/**
 * Return (and compute if not done so yet) the total number of Doppler templates
 * of the DopplerScan \a scan
 */
REAL8
XLALNumDopplerTemplates ( DopplerFullScanState *scan)
{
  if ( ! scan->numTemplates )   /* not pre-computed already ? */
    {
      switch ( scan->gridType )
        {
        /* case GRID_METRIC_LATTICE: */
        /*   LogPrintf ( LOG_DEBUG, "Now counting number of templates in lattice ... "); */
        /*   scan->numTemplates = XLALCountLatticeTemplates ( scan->latticeScan ); */
        /*   LogPrintfVerbatim( LOG_DEBUG, " done. (%.0f)\n", scan->numTemplates ); */
        /*   break; */

        case GRID_SPINDOWN_SQUARE: /* square parameter space */
        case GRID_SPINDOWN_AGEBRK: /* age-braking index parameter space */
          LogPrintf(LOG_DEBUG, "Counting spindown lattice templates ... ");
          scan->numTemplates = (REAL8)XLALTotalLatticeTilingPoints(scan->spindownTilingItr);
          LogPrintfVerbatim(LOG_DEBUG, "%0.0f\n", scan->numTemplates);
          break;

        default:
          /* FIXME: not implemented yet */
          LogPrintf ( LOG_NORMAL, "template counting not implemented yet for gridType=%d!\n", scan->gridType );
          return -1;
          break;
        } /* switch() */
    } /* ! numTemplates */

  return scan->numTemplates;

} /* XLALNumDopplerTemplates() */
Beispiel #2
0
static int BasicTest(
  size_t n,
  const int bound_on_0,
  const int bound_on_1,
  const int bound_on_2,
  const int bound_on_3,
  const char *lattice_name,
  const UINT8 total_ref_0,
  const UINT8 total_ref_1,
  const UINT8 total_ref_2,
  const UINT8 total_ref_3
  )
{

  const int bound_on[4] = {bound_on_0, bound_on_1, bound_on_2, bound_on_3};
  const UINT8 total_ref[4] = {total_ref_0, total_ref_1, total_ref_2, total_ref_3};

  // Create lattice tiling
  LatticeTiling *tiling = XLALCreateLatticeTiling(n);
  XLAL_CHECK(tiling != NULL, XLAL_EFUNC);

  // Add bounds
  for (size_t i = 0; i < n; ++i) {
    XLAL_CHECK(bound_on[i] == 0 || bound_on[i] == 1, XLAL_EFAILED);
    XLAL_CHECK(XLALSetLatticeTilingConstantBound(tiling, i, 0.0, bound_on[i] * pow(100.0, 1.0/n)) == XLAL_SUCCESS, XLAL_EFUNC);
  }

  // Set metric to the Lehmer matrix
  const double max_mismatch = 0.3;
  {
    gsl_matrix *GAMAT(metric, n, n);
    for (size_t i = 0; i < n; ++i) {
      for (size_t j = 0; j < n; ++j) {
        const double ii = i+1, jj = j+1;
        gsl_matrix_set(metric, i, j, jj >= ii ? ii/jj : jj/ii);
      }
    }
    XLAL_CHECK(XLALSetTilingLatticeAndMetric(tiling, lattice_name, metric, max_mismatch) == XLAL_SUCCESS, XLAL_EFUNC);
    GFMAT(metric);
    printf("Number of (tiled) dimensions: %zu (%zu)\n", XLALTotalLatticeTilingDimensions(tiling), XLALTiledLatticeTilingDimensions(tiling));
    printf("  Bounds: %i %i %i %i\n", bound_on_0, bound_on_1, bound_on_2, bound_on_3);
    printf("  Lattice type: %s\n", lattice_name);
  }

  // Create lattice tiling locator
  LatticeTilingLocator *loc = XLALCreateLatticeTilingLocator(tiling);
  XLAL_CHECK(loc != NULL, XLAL_EFUNC);
  if (lalDebugLevel & LALINFOBIT) {
    printf("  Index trie:\n");
    XLAL_CHECK(XLALPrintLatticeTilingIndexTrie(loc, stdout) == XLAL_SUCCESS, XLAL_EFUNC);
  }

  for (size_t i = 0; i < n; ++i) {

    // Create lattice tiling iterator and locator over 'i+1' dimensions
    LatticeTilingIterator *itr = XLALCreateLatticeTilingIterator(tiling, i+1);
    XLAL_CHECK(itr != NULL, XLAL_EFUNC);

