoint(&k);
  DeleteEcPoint(&t);
  DeleteEcPoint(&e);
  DeleteFfElement(&R2);
  DeleteFfElement(&p2y);
  DeleteFfElement(&t1);
  DeleteFfElement(&t2);

  DeleteFfElement(&a);
  DeleteFfElement(&b);
  DeleteFfElement(&rx);
  DeleteFfElement(&ra);
  DeleteFfElement(&rb);

  SAFE_FREE(p2x);

  DeleteFfElement(&t3);
  DeleteFfElement(&c);
  SAFE_FREE(digest);

  return sts;
}
Beispiel #2
0
EpidStatus EpidRequestJoin(GroupPubKey const* pub_key, IssuerNonce const* ni,
                           FpElemStr const* f, BitSupplier rnd_func,
                           void* rnd_param, HashAlg hash_alg,
                           JoinRequest* join_request) {
  EpidStatus sts;
  static const BigNumStr one = {
      {{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1}}};
  BigNumStr r_str;
  JoinPCommitValues commit_values;
  Epid2Params_* params = NULL;
  FfElement* r_el = NULL;
  FfElement* f_el = NULL;
  FfElement* c_el = NULL;
  FfElement* cf_el = NULL;
  FfElement* s_el = NULL;
  EcPoint* f_pt = NULL;
  EcPoint* r_pt = NULL;
  EcPoint* h1_pt = NULL;

  if (!pub_key || !ni || !f || !rnd_func || !join_request) {
    return kEpidBadArgErr;
  }
  if (kSha256 != hash_alg && kSha384 != hash_alg && kSha512 != hash_alg) {
    return kEpidBadArgErr;
  }

  do {
    sts = CreateEpid2Params(&params);
    BREAK_ON_EPID_ERROR(sts);
    if (!params->Fp || !params->G1) {
      sts = kEpidBadArgErr;
      break;
    }
    sts = NewFfElement(params->Fp, &r_el);
    BREAK_ON_EPID_ERROR(sts);
    sts = NewFfElement(params->Fp, &f_el);
    BREAK_ON_EPID_ERROR(sts);
    sts = NewFfElement(params->Fp, &c_el);
    BREAK_ON_EPID_ERROR(sts);
    sts = NewFfElement(params->Fp, &cf_el);
    BREAK_ON_EPID_ERROR(sts);
    sts = NewFfElement(params->Fp, &s_el);
    BREAK_ON_EPID_ERROR(sts);
    sts = NewEcPoint(params->G1, &f_pt);
    BREAK_ON_EPID_ERROR(sts);
    sts = NewEcPoint(params->G1, &h1_pt);
    BREAK_ON_EPID_ERROR(sts);
    sts = NewEcPoint(params->G1, &r_pt);
    BREAK_ON_EPID_ERROR(sts);

    sts = ReadFfElement(params->Fp, (uint8_t const*)f, sizeof(*f), f_el);
    BREAK_ON_EPID_ERROR(sts);
    sts = ReadEcPoint(params->G1, (uint8_t*)&pub_key->h1, sizeof(pub_key->h1),
                      h1_pt);
    BREAK_ON_EPID_ERROR(sts);

    // Step 1. The member chooses a random integer r from [1, p-1].
    sts = FfGetRandom(params->Fp, &one, rnd_func, rnd_param, r_el);
    BREAK_ON_EPID_ERROR(sts);
    sts = WriteFfElement(params->Fp, r_el, (uint8_t*)&r_str, sizeof(r_str));

    // Step 2. The member computes F = G1.sscmExp(h1, f).
    sts = EcExp(params->G1, h1_pt, (BigNumStr const*)f, f_pt);
    BREAK_ON_EPID_ERROR(sts);

    // Step 3. The member computes R = G1.sscmExp(h1, r).
    sts = EcExp(params->G1, h1_pt, (BigNumStr const*)&r_str, r_pt);
    BREAK_ON_EPID_ERROR(sts);

