Beispiel #1
0
/*
 * Main entry point for walwriter process
 *
 * This is invoked from BootstrapMain, which has already created the basic
 * execution environment, but not enabled signals yet.
 */
void
WalWriterMain(void)
{
	sigjmp_buf	local_sigjmp_buf;
	MemoryContext walwriter_context;

	/*
	 * If possible, make this process a group leader, so that the postmaster
	 * can signal any child processes too.	(walwriter probably never has any
	 * child processes, but for consistency we make all postmaster child
	 * processes do this.)
	 */
#ifdef HAVE_SETSID
	if (setsid() < 0)
		elog(FATAL, "setsid() failed: %m");
#endif

	/*
	 * Properly accept or ignore signals the postmaster might send us
	 *
	 * We have no particular use for SIGINT at the moment, but seems
	 * reasonable to treat like SIGTERM.
	 */
	pqsignal(SIGHUP, WalSigHupHandler); /* set flag to read config file */
	pqsignal(SIGINT, WalShutdownHandler);		/* request shutdown */
	pqsignal(SIGTERM, WalShutdownHandler);		/* request shutdown */
	pqsignal(SIGQUIT, wal_quickdie);	/* hard crash time */
	pqsignal(SIGALRM, SIG_IGN);
	pqsignal(SIGPIPE, SIG_IGN);
	pqsignal(SIGUSR1, SIG_IGN); /* reserve for ProcSignal */
	pqsignal(SIGUSR2, SIG_IGN); /* not used */

	/*
	 * Reset some signals that are accepted by postmaster but not here
	 */
	pqsignal(SIGCHLD, SIG_DFL);
	pqsignal(SIGTTIN, SIG_DFL);
	pqsignal(SIGTTOU, SIG_DFL);
	pqsignal(SIGCONT, SIG_DFL);
	pqsignal(SIGWINCH, SIG_DFL);

	/* We allow SIGQUIT (quickdie) at all times */
	sigdelset(&BlockSig, SIGQUIT);

	/*
	 * Create a resource owner to keep track of our resources (not clear that
	 * we need this, but may as well have one).
	 */
	CurrentResourceOwner = ResourceOwnerCreate(NULL, "Wal Writer");

	/*
	 * Create a memory context that we will do all our work in.  We do this so
	 * that we can reset the context during error recovery and thereby avoid
	 * possible memory leaks.  Formerly this code just ran in
	 * TopMemoryContext, but resetting that would be a really bad idea.
	 */
	walwriter_context = AllocSetContextCreate(TopMemoryContext,
											  "Wal Writer",
											  ALLOCSET_DEFAULT_MINSIZE,
											  ALLOCSET_DEFAULT_INITSIZE,
											  ALLOCSET_DEFAULT_MAXSIZE);
	MemoryContextSwitchTo(walwriter_context);

	/*
	 * If an exception is encountered, processing resumes here.
	 *
	 * This code is heavily based on bgwriter.c, q.v.
	 */
	if (sigsetjmp(local_sigjmp_buf, 1) != 0)
	{
		/* Since not using PG_TRY, must reset error stack by hand */
		error_context_stack = NULL;

		/* Prevent interrupts while cleaning up */
		HOLD_INTERRUPTS();

		/* Report the error to the server log */
		EmitErrorReport();

		/*
		 * These operations are really just a minimal subset of
		 * AbortTransaction().	We don't have very many resources to worry
		 * about in walwriter, but we do have LWLocks, and perhaps buffers?
		 */
		LWLockReleaseAll();
		AbortBufferIO();
		UnlockBuffers();
		/* buffer pins are released here: */
		ResourceOwnerRelease(CurrentResourceOwner,
							 RESOURCE_RELEASE_BEFORE_LOCKS,
							 false, true);
		/* we needn't bother with the other ResourceOwnerRelease phases */
		AtEOXact_Buffers(false);
		AtEOXact_Files();
		AtEOXact_HashTables(false);

		/*
		 * Now return to normal top-level context and clear ErrorContext for
		 * next time.
		 */
		MemoryContextSwitchTo(walwriter_context);
		FlushErrorState();

		/* Flush any leaked data in the top-level context */
		MemoryContextResetAndDeleteChildren(walwriter_context);

		/* Now we can allow interrupts again */
		RESUME_INTERRUPTS();

		/*
		 * Sleep at least 1 second after any error.  A write error is likely
		 * to be repeated, and we don't want to be filling the error logs as
		 * fast as we can.
		 */
		pg_usleep(1000000L);

