Beispiel #1
0
Stack_Tile* Read_Stack_Tile(const char *filePath)
{
#ifdef HAVE_LIBXML2
  Stack_Document *stack_doc = Xml_Read_Stack_Document(filePath);
  Stack *stack = NULL;
  Stack_Tile *tile = NULL;

  if (stack_doc != NULL) {
    stack = Import_Stack_Document(stack_doc);
    if (stack != NULL) {
      tile = Make_Stack_Tile(stack, stack_doc->offset);
    }
    Kill_Stack_Document(stack_doc);
  }

  return tile;  
#else
  TZ_ERROR(ERROR_NA_FUNC);
  return NULL;
#endif  
}
Beispiel #2
0
int main(int argc, char *argv[])
{
  if (Show_Version(argc, argv, "1.0") == 1) {
    return 0;
  }

  static char *Spec[] = {
    "[-R<string> -T<string> -M<string>] -D<string> [-minlen <double>]",
    "[-root <double> <double> <double>] [-trans <double> <double> <double>]",
    "[-rtlist <string>] [-sup_root] [-dist <double>]",
    "[-C<string>] [-I<string>] [-z <double>] -o <string> [-b] [-res <string>]",
    "[-screen] [-sp] [-intp] [-sl] [-rb] [-rz] [-rs] [-ct] [-al <double>]",
    "[-screenz <double>] [-force_merge <double>] [-ct_break <double>]",
    "[-jumpz <double>] [-single_break]",
    NULL};

  Print_Arguments(argc, argv);

  Process_Arguments(argc, argv, Spec, 1);
  
  char *dir = Get_String_Arg("-D");

  Stack_Document *stack_doc = NULL;
  if (Is_Arg_Matched("-I")) {
    if (!fexist(Get_String_Arg("-I"))) {
      PRINT_EXCEPTION("File does not exist", "");
      fprintf(stderr, "%s cannot be found.\n", Get_String_Arg("-I"));
      return 1;
    }
    if (fhasext(Get_String_Arg("-I"), "xml")) {
      stack_doc = Xml_Read_Stack_Document(Get_String_Arg("-I"));
    }
  }

  /* Get number of chains */
  int chain_number2 = dir_fnum_p(dir, "^chain.*\\.tb");

  if (chain_number2 == 0) {
    printf("No tube found.\n");
    printf("Quit reconstruction.\n");
    return 1;
  }

  int i;
  int *chain_map = iarray_malloc(chain_number2);
  int chain_number;
  Locseg_Chain **chain_array =
    Dir_Locseg_Chain_Nd(dir, "chain.*\\.tb", &chain_number, chain_map);

  if (Is_Arg_Matched("-screenz")) {
    Locseg_Chain_Array_Screen_Z(chain_array, chain_number,
	Get_Double_Arg("-screenz"));
  }

  if (Is_Arg_Matched("-single_break")) {
    int i;
    for (i = 0; i < chain_number; i++) {
      if (Locseg_Chain_Length(chain_array[i]) == 1) {
	/* break the segment into two parts */
	Locseg_Chain_Break_Node(chain_array[i], 0, 0.5);
      }
    }
  }

  if (Is_Arg_Matched("-ct_break")) {
    int tmp_chain_number;
    Locseg_Chain **tmp_chain_array = 
      Locseg_Chain_Array_Break_Jump(chain_array, chain_number,
	  Get_Double_Arg("-ct_break"), &tmp_chain_number);
    kill_locseg_chain_array(chain_array, chain_number);
    chain_array = tmp_chain_array;
    chain_number = tmp_chain_number;
  }