    // Step 4. The member computes c = Fp.hash(p || g1 || g2 || h1 || h2 || w ||
    // F || R || NI). Refer to Section 7.1 for hash operation over a prime
    // field.
    sts = WriteBigNum(params->p, sizeof(commit_values.p),
                      (uint8_t*)&commit_values.p);
    BREAK_ON_EPID_ERROR(sts);
    sts = WriteEcPoint(params->G1, params->g1, (uint8_t*)&commit_values.g1,
                       sizeof(commit_values.g1));
    BREAK_ON_EPID_ERROR(sts);
    sts = WriteEcPoint(params->G2, params->g2, (uint8_t*)&commit_values.g2,
                       sizeof(commit_values.g2));
    BREAK_ON_EPID_ERROR(sts);
    commit_values.h1 = pub_key->h1;
    commit_values.h2 = pub_key->h2;
    commit_values.w = pub_key->w;
    sts = WriteEcPoint(params->G1, f_pt, (uint8_t*)&commit_values.F,
                       sizeof(commit_values.F));
    BREAK_ON_EPID_ERROR(sts);
    sts = WriteEcPoint(params->G1, r_pt, (uint8_t*)&commit_values.R,
                       sizeof(commit_values.R));
    BREAK_ON_EPID_ERROR(sts);
    commit_values.NI = *ni;
    sts = FfHash(params->Fp, (uint8_t*)&commit_values, sizeof(commit_values),
                 hash_alg, c_el);
    BREAK_ON_EPID_ERROR(sts);

    // Step 5. The member computes s = (r + c * f) mod p.
    sts = FfMul(params->Fp, c_el, f_el, cf_el);
    BREAK_ON_EPID_ERROR(sts);
    sts = FfAdd(params->Fp, r_el, cf_el, s_el);
    BREAK_ON_EPID_ERROR(sts);

    // Step 6. The output join request is (F, c, s).
    sts = WriteFfElement(params->Fp, c_el, (uint8_t*)&join_request->c,
                         sizeof(join_request->c));
    BREAK_ON_EPID_ERROR(sts);
    sts = WriteFfElement(params->Fp, s_el, (uint8_t*)&join_request->s,
                         sizeof(join_request->s));
    BREAK_ON_EPID_ERROR(sts);
    sts = WriteEcPoint(params->G1, f_pt, (uint8_t*)&join_request->F,
                       sizeof(join_request->F));
    BREAK_ON_EPID_ERROR(sts);

    sts = kEpidNoErr;
  } while (0);
  DeleteEcPoint(&h1_pt);
  DeleteEcPoint(&r_pt);
  DeleteEcPoint(&f_pt);
  DeleteFfElement(&s_el);
  DeleteFfElement(&cf_el);
  DeleteFfElement(&c_el);
  DeleteFfElement(&f_el);
  DeleteFfElement(&r_el);
  DeleteEpid2Params(&params);
  return sts;
}
Beispiel #3
0
EpidStatus EpidComputePreSig(MemberCtx const* ctx,
                             PreComputedSignature* precompsig) {
  EpidStatus res = kEpidNotImpl;

  EcPoint* B = NULL;
  EcPoint* K = NULL;
  EcPoint* T = NULL;
  EcPoint* R1 = NULL;

  FfElement* R2 = NULL;

  FfElement* a = NULL;
  FfElement* b = NULL;
  FfElement* rx = NULL;
  FfElement* rf = NULL;
  FfElement* ra = NULL;
  FfElement* rb = NULL;
  FfElement* t1 = NULL;
  FfElement* t2 = NULL;
  FfElement* f = NULL;

  if (!ctx || !precompsig) return kEpidBadArgErr;
  if (!ctx->epid2_params || !ctx->pub_key || !ctx->priv_key)
    return kEpidBadArgErr;

  do {
    // handy shorthands:
    EcGroup* G1 = ctx->epid2_params->G1;
    FiniteField* GT = ctx->epid2_params->GT;
    FiniteField* Fp = ctx->epid2_params->Fp;
    EcPoint* h2 = ctx->pub_key->h2;
    EcPoint* A = ctx->priv_key->A;
    FfElement* x = ctx->priv_key->x;
    BigNumStr f_str = {0};
    BigNumStr a_str = {0};
    BigNumStr t1_str = {0};
    BigNumStr rf_str = {0};
    BigNumStr t2_str = {0};
    BigNumStr ra_str = {0};
    static const BigNumStr one = {
        {{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1}}};