		/*
		 * Close all open files after any error.  This is helpful on Windows,
		 * where holding deleted files open causes various strange errors.
		 * It's not clear we need it elsewhere, but shouldn't hurt.
		 */
		smgrcloseall();
	}

	/* We can now handle ereport(ERROR) */
	PG_exception_stack = &local_sigjmp_buf;

	/*
	 * Unblock signals (they were blocked when the postmaster forked us)
	 */
	PG_SETMASK(&UnBlockSig);

	/*
	 * Loop forever
	 */
	for (;;)
	{
		long		udelay;

		/*
		 * Emergency bailout if postmaster has died.  This is to avoid the
		 * necessity for manual cleanup of all postmaster children.
		 */
		if (!PostmasterIsAlive(true))
			exit(1);

		/*
		 * Process any requests or signals received recently.
		 */
		if (got_SIGHUP)
		{
			got_SIGHUP = false;
			ProcessConfigFile(PGC_SIGHUP);
		}
		if (shutdown_requested)
		{
			/* Normal exit from the walwriter is here */
			proc_exit(0);		/* done */
		}

		/*
		 * Do what we're here for...
		 */
		XLogBackgroundFlush();

		/*
		 * Delay until time to do something more, but fall out of delay
		 * reasonably quickly if signaled.
		 */
		udelay = WalWriterDelay * 1000L;
		while (udelay > 999999L)
		{
			if (got_SIGHUP || shutdown_requested)
				break;
			pg_usleep(1000000L);
			udelay -= 1000000L;
		}
		if (!(got_SIGHUP || shutdown_requested))
			pg_usleep(udelay);
	}
}
Beispiel #2
0
/*
 * Main entry point for walwriter process
 *
 * This is invoked from AuxiliaryProcessMain, which has already created the
 * basic execution environment, but not enabled signals yet.
 */
void
WalWriterMain(void)
{
	sigjmp_buf	local_sigjmp_buf;
	MemoryContext walwriter_context;
	int			left_till_hibernate;
	bool		hibernating;

	/*
	 * Properly accept or ignore signals the postmaster might send us
	 *
	 * We have no particular use for SIGINT at the moment, but seems
	 * reasonable to treat like SIGTERM.
	 */
	pqsignal(SIGHUP, WalSigHupHandler); /* set flag to read config file */
	pqsignal(SIGINT, WalShutdownHandler);		/* request shutdown */
	pqsignal(SIGTERM, WalShutdownHandler);		/* request shutdown */
	pqsignal(SIGQUIT, wal_quickdie);	/* hard crash time */
	pqsignal(SIGALRM, SIG_IGN);
	pqsignal(SIGPIPE, SIG_IGN);
	pqsignal(SIGUSR1, walwriter_sigusr1_handler);
	pqsignal(SIGUSR2, SIG_IGN); /* not used */

	/*
	 * Reset some signals that are accepted by postmaster but not here
	 */
	pqsignal(SIGCHLD, SIG_DFL);
	pqsignal(SIGTTIN, SIG_DFL);
	pqsignal(SIGTTOU, SIG_DFL);
	pqsignal(SIGCONT, SIG_DFL);
	pqsignal(SIGWINCH, SIG_DFL);

	/* We allow SIGQUIT (quickdie) at all times */
	sigdelset(&BlockSig, SIGQUIT);

	/*
	 * Create a resource owner to keep track of our resources (not clear that
	 * we need this, but may as well have one).
	 */
	CurrentResourceOwner = ResourceOwnerCreate(NULL, "Wal Writer");

	/*
	 * Create a memory context that we will do all our work in.  We do this so
	 * that we can reset the context during error recovery and thereby avoid
	 * possible memory leaks.  Formerly this code just ran in
	 * TopMemoryContext, but resetting that would be a really bad idea.
	 */
	walwriter_context = AllocSetContextCreate(TopMemoryContext,
											  "Wal Writer",
											  ALLOCSET_DEFAULT_SIZES);
	MemoryContextSwitchTo(walwriter_context);

	/*
	 * If an exception is encountered, processing resumes here.
	 *
	 * This code is heavily based on bgwriter.c, q.v.
	 */
	if (sigsetjmp(local_sigjmp_buf, 1) != 0)
	{
		/* Since not using PG_TRY, must reset error stack by hand */
		error_context_stack = NULL;

		/* Prevent interrupts while cleaning up */
		HOLD_INTERRUPTS();

		/* Report the error to the server log */
		EmitErrorReport();