  Connection_Test_Workspace *ctw = New_Connection_Test_Workspace();
  if (Is_Arg_Matched("-res")) {
    FILE *fp = fopen(Get_String_Arg("-res"), "r");
    if (fp != NULL) {
      if (darray_fscanf(fp, ctw->resolution, 3) != 3) {
	fprintf(stderr, "Failed to load %s\n", Get_String_Arg("-res"));
	ctw->resolution[0] = 1.0;
	ctw->resolution[1] = 1.0;
	ctw->resolution[2] = 1.0;
      } else {
	ctw->unit = 'u';
      }
      fclose(fp);
    } else {
      fprintf(stderr, "Failed to load %s. The file may not exist.\n", 
	      Get_String_Arg("-res"));
    }
  } else if (stack_doc != NULL) {
    ctw->resolution[0] = stack_doc->resolution[0];
    ctw->resolution[1] = stack_doc->resolution[1];
    ctw->resolution[2] = stack_doc->resolution[2];
  }

  if (Is_Arg_Matched("-force_merge")) {
    Connection_Test_Workspace *ws = New_Connection_Test_Workspace();
    ws->dist_thre = Get_Double_Arg("-force_merge");
    ws->interpolate = FALSE;
    ws->resolution[2] = ctw->resolution[2] / ctw->resolution[0];
    for (i = 0; i < chain_number; i++) {
      //Locseg_Chain_Correct_Ends(chain_array[i]); 
    }
    Locseg_Chain_Array_Force_Merge(chain_array, chain_number, ws); 
    Kill_Connection_Test_Workspace(ws);
  }

  chain_number2 = 0;
  Neuron_Component *chain_array2;
  GUARDED_MALLOC_ARRAY(chain_array2, chain_number, Neuron_Component); 
  for (i = 0; i < chain_number; i++) {
    if (Locseg_Chain_Is_Empty(chain_array[i]) == FALSE) {
      chain_map[chain_number2] = chain_map[i];
      Set_Neuron_Component(chain_array2+(chain_number2++), 
	  NEUROCOMP_TYPE_LOCSEG_CHAIN, chain_array[i]);
    } else {
      printf("chain_%d is empty.\n", chain_map[i]);
    }
  }
    /*
    Dir_Locseg_Chain_Nc(dir, "^chain.*\\.tb", &chain_number2, chain_map);
*/
  Stack *signal = NULL;
  //Stack *canvas = NULL;
  if (Is_Arg_Matched("-I")) {
    signal = Read_Stack_U(Get_String_Arg("-I"));
    //canvas = Translate_Stack(signal, COLOR, 0);
  } else {
    if (Is_Arg_Matched("-screen")) {
      perror("The -screen option requires -I option to be supplied.\n");
      return 1;
    }
  }

  /* Minimal tube length. */
  double minlen = 25.0;
  if (Is_Arg_Matched("-minlen")) {
    minlen = Get_Double_Arg("-minlen");
  }

  chain_number = 0;
  //int i;


  if (signal != NULL) {
    ctw->mask = Make_Stack(GREY, signal->width, signal->height, signal->depth);
    One_Stack(ctw->mask);
  }

  FILE *result_file = fopen(full_path(dir, Get_String_Arg("-o")), "w");


  double z_scale = 1.0;
  if (Is_Arg_Matched("-z")) {
    z_scale = Get_Double_Arg("-z");
  }


  /* Array to store corrected chains */
  Neuron_Component *chain_array_c = Make_Neuron_Component_Array(chain_number2);

  int screen = 0;

  double average_intensity = 0.0;

  if (Is_Arg_Matched("-screen")) {
    int good_chain_number = 0;
    int bad_chain_number = 0;
    for (i = 0; i < chain_number2; i++) {
      Locseg_Chain *chain = NEUROCOMP_LOCSEG_CHAIN(chain_array2 + i);

      average_intensity += Locseg_Chain_Average_Score(chain, signal, z_scale, 
						      STACK_FIT_MEAN_SIGNAL);

      if ((Locseg_Chain_Geolen(chain) > 55) || 
	  (Locseg_Chain_Average_Score(chain, signal, z_scale, 
				      STACK_FIT_CORRCOEF) > 0.6)) {
	good_chain_number++;
      } else {
	bad_chain_number++;
      }
    }
    
    printf("good %d bad %d\n", good_chain_number, bad_chain_number);

    if (good_chain_number + bad_chain_number > 50) {
      if (bad_chain_number > good_chain_number) {
	screen = 1;
      }
    } else {
      screen = 3;
      /*
      if (bad_chain_number > good_chain_number * 2) {
	screen = 2;
      }
      */
    }
  }

  average_intensity /= chain_number2;