    if (!G1 || !GT || !Fp || !h2 || !A || !x || !ctx->priv_key->f ||
        !ctx->e12 || !ctx->e22 || !ctx->e2w || !ctx->ea2) {
      res = kEpidBadArgErr;
      BREAK_ON_EPID_ERROR(res);
    }
    f = ctx->priv_key->f;
    // The following variables B, K, T, R1 (elements of G1), R2
    // (elements of GT), a, b, rx, rf, ra, rb, t1, t2 (256-bit
    // integers) are used.
    res = NewEcPoint(G1, &B);
    BREAK_ON_EPID_ERROR(res);
    res = NewEcPoint(G1, &K);
    BREAK_ON_EPID_ERROR(res);
    res = NewEcPoint(G1, &T);
    BREAK_ON_EPID_ERROR(res);
    res = NewEcPoint(G1, &R1);
    BREAK_ON_EPID_ERROR(res);
    res = NewFfElement(GT, &R2);
    BREAK_ON_EPID_ERROR(res);
    res = NewFfElement(Fp, &a);
    BREAK_ON_EPID_ERROR(res);
    res = NewFfElement(Fp, &b);
    BREAK_ON_EPID_ERROR(res);
    res = NewFfElement(Fp, &rx);
    BREAK_ON_EPID_ERROR(res);
    res = NewFfElement(Fp, &rf);
    BREAK_ON_EPID_ERROR(res);
    res = NewFfElement(Fp, &ra);
    BREAK_ON_EPID_ERROR(res);
    res = NewFfElement(Fp, &rb);
    BREAK_ON_EPID_ERROR(res);
    res = NewFfElement(Fp, &t1);
    BREAK_ON_EPID_ERROR(res);
    res = NewFfElement(Fp, &t2);
    BREAK_ON_EPID_ERROR(res);
    // 1. The member expects the pre-computation is done (e12, e22, e2w,
    //    ea2). Refer to Section 3.5 for the computation of these
    //    values.