    // Count number of points
    const UINT8 total = XLALTotalLatticeTilingPoints(itr);
    printf("Number of lattice points in %zu dimensions: %" LAL_UINT8_FORMAT "\n", i+1, total);
    XLAL_CHECK(imaxabs(total - total_ref[i]) <= 1, XLAL_EFUNC,
               "ERROR: |total - total_ref[%zu]| = |%" LAL_UINT8_FORMAT " - %" LAL_UINT8_FORMAT "| > 1", i, total, total_ref[i]);
    for (UINT8 k = 0; XLALNextLatticeTilingPoint(itr, NULL) > 0; ++k) {
      const UINT8 itr_index = XLALCurrentLatticeTilingIndex(itr);
      XLAL_CHECK(k == itr_index, XLAL_EFUNC,
                 "ERROR: k = %" LAL_UINT8_FORMAT " != %" LAL_UINT8_FORMAT " = itr_index", k, itr_index);
    }
    XLAL_CHECK(XLALResetLatticeTilingIterator(itr) == XLAL_SUCCESS, XLAL_EFUNC);

    // Check tiling statistics
    printf("  Check tiling statistics ...");
    for (size_t j = 0; j < n; ++j) {
      const LatticeTilingStats *stats = XLALLatticeTilingStatistics(tiling, j);
      XLAL_CHECK(stats != NULL, XLAL_EFUNC);
      XLAL_CHECK(imaxabs(stats->total_points - total_ref[j]) <= 1, XLAL_EFAILED, "\n  "
                 "ERROR: |total - total_ref[%zu]| = |%" LAL_UINT8_FORMAT " - %" LAL_UINT8_FORMAT "| > 1", j, stats->total_points, total_ref[j]);
      XLAL_CHECK(stats->min_points <= stats->avg_points, XLAL_EFAILED, "\n  "
                 "ERROR: min_points = %" LAL_INT4_FORMAT " > %g = avg_points", stats->min_points, stats->avg_points);
      XLAL_CHECK(stats->max_points >= stats->avg_points, XLAL_EFAILED, "\n  "
                 "ERROR: max_points = %" LAL_INT4_FORMAT " < %g = avg_points", stats->max_points, stats->avg_points);
    }
    printf(" done\n");

    // Get all points
    gsl_matrix *GAMAT(points, n, total);
    XLAL_CHECK(XLALNextLatticeTilingPoints(itr, &points) == (int)total, XLAL_EFUNC);
    XLAL_CHECK(XLALNextLatticeTilingPoint(itr, NULL) == 0, XLAL_EFUNC);

    // Get nearest points to each template, check for consistency
    printf("  Testing XLALNearestLatticeTiling{Point|Block}() ...");
    gsl_vector *GAVEC(nearest, n);
    UINT8Vector *nearest_indexes = XLALCreateUINT8Vector(n);
    XLAL_CHECK(nearest_indexes != NULL, XLAL_ENOMEM);
    for (UINT8 k = 0; k < total; ++k) {
      gsl_vector_const_view point_view = gsl_matrix_const_column(points, k);
      const gsl_vector *point = &point_view.vector;
      XLAL_CHECK(XLALNearestLatticeTilingPoint(loc, point, nearest, nearest_indexes) == XLAL_SUCCESS, XLAL_EFUNC);
      gsl_vector_sub(nearest, point);
      double err = gsl_blas_dasum(nearest) / n;
      XLAL_CHECK(err < 1e-6, XLAL_EFAILED, "\n  "
                 "ERROR: err = %e < 1e-6", err);
      XLAL_CHECK(nearest_indexes->data[i] == k, XLAL_EFAILED, "\n  "
                 "ERROR: nearest_indexes[%zu] = %" LAL_UINT8_FORMAT " != %" LAL_UINT8_FORMAT "\n", i, nearest_indexes->data[i], k);
      if (0 < i) {
        const LatticeTilingStats *stats = XLALLatticeTilingStatistics(tiling, i);
        UINT8 nearest_index = 0;
        UINT4 nearest_left = 0, nearest_right = 0;
        XLAL_CHECK(XLALNearestLatticeTilingBlock(loc, point, i, nearest, &nearest_index, &nearest_left, &nearest_right) == XLAL_SUCCESS, XLAL_EFUNC);
        XLAL_CHECK(nearest_index == nearest_indexes->data[i-1], XLAL_EFAILED, "\n  "
                   "ERROR: nearest_index = %" LAL_UINT8_FORMAT " != %" LAL_UINT8_FORMAT "\n", nearest_index, nearest_indexes->data[i-1]);
        UINT4 nearest_len = 1 + nearest_left + nearest_right;
        XLAL_CHECK(nearest_len <= stats->max_points, XLAL_EFAILED, "\n  "
                   "ERROR: nearest_len = %i > %i = stats[%zu]->max_points\n", nearest_len, stats->max_points, i);
      }
      if (i+1 < n) {
        const LatticeTilingStats *stats = XLALLatticeTilingStatistics(tiling, i+1);
        UINT8 nearest_index = 0;
        UINT4 nearest_left = 0, nearest_right = 0;
        XLAL_CHECK(XLALNearestLatticeTilingBlock(loc, point, i+1, nearest, &nearest_index, &nearest_left, &nearest_right) == XLAL_SUCCESS, XLAL_EFUNC);
        XLAL_CHECK(nearest_index == nearest_indexes->data[i], XLAL_EFAILED, "\n  "
                   "ERROR: nearest_index = %" LAL_UINT8_FORMAT " != %" LAL_UINT8_FORMAT "\n", nearest_index, nearest_indexes->data[i]);
        UINT4 nearest_len = 1 + nearest_left + nearest_right;
        XLAL_CHECK(nearest_len <= stats->max_points, XLAL_EFAILED, "\n  "
                   "ERROR: nearest_len = %i > %i = stats[%zu]->max_points\n", nearest_len, stats->max_points, i+1);
      }
    }
    printf(" done\n");