  /* build chain map */
  for (i = 0; i < chain_number2; i++) {
    Locseg_Chain *chain = NEUROCOMP_LOCSEG_CHAIN(chain_array2 + i);
    BOOL good = FALSE;
    
    switch (screen) {
    case 1:
    case 2:
      if ((Locseg_Chain_Geolen(chain) > 100) || 
	  (Locseg_Chain_Average_Score(chain, signal, z_scale, 
				      STACK_FIT_CORRCOEF)
	   > 0.6)) {
	good = TRUE;
      } else {
	if (Locseg_Chain_Geolen(chain) < 100) {
	  if ((Locseg_Chain_Average_Score(chain, signal, z_scale, 
					 STACK_FIT_CORRCOEF) > 0.5) ||
	      (Locseg_Chain_Average_Score(chain, signal, z_scale, 
					  STACK_FIT_MEAN_SIGNAL) > 
	       average_intensity)) {
	    good = TRUE;
	  }
	}
      }
      break;
    case 3:
      if ((Locseg_Chain_Average_Score(chain, signal, z_scale, 
				      STACK_FIT_CORRCOEF) > 0.50) ||
	  (Locseg_Chain_Average_Score(chain, signal, z_scale, 
				      STACK_FIT_MEAN_SIGNAL) > 
	   average_intensity)) {
	good = TRUE;
      }
      break;
    default:
      good = TRUE;
    }

    if (good == TRUE) {
      if (Locseg_Chain_Geolen(chain) < minlen) {
	good = FALSE;
      }
    }

    if (good == TRUE) {
      Locseg_Chain *tmpchain = chain;
      if (signal != NULL) {
	//Locseg_Chain_Trace_Np(signal, 1.0, tmpchain, tw);
	Locseg_Chain_Erase(chain, ctw->mask, 1.0);
      }
      fprintf(result_file, "%d %d\n", chain_number, chain_map[i]);
      chain_map[chain_number] = chain_map[i];
      if (z_scale != 1.0) {
	Locseg_Chain_Scale_Z(chain, z_scale);
      }
      Set_Neuron_Component(chain_array_c + chain_number, 
			   NEUROCOMP_TYPE_LOCSEG_CHAIN, tmpchain);
      chain_number++;
    } else {
#ifdef _DEBUG_
      printf("chain%d is excluded.\n", i);
      /*
      char tmpfile[500];
      sprintf(tmpfile, "../data/diadem_c1/bad_chain/chain%d.tb", i);
      Write_Locseg_Chain(tmpfile, chain);
      */
#endif
    }
  }

  z_scale = 1.0;

  fprintf(result_file, "#\n");

  //Int_Arraylist *hit_spots = Int_Arraylist_New(0, chain_number);
  /* reconstruct neuron */

  if (Is_Arg_Matched("-res")) {
    FILE *fp = fopen(Get_String_Arg("-res"), "r");
    if (fp != NULL) {
      if (darray_fscanf(fp, ctw->resolution, 3) != 3) {
	fprintf(stderr, "Failed to load %s\n", Get_String_Arg("-res"));
	ctw->resolution[0] = 1.0;
	ctw->resolution[1] = 1.0;
	ctw->resolution[2] = 1.0;
      } else {
	ctw->unit = 'u';
      }
      fclose(fp);
    } else {
      fprintf(stderr, "Failed to load %s. The file may not exist.\n", 
	      Get_String_Arg("-res"));
    }
  } else if (stack_doc != NULL) {
    ctw->resolution[0] = stack_doc->resolution[0];
    ctw->resolution[1] = stack_doc->resolution[1];
    ctw->resolution[2] = stack_doc->resolution[2];
  }

  if (!Is_Arg_Matched("-sp")) {
    ctw->sp_test = FALSE;
    if (ctw->sp_test == FALSE) {
      ctw->dist_thre = NEUROSEG_DEFAULT_H / 2.0;
    }
  } else {
    ctw->dist_thre = NEUROSEG_DEFAULT_H * 1.5;
  }
  
  if (Is_Arg_Matched("-dist")) {
    ctw->dist_thre = Get_Double_Arg("-dist");
  }

  if (!Is_Arg_Matched("-intp")) {
    ctw->interpolate = FALSE;
  }
  //ctw->dist_thre = 100.0;

  double *tube_offset = NULL;
  if (Is_Arg_Matched("-trans")) {
    tube_offset = darray_malloc(3);
    tube_offset[0] = Get_Double_Arg("-trans", 1);
    tube_offset[1] = Get_Double_Arg("-trans", 2);
    tube_offset[2] = Get_Double_Arg("-trans", 3);
  } else {
    if (stack_doc != NULL) {
      tube_offset = darray_malloc(3);
      tube_offset[0] = stack_doc->offset[0];
      tube_offset[1] = stack_doc->offset[1];
      tube_offset[2] = stack_doc->offset[2];
    }
  }

  Neuron_Structure *ns = New_Neuron_Structure();
  ns->comp = chain_array_c;
  ns->graph = New_Graph();
  ns->graph->nvertex = chain_number;
  
  if (Is_Arg_Matched("-rtlist")) {
    int m, n;
    double *d = darray_load_matrix(Get_String_Arg("-rtlist"), NULL, &m, &n);

    if (n > 0) {
      coordinate_3d_t *roots = GUARDED_MALLOC_ARRAY(roots, n, coordinate_3d_t);
      int i;
      for (i = 0; i < n; i++) {
	if (Is_Arg_Matched("-trans")) {
	  roots[i][0] = d[i*3] - tube_offset[0];
	  roots[i][1] = d[i*3 + 1] - tube_offset[1];
	  roots[i][2] = d[i*3 + 2] - tube_offset[2];
	} else {
	  roots[i][0] = d[i*3];
	  roots[i][1] = d[i*3 + 1];
	  roots[i][2] = d[i*3 + 2];
	}
      }

      Neuron_Structure_Break_Root(ns, roots, n);
      Neuron_Structure_Load_Root(ns, roots, n);
    }
  }
  
  Locseg_Chain_Comp_Neurostruct_W(ns, signal, z_scale, ctw);

  if (tube_offset != NULL) {
    for (i = 0; i < chain_number; i++) {
      Locseg_Chain_Translate(NEUROCOMP_LOCSEG_CHAIN(chain_array_c + i), 
			     tube_offset);
    }
  }

  /*  
  Neuron_Structure *ns = Locseg_Chain_Comp_Neurostruct(chain_array, 
						       chain_number,
						       signal, z_scale, ctw);
  */

  FILE *tube_fp = fopen(full_path(dir, "tube.swc"), "w");
  int start_id = 1;

  for (i = 0; i < chain_number; i++) {
    int node_type = i % 10;
    int n = Locseg_Chain_Swc_Fprint_T(tube_fp, 
				      NEUROCOMP_LOCSEG_CHAIN(chain_array_c + i), 
				      node_type, start_id, 
				      -1, DL_FORWARD, 1.0, NULL);
    start_id += n;
  }
  fclose(tube_fp);

  //Neuron_Structure_To_Swc_File(ns, full_path(dir, "tube.swc"));
  /*
  Graph *testgraph = New_Graph(0, 0, FALSE);
  Int_Arraylist *cidx = Make_Int_Arraylist(0, 2);
  Int_Arraylist *sidx = Make_Int_Arraylist(0, 2);
  
  Locseg_Chain_Network