    // 2. The member verifies gid in public key matches gid in private
    //    key.
    // 3. The member computes B = G1.getRandom().
    res = EcGetRandom(G1, ctx->rnd_func, ctx->rnd_param, B);
    BREAK_ON_EPID_ERROR(res);
    // 4. The member computes K = G1.sscmExp(B, f).
    res = WriteFfElement(Fp, f, &f_str, sizeof(f_str));
    BREAK_ON_EPID_ERROR(res);
    res = EcExp(G1, B, &f_str, K);
    BREAK_ON_EPID_ERROR(res);
    // 5. The member chooses randomly an integers a from [1, p-1].
    res = FfGetRandom(Fp, &one, ctx->rnd_func, ctx->rnd_param, a);
    BREAK_ON_EPID_ERROR(res);
    // 6. The member computes T = G1.sscmExp(h2, a).
    res = WriteFfElement(Fp, a, &a_str, sizeof(a_str));
    BREAK_ON_EPID_ERROR(res);
    res = EcExp(G1, h2, &a_str, T);
    BREAK_ON_EPID_ERROR(res);
    // 7. The member computes T = G1.mul(T, A).
    res = EcMul(G1, T, A, T);
    BREAK_ON_EPID_ERROR(res);
    // 8. The member computes b = (a * x) mod p.
    res = FfMul(Fp, a, x, b);
    BREAK_ON_EPID_ERROR(res);
    // 9. The member chooses rx, rf, ra, rb randomly from [1, p-1].
    res = FfGetRandom(Fp, &one, ctx->rnd_func, ctx->rnd_param, rx);
    BREAK_ON_EPID_ERROR(res);
    res = FfGetRandom(Fp, &one, ctx->rnd_func, ctx->rnd_param, rf);
    BREAK_ON_EPID_ERROR(res);
    res = FfGetRandom(Fp, &one, ctx->rnd_func, ctx->rnd_param, ra);
    BREAK_ON_EPID_ERROR(res);
    res = FfGetRandom(Fp, &one, ctx->rnd_func, ctx->rnd_param, rb);
    BREAK_ON_EPID_ERROR(res);
    // 10. The member computes t1 = (- rx) mod p.
    res = FfNeg(Fp, rx, t1);
    BREAK_ON_EPID_ERROR(res);
    // 11. The member computes t2 = (rb - a * rx) mod p.
    res = FfMul(Fp, a, rx, t2);
    BREAK_ON_EPID_ERROR(res);
    res = FfNeg(Fp, t2, t2);
    BREAK_ON_EPID_ERROR(res);
    res = FfAdd(Fp, rb, t2, t2);
    BREAK_ON_EPID_ERROR(res);
    // 12. The member computes R1 = G1.sscmExp(B, rf).
    res = WriteFfElement(Fp, rf, &rf_str, sizeof(rf_str));
    BREAK_ON_EPID_ERROR(res);
    res = EcExp(G1, B, &rf_str, R1);
    BREAK_ON_EPID_ERROR(res);
    // 13. The member computes R2 = GT.sscmMultiExp(ea2, t1, e12, rf,
    //     e22, t2, e2w, ra).
    res = WriteFfElement(Fp, t1, &t1_str, sizeof(t1_str));
    BREAK_ON_EPID_ERROR(res);
    res = WriteFfElement(Fp, t2, &t2_str, sizeof(t2_str));
    BREAK_ON_EPID_ERROR(res);
    res = WriteFfElement(Fp, ra, &ra_str, sizeof(ra_str));
    BREAK_ON_EPID_ERROR(res);
    {
      FfElement const* points[4];
      BigNumStr const* exponents[4];
      points[0] = ctx->ea2;
      points[1] = ctx->e12;
      points[2] = ctx->e22;
      points[3] = ctx->e2w;
      exponents[0] = &t1_str;
      exponents[1] = &rf_str;
      exponents[2] = &t2_str;
      exponents[3] = &ra_str;
      res = FfMultiExp(GT, points, exponents, COUNT_OF(points), R2);
      BREAK_ON_EPID_ERROR(res);
    }
    // 14. The member sets and outputs pre-sigma = (B, K, T, a, b, rx,
    //     rf, ra, rb, R1, R2).
    res = WriteEcPoint(G1, B, &precompsig->B, sizeof(precompsig->B));
    BREAK_ON_EPID_ERROR(res);
    res = WriteEcPoint(G1, K, &precompsig->K, sizeof(precompsig->K));
    BREAK_ON_EPID_ERROR(res);
    res = WriteEcPoint(G1, T, &precompsig->T, sizeof(precompsig->T));
    BREAK_ON_EPID_ERROR(res);
    res = WriteFfElement(Fp, a, &precompsig->a, sizeof(precompsig->a));
    BREAK_ON_EPID_ERROR(res);
    res = WriteFfElement(Fp, b, &precompsig->b, sizeof(precompsig->b));
    BREAK_ON_EPID_ERROR(res);
    res = WriteFfElement(Fp, rx, &precompsig->rx, sizeof(precompsig->rx));
    BREAK_ON_EPID_ERROR(res);
    res = WriteFfElement(Fp, rf, &precompsig->rf, sizeof(precompsig->rf));
    BREAK_ON_EPID_ERROR(res);
    res = WriteFfElement(Fp, ra, &precompsig->ra, sizeof(precompsig->ra));
    BREAK_ON_EPID_ERROR(res);
    res = WriteFfElement(Fp, rb, &precompsig->rb, sizeof(precompsig->rb));
    BREAK_ON_EPID_ERROR(res);
    res = WriteEcPoint(G1, R1, &precompsig->R1, sizeof(precompsig->R1));
    BREAK_ON_EPID_ERROR(res);
    res = WriteFfElement(GT, R2, &precompsig->R2, sizeof(precompsig->R2));
    BREAK_ON_EPID_ERROR(res);
    // 15. The member stores pre-sigma in the secure storage of the
    //     member.
    res = kEpidNoErr;
  } while (0);

  f = NULL;
  DeleteEcPoint(&B);
  DeleteEcPoint(&K);
  DeleteEcPoint(&T);
  DeleteEcPoint(&R1);
  DeleteFfElement(&R2);
  DeleteFfElement(&a);
  DeleteFfElement(&b);
  DeleteFfElement(&rx);
  DeleteFfElement(&rf);
  DeleteFfElement(&ra);
  DeleteFfElement(&rb);
  DeleteFfElement(&t1);
  DeleteFfElement(&t2);

  return (res);
}
Beispiel #4
0
EpidStatus Tpm2LoadExternal(Tpm2Ctx* ctx, FpElemStr const* f_str) {
  EpidStatus sts = kEpidErr;
  TPM_RC rc = TPM_RC_SUCCESS;
  EcPoint* pub = NULL;
  FfElement* f = NULL;
  TPMI_ALG_HASH tpm_hash_alg = TPM_ALG_NULL;