		/*
		 * These operations are really just a minimal subset of
		 * AbortTransaction().  We don't have very many resources to worry
		 * about in walwriter, but we do have LWLocks, and perhaps buffers?
		 */
		LWLockReleaseAll();
		ConditionVariableCancelSleep();
		pgstat_report_wait_end();
		AbortBufferIO();
		UnlockBuffers();
		/* buffer pins are released here: */
		ResourceOwnerRelease(CurrentResourceOwner,
							 RESOURCE_RELEASE_BEFORE_LOCKS,
							 false, true);
		/* we needn't bother with the other ResourceOwnerRelease phases */
		AtEOXact_Buffers(false);
		AtEOXact_SMgr();
		AtEOXact_Files();
		AtEOXact_HashTables(false);

		/*
		 * Now return to normal top-level context and clear ErrorContext for
		 * next time.
		 */
		MemoryContextSwitchTo(walwriter_context);
		FlushErrorState();

		/* Flush any leaked data in the top-level context */
		MemoryContextResetAndDeleteChildren(walwriter_context);

		/* Now we can allow interrupts again */
		RESUME_INTERRUPTS();

		/*
		 * Sleep at least 1 second after any error.  A write error is likely
		 * to be repeated, and we don't want to be filling the error logs as
		 * fast as we can.
		 */
		pg_usleep(1000000L);

		/*
		 * Close all open files after any error.  This is helpful on Windows,
		 * where holding deleted files open causes various strange errors.
		 * It's not clear we need it elsewhere, but shouldn't hurt.
		 */
		smgrcloseall();
	}

	/* We can now handle ereport(ERROR) */
	PG_exception_stack = &local_sigjmp_buf;

	/*
	 * Unblock signals (they were blocked when the postmaster forked us)
	 */
	PG_SETMASK(&UnBlockSig);

	/*
	 * Reset hibernation state after any error.
	 */
	left_till_hibernate = LOOPS_UNTIL_HIBERNATE;
	hibernating = false;
	SetWalWriterSleeping(false);

	/*
	 * Advertise our latch that backends can use to wake us up while we're
	 * sleeping.
	 */
	ProcGlobal->walwriterLatch = &MyProc->procLatch;

	/*
	 * Loop forever
	 */
	for (;;)
	{
		long		cur_timeout;
		int			rc;

		/*
		 * Advertise whether we might hibernate in this cycle.  We do this
		 * before resetting the latch to ensure that any async commits will
		 * see the flag set if they might possibly need to wake us up, and
		 * that we won't miss any signal they send us.  (If we discover work
		 * to do in the last cycle before we would hibernate, the global flag
		 * will be set unnecessarily, but little harm is done.)  But avoid
		 * touching the global flag if it doesn't need to change.
		 */
		if (hibernating != (left_till_hibernate <= 1))
		{
			hibernating = (left_till_hibernate <= 1);
			SetWalWriterSleeping(hibernating);
		}

		/* Clear any already-pending wakeups */
		ResetLatch(MyLatch);

		/*
		 * Process any requests or signals received recently.
		 */
		if (got_SIGHUP)
		{
			got_SIGHUP = false;
			ProcessConfigFile(PGC_SIGHUP);
		}
		if (shutdown_requested)
		{
			/* Normal exit from the walwriter is here */
			proc_exit(0);		/* done */
		}

		/*
		 * Do what we're here for; then, if XLogBackgroundFlush() found useful
		 * work to do, reset hibernation counter.
		 */
		if (XLogBackgroundFlush())
			left_till_hibernate = LOOPS_UNTIL_HIBERNATE;
		else if (left_till_hibernate > 0)
			left_till_hibernate--;

		/*
		 * Sleep until we are signaled or WalWriterDelay has elapsed.  If we
		 * haven't done anything useful for quite some time, lengthen the
		 * sleep time so as to reduce the server's idle power consumption.
		 */
		if (left_till_hibernate > 0)
			cur_timeout = WalWriterDelay;		/* in ms */
		else
			cur_timeout = WalWriterDelay * HIBERNATE_FACTOR;

		rc = WaitLatch(MyLatch,
					   WL_LATCH_SET | WL_TIMEOUT | WL_POSTMASTER_DEATH,
					   cur_timeout,
					   WAIT_EVENT_WAL_WRITER_MAIN);

		/*
		 * Emergency bailout if postmaster has died.  This is to avoid the
		 * necessity for manual cleanup of all postmaster children.
		 */
		if (rc & WL_POSTMASTER_DEATH)
			exit(1);
	}
}