Beispiel #1
0
void
vpImageSimulator::project(const vpColVector &_vin, const vpHomogeneousMatrix &_cMt,vpColVector &_vout)
{
  vpColVector XH(4);
  getHomogCoord(_vin,XH);
  getCoordFromHomog(_cMt*XH,_vout);
}
Beispiel #2
0
/*
 *  SHA: Compression function, unrolled.
 *
 * Some operations in shaCompress are done as 5 groups of 16 operations.
 * Others are done as 4 groups of 20 operations.
 * The code below shows that structure.
 *
 * The functions that compute the new values of the 5 state variables
 * A-E are done in 4 groups of 20 operations (or you may also think
 * of them as being done in 16 groups of 5 operations).  They are
 * done by the SHA_RNDx macros below, in the right column.
 *
 * The functions that set the 16 values of the W array are done in
 * 5 groups of 16 operations.  The first group is done by the
 * LOAD macros below, the latter 4 groups are done by SHA_MIX below,
 * in the left column.
 *
 * gcc's optimizer observes that each member of the W array is assigned
 * a value 5 times in this code.  It reduces the number of store
 * operations done to the W array in the context (that is, in the X array)
 * by creating a W array on the stack, and storing the W values there for
 * the first 4 groups of operations on W, and storing the values in the
 * context's W array only in the fifth group.  This is undesirable.
 * It is MUCH bigger code than simply using the context's W array, because
 * all the offsets to the W array in the stack are 32-bit signed offsets,
 * and it is no faster than storing the values in the context's W array.
 *
 * The original code for sha_fast.c prevented this creation of a separate
 * W array in the stack by creating a W array of 80 members, each of
 * whose elements is assigned only once. It also separated the computations
 * of the W array values and the computations of the values for the 5
 * state variables into two separate passes, W's, then A-E's so that the
 * second pass could be done all in registers (except for accessing the W
 * array) on machines with fewer registers.  The method is suboptimal
 * for machines with enough registers to do it all in one pass, and it
 * necessitates using many instructions with 32-bit offsets.
 *
 * This code eliminates the separate W array on the stack by a completely
 * different means: by declaring the X array volatile.  This prevents
 * the optimizer from trying to reduce the use of the X array by the
 * creation of a MORE expensive W array on the stack. The result is
 * that all instructions use signed 8-bit offsets and not 32-bit offsets.
 *
 * The combination of this code and the -O3 optimizer flag on GCC 3.4.3
 * results in code that is 3 times faster than the previous NSS sha_fast
 * code on AMD64.
 */
static void NO_SANITIZE_ALIGNMENT
shaCompress(volatile SHA_HW_t *X, const PRUint32 *inbuf)
{
    register SHA_HW_t A, B, C, D, E;

#if defined(SHA_NEED_TMP_VARIABLE)
    register PRUint32 tmp;
#endif

#if !defined(SHA_PUT_W_IN_STACK)
#define XH(n) X[n - H2X]
#define XW(n) X[n - W2X]
#else
    SHA_HW_t w_0, w_1, w_2, w_3, w_4, w_5, w_6, w_7,
        w_8, w_9, w_10, w_11, w_12, w_13, w_14, w_15;
#define XW(n) w_##n
#define XH(n) X[n]
#endif

#define K0 0x5a827999L
#define K1 0x6ed9eba1L
#define K2 0x8f1bbcdcL
#define K3 0xca62c1d6L

#define SHA_RND1(a, b, c, d, e, n)                         \
    a = SHA_ROTL(b, 5) + SHA_F1(c, d, e) + a + XW(n) + K0; \
    c = SHA_ROTL(c, 30)
#define SHA_RND2(a, b, c, d, e, n)                         \
    a = SHA_ROTL(b, 5) + SHA_F2(c, d, e) + a + XW(n) + K1; \
    c = SHA_ROTL(c, 30)
#define SHA_RND3(a, b, c, d, e, n)                         \
    a = SHA_ROTL(b, 5) + SHA_F3(c, d, e) + a + XW(n) + K2; \
    c = SHA_ROTL(c, 30)
#define SHA_RND4(a, b, c, d, e, n)                         \
    a = SHA_ROTL(b, 5) + SHA_F4(c, d, e) + a + XW(n) + K3; \
    c = SHA_ROTL(c, 30)