  if (!ctx || !ctx->epid2_params || !f_str) {
    return kEpidBadArgErr;
  }

  do {
    LoadExternal_In in = {0};
    LoadExternal_Out out;
    G1ElemStr pub_str = {0};
    TPMS_ECC_PARMS* ecc_details = &in.inPublic.publicArea.parameters.eccDetail;
    EcGroup* G1 = ctx->epid2_params->G1;
    EcPoint* g1 = ctx->epid2_params->g1;

    sts = NewFfElement(ctx->epid2_params->Fp, &f);
    BREAK_ON_EPID_ERROR(sts);
    // verify that f is valid
    sts = ReadFfElement(ctx->epid2_params->Fp, f_str, sizeof(*f_str), f);
    BREAK_ON_EPID_ERROR(sts);
    if (ctx->key_handle) {
      FlushContext_In in_fc;
      in_fc.flushHandle = ctx->key_handle;
      TSS_Execute(ctx->tss, NULL, (COMMAND_PARAMETERS*)&in_fc, NULL,
                  TPM_CC_FlushContext, TPM_RH_NULL, NULL, 0);
      if (rc != TPM_RC_SUCCESS) {
        print_tpm2_response_code("TPM2_FlushContext", rc);
      }
      ctx->key_handle = 0;
    }

    sts = NewEcPoint(G1, &pub);
    BREAK_ON_EPID_ERROR(sts);

    sts = EcExp(G1, g1, (BigNumStr const*)f_str, pub);
    BREAK_ON_EPID_ERROR(sts);

    sts = WriteEcPoint(G1, pub, &pub_str, sizeof(pub_str));
    BREAK_ON_EPID_ERROR(sts);

    tpm_hash_alg = EpidtoTpm2HashAlg(ctx->hash_alg);
    if (tpm_hash_alg == TPM_ALG_NULL) {
      sts = kEpidHashAlgorithmNotSupported;
      break;
    }

    in.hierarchy = TPM_RH_NULL;
    in.inPublic.size = sizeof(TPM2B_PUBLIC);
    in.inPublic.publicArea.type = TPM_ALG_ECC;
    in.inPublic.publicArea.nameAlg = tpm_hash_alg;
    in.inPublic.publicArea.objectAttributes.val =
        TPMA_OBJECT_NODA | TPMA_OBJECT_USERWITHAUTH | TPMA_OBJECT_SIGN;
    in.inPublic.publicArea.authPolicy.t.size = 0;

    ecc_details->symmetric.algorithm = TPM_ALG_NULL;
    ecc_details->scheme.scheme = TPM_ALG_ECDAA;
    ecc_details->scheme.details.ecdaa.hashAlg = tpm_hash_alg;
    ecc_details->scheme.details.ecdaa.count = 0;
    ecc_details->curveID = TPM_ECC_BN_P256;
    ecc_details->kdf.scheme = TPM_ALG_NULL;

    sts = ReadTpm2FfElement(&pub_str.x.data,
                            &in.inPublic.publicArea.unique.ecc.x);
    BREAK_ON_EPID_ERROR(sts);
    sts = ReadTpm2FfElement(&pub_str.y.data,
                            &in.inPublic.publicArea.unique.ecc.y);
    BREAK_ON_EPID_ERROR(sts);

    in.inPrivate.t.size = sizeof(in.inPrivate.t.sensitiveArea);
    in.inPrivate.t.sensitiveArea.sensitiveType = TPM_ALG_ECC;
    sts = ReadTpm2FfElement(&f_str->data,
                            &in.inPrivate.t.sensitiveArea.sensitive.ecc);
    BREAK_ON_EPID_ERROR(sts);

    rc = TSS_Execute(ctx->tss, (RESPONSE_PARAMETERS*)&out,
                     (COMMAND_PARAMETERS*)&in, NULL, TPM_CC_LoadExternal,
                     TPM_RH_NULL, NULL, 0);
    if (rc != TPM_RC_SUCCESS) {
      print_tpm2_response_code("TPM2_LoadExternal", rc);
      if (TPM_RC_BINDING == rc || TPM_RC_ECC_POINT == rc ||
          TPM_RC_KEY_SIZE == rc)
        sts = kEpidBadArgErr;
      else
        sts = kEpidErr;
      break;
    }

    ctx->key_handle = out.objectHandle;
  } while (0);

  DeleteEcPoint(&pub);
  DeleteFfElement(&f);

  return sts;
}