    // Cleanup
    XLALDestroyLatticeTilingIterator(itr);
    GFMAT(points);
    GFVEC(nearest);
    XLALDestroyUINT8Vector(nearest_indexes);

  }

  for (size_t i = 0; i < n; ++i) {

    // Create alternating lattice tiling iterator over 'i+1' dimensions
    LatticeTilingIterator *itr_alt = XLALCreateLatticeTilingIterator(tiling, i+1);
    XLAL_CHECK(itr_alt != NULL, XLAL_EFUNC);
    XLAL_CHECK(XLALSetLatticeTilingAlternatingIterator(itr_alt, true) == XLAL_SUCCESS, XLAL_EFUNC);

    // Count number of points, check for consistency with non-alternating count
    UINT8 total = 0;
    while (XLALNextLatticeTilingPoint(itr_alt, NULL) > 0) ++total;
    XLAL_CHECK(imaxabs(total - total_ref[i]) <= 1, XLAL_EFUNC, "ERROR: alternating |total - total_ref[%zu]| = |%" LAL_UINT8_FORMAT " - %" LAL_UINT8_FORMAT "| > 1", i, total, total_ref[i]);

    // Cleanup
    XLALDestroyLatticeTilingIterator(itr_alt);

  }

  // Cleanup
  XLALDestroyLatticeTiling(tiling);
  XLALDestroyLatticeTilingLocator(loc);
  LALCheckMemoryLeaks();
  printf("\n");
  fflush(stdout);

  return XLAL_SUCCESS;

}
Beispiel #3
0
static int MismatchTest(
  LatticeTiling *tiling,
  gsl_matrix *metric,
  const double max_mismatch,
  const UINT8 total_ref,
  const double mism_hist_ref[MISM_HIST_BINS]
  )
{

  const size_t n = XLALTotalLatticeTilingDimensions(tiling);

  // Create lattice tiling iterator and locator
  LatticeTilingIterator *itr = XLALCreateLatticeTilingIterator(tiling, n);
  XLAL_CHECK(itr != NULL, XLAL_EFUNC);
  LatticeTilingLocator *loc = XLALCreateLatticeTilingLocator(tiling);
  XLAL_CHECK(loc != NULL, XLAL_EFUNC);

  // Count number of points
  const UINT8 total = XLALTotalLatticeTilingPoints(itr);
  printf("Number of lattice points: %" LAL_UINT8_FORMAT "\n", total);
  XLAL_CHECK(imaxabs(total - total_ref) <= 1, XLAL_EFUNC, "ERROR: |total - total_ref| = |%" LAL_UINT8_FORMAT " - %" LAL_UINT8_FORMAT "| > 1", total, total_ref);

  // Get all points
  gsl_matrix *GAMAT(points, n, total);
  XLAL_CHECK(XLALNextLatticeTilingPoints(itr, &points) == (int)total, XLAL_EFUNC);
  XLAL_CHECK(XLALNextLatticeTilingPoint(itr, NULL) == 0, XLAL_EFUNC);

  // Initialise mismatch histogram counts
  double mism_hist[MISM_HIST_BINS] = {0};
  double mism_hist_total = 0, mism_hist_out_of_range = 0;