#define LOAD(n) XW(n) = SHA_HTONL(inbuf[n])

    A = XH(0);
    B = XH(1);
    C = XH(2);
    D = XH(3);
    E = XH(4);

    LOAD(0);
    SHA_RND1(E, A, B, C, D, 0);
    LOAD(1);
    SHA_RND1(D, E, A, B, C, 1);
    LOAD(2);
    SHA_RND1(C, D, E, A, B, 2);
    LOAD(3);
    SHA_RND1(B, C, D, E, A, 3);
    LOAD(4);
    SHA_RND1(A, B, C, D, E, 4);
    LOAD(5);
    SHA_RND1(E, A, B, C, D, 5);
    LOAD(6);
    SHA_RND1(D, E, A, B, C, 6);
    LOAD(7);
    SHA_RND1(C, D, E, A, B, 7);
    LOAD(8);
    SHA_RND1(B, C, D, E, A, 8);
    LOAD(9);
    SHA_RND1(A, B, C, D, E, 9);
    LOAD(10);
    SHA_RND1(E, A, B, C, D, 10);
    LOAD(11);
    SHA_RND1(D, E, A, B, C, 11);
    LOAD(12);
    SHA_RND1(C, D, E, A, B, 12);
    LOAD(13);
    SHA_RND1(B, C, D, E, A, 13);
    LOAD(14);
    SHA_RND1(A, B, C, D, E, 14);
    LOAD(15);
    SHA_RND1(E, A, B, C, D, 15);

    SHA_MIX(0, 13, 8, 2);
    SHA_RND1(D, E, A, B, C, 0);
    SHA_MIX(1, 14, 9, 3);
    SHA_RND1(C, D, E, A, B, 1);
    SHA_MIX(2, 15, 10, 4);
    SHA_RND1(B, C, D, E, A, 2);
    SHA_MIX(3, 0, 11, 5);
    SHA_RND1(A, B, C, D, E, 3);

    SHA_MIX(4, 1, 12, 6);
    SHA_RND2(E, A, B, C, D, 4);
    SHA_MIX(5, 2, 13, 7);
    SHA_RND2(D, E, A, B, C, 5);
    SHA_MIX(6, 3, 14, 8);
    SHA_RND2(C, D, E, A, B, 6);
    SHA_MIX(7, 4, 15, 9);
    SHA_RND2(B, C, D, E, A, 7);
    SHA_MIX(8, 5, 0, 10);
    SHA_RND2(A, B, C, D, E, 8);
    SHA_MIX(9, 6, 1, 11);
    SHA_RND2(E, A, B, C, D, 9);
    SHA_MIX(10, 7, 2, 12);
    SHA_RND2(D, E, A, B, C, 10);
    SHA_MIX(11, 8, 3, 13);
    SHA_RND2(C, D, E, A, B, 11);
    SHA_MIX(12, 9, 4, 14);
    SHA_RND2(B, C, D, E, A, 12);
    SHA_MIX(13, 10, 5, 15);
    SHA_RND2(A, B, C, D, E, 13);
    SHA_MIX(14, 11, 6, 0);
    SHA_RND2(E, A, B, C, D, 14);
    SHA_MIX(15, 12, 7, 1);
    SHA_RND2(D, E, A, B, C, 15);

    SHA_MIX(0, 13, 8, 2);
    SHA_RND2(C, D, E, A, B, 0);
    SHA_MIX(1, 14, 9, 3);
    SHA_RND2(B, C, D, E, A, 1);
    SHA_MIX(2, 15, 10, 4);
    SHA_RND2(A, B, C, D, E, 2);
    SHA_MIX(3, 0, 11, 5);
    SHA_RND2(E, A, B, C, D, 3);
    SHA_MIX(4, 1, 12, 6);
    SHA_RND2(D, E, A, B, C, 4);
    SHA_MIX(5, 2, 13, 7);
    SHA_RND2(C, D, E, A, B, 5);
    SHA_MIX(6, 3, 14, 8);
    SHA_RND2(B, C, D, E, A, 6);
    SHA_MIX(7, 4, 15, 9);
    SHA_RND2(A, B, C, D, E, 7);

    SHA_MIX(8, 5, 0, 10);
    SHA_RND3(E, A, B, C, D, 8);
    SHA_MIX(9, 6, 1, 11);
    SHA_RND3(D, E, A, B, C, 9);
    SHA_MIX(10, 7, 2, 12);
    SHA_RND3(C, D, E, A, B, 10);
    SHA_MIX(11, 8, 3, 13);
    SHA_RND3(B, C, D, E, A, 11);
    SHA_MIX(12, 9, 4, 14);
    SHA_RND3(A, B, C, D, E, 12);
    SHA_MIX(13, 10, 5, 15);
    SHA_RND3(E, A, B, C, D, 13);
    SHA_MIX(14, 11, 6, 0);
    SHA_RND3(D, E, A, B, C, 14);
    SHA_MIX(15, 12, 7, 1);
    SHA_RND3(C, D, E, A, B, 15);

    SHA_MIX(0, 13, 8, 2);
    SHA_RND3(B, C, D, E, A, 0);
    SHA_MIX(1, 14, 9, 3);
    SHA_RND3(A, B, C, D, E, 1);
    SHA_MIX(2, 15, 10, 4);
    SHA_RND3(E, A, B, C, D, 2);
    SHA_MIX(3, 0, 11, 5);
    SHA_RND3(D, E, A, B, C, 3);
    SHA_MIX(4, 1, 12, 6);
    SHA_RND3(C, D, E, A, B, 4);
    SHA_MIX(5, 2, 13, 7);
    SHA_RND3(B, C, D, E, A, 5);
    SHA_MIX(6, 3, 14, 8);
    SHA_RND3(A, B, C, D, E, 6);
    SHA_MIX(7, 4, 15, 9);
    SHA_RND3(E, A, B, C, D, 7);
    SHA_MIX(8, 5, 0, 10);
    SHA_RND3(D, E, A, B, C, 8);
    SHA_MIX(9, 6, 1, 11);
    SHA_RND3(C, D, E, A, B, 9);
    SHA_MIX(10, 7, 2, 12);
    SHA_RND3(B, C, D, E, A, 10);
    SHA_MIX(11, 8, 3, 13);
    SHA_RND3(A, B, C, D, E, 11);

    SHA_MIX(12, 9, 4, 14);
    SHA_RND4(E, A, B, C, D, 12);
    SHA_MIX(13, 10, 5, 15);
    SHA_RND4(D, E, A, B, C, 13);
    SHA_MIX(14, 11, 6, 0);
    SHA_RND4(C, D, E, A, B, 14);
    SHA_MIX(15, 12, 7, 1);
    SHA_RND4(B, C, D, E, A, 15);

    SHA_MIX(0, 13, 8, 2);
    SHA_RND4(A, B, C, D, E, 0);
    SHA_MIX(1, 14, 9, 3);
    SHA_RND4(E, A, B, C, D, 1);
    SHA_MIX(2, 15, 10, 4);
    SHA_RND4(D, E, A, B, C, 2);
    SHA_MIX(3, 0, 11, 5);
    SHA_RND4(C, D, E, A, B, 3);
    SHA_MIX(4, 1, 12, 6);
    SHA_RND4(B, C, D, E, A, 4);
    SHA_MIX(5, 2, 13, 7);
    SHA_RND4(A, B, C, D, E, 5);
    SHA_MIX(6, 3, 14, 8);
    SHA_RND4(E, A, B, C, D, 6);
    SHA_MIX(7, 4, 15, 9);
    SHA_RND4(D, E, A, B, C, 7);
    SHA_MIX(8, 5, 0, 10);
    SHA_RND4(C, D, E, A, B, 8);
    SHA_MIX(9, 6, 1, 11);
    SHA_RND4(B, C, D, E, A, 9);
    SHA_MIX(10, 7, 2, 12);
    SHA_RND4(A, B, C, D, E, 10);
    SHA_MIX(11, 8, 3, 13);
    SHA_RND4(E, A, B, C, D, 11);
    SHA_MIX(12, 9, 4, 14);
    SHA_RND4(D, E, A, B, C, 12);
    SHA_MIX(13, 10, 5, 15);
    SHA_RND4(C, D, E, A, B, 13);
    SHA_MIX(14, 11, 6, 0);
    SHA_RND4(B, C, D, E, A, 14);
    SHA_MIX(15, 12, 7, 1);
    SHA_RND4(A, B, C, D, E, 15);

    XH(0) += A;
    XH(1) += B;
    XH(2) += C;
    XH(3) += D;
    XH(4) += E;
}