  // Perform 10 injections for every template
  {
    gsl_matrix *GAMAT(injections, 3, total);
    gsl_matrix *GAMAT(nearest, 3, total);
    gsl_matrix *GAMAT(temp, 3, total);
    RandomParams *rng = XLALCreateRandomParams(total);
    XLAL_CHECK(rng != NULL, XLAL_EFUNC);
    for (size_t i = 0; i < 10; ++i) {

      // Generate random injection points
      XLAL_CHECK(XLALRandomLatticeTilingPoints(tiling, 0.0, rng, injections) == XLAL_SUCCESS, XLAL_EFUNC);

      // Find nearest lattice template points
      XLAL_CHECK(XLALNearestLatticeTilingPoints(loc, injections, &nearest, NULL) == XLAL_SUCCESS, XLAL_EFUNC);

      // Compute mismatch between injections
      gsl_matrix_sub(nearest, injections);
      gsl_blas_dsymm(CblasLeft, CblasUpper, 1.0, metric, nearest, 0.0, temp);
      for (size_t j = 0; j < temp->size2; ++j) {
        gsl_vector_view temp_j = gsl_matrix_column(temp, j);
        gsl_vector_view nearest_j = gsl_matrix_column(nearest, j);
        double mismatch = 0.0;
        gsl_blas_ddot(&nearest_j.vector, &temp_j.vector, &mismatch);
        mismatch /= max_mismatch;

        // Increment mismatch histogram counts
        ++mism_hist_total;
        if (mismatch < 0.0 || mismatch > 1.0) {
          ++mism_hist_out_of_range;
        } else {
          ++mism_hist[lround(floor(mismatch * MISM_HIST_BINS))];
        }

      }

    }

    // Cleanup
    GFMAT(injections, nearest, temp);
    XLALDestroyRandomParams(rng);

  }

  // Normalise histogram
  for (size_t i = 0; i < MISM_HIST_BINS; ++i) {
    mism_hist[i] *= MISM_HIST_BINS / mism_hist_total;
  }

  // Print mismatch histogram and its reference
  printf("Mismatch histogram: ");
  for (size_t i = 0; i < MISM_HIST_BINS; ++i) {
    printf(" %0.3f", mism_hist[i]);
  }
  printf("\n");
  printf("Reference histogram:");
  for (size_t i = 0; i < MISM_HIST_BINS; ++i) {
    printf(" %0.3f", mism_hist_ref[i]);
  }
  printf("\n");

  // Determine error between mismatch histogram and its reference
  double mism_hist_error = 0.0;
  for (size_t i = 0; i < MISM_HIST_BINS; ++i) {
    mism_hist_error += fabs(mism_hist[i] - mism_hist_ref[i]);
  }
  mism_hist_error /= MISM_HIST_BINS;
  printf("Mismatch histogram error: %0.3e\n", mism_hist_error);
  const double mism_hist_error_tol = 5e-2;
  if (mism_hist_error >= mism_hist_error_tol) {
    XLAL_ERROR(XLAL_EFAILED, "ERROR: mismatch histogram error exceeds %0.3e\n", mism_hist_error_tol);
  }

  // Check fraction of injections out of histogram range
  const double mism_out_of_range = mism_hist_out_of_range / mism_hist_total;
  printf("Fraction of points out of histogram range: %0.3e\n", mism_out_of_range);
  const double mism_out_of_range_tol = 2e-3;
  if (mism_out_of_range > mism_out_of_range_tol) {
    XLAL_ERROR(XLAL_EFAILED, "ERROR: fraction of points out of histogram range exceeds %0.3e\n", mism_out_of_range_tol);
  }

  // Perform 10 injections outside parameter space
  {
    gsl_matrix *GAMAT(injections, 3, 10);
    gsl_matrix *GAMAT(nearest, n, total);
    RandomParams *rng = XLALCreateRandomParams(total);
    XLAL_CHECK(rng != NULL, XLAL_EFUNC);

    // Generate random injection points outside parameter space
    XLAL_CHECK(XLALRandomLatticeTilingPoints(tiling, 5.0, rng, injections) == XLAL_SUCCESS, XLAL_EFUNC);

    // Find nearest lattice template points
    XLAL_CHECK(XLALNearestLatticeTilingPoints(loc, injections, &nearest, NULL) == XLAL_SUCCESS, XLAL_EFUNC);

    // Cleanup
    GFMAT(injections, nearest);
    XLALDestroyRandomParams(rng);

  }

  // Cleanup
  XLALDestroyLatticeTiling(tiling);
  XLALDestroyLatticeTilingIterator(itr);
  XLALDestroyLatticeTilingLocator(loc);
  GFMAT(metric, points);
  LALCheckMemoryLeaks();
  printf("\n");
  fflush(stdout);

  return XLAL_SUCCESS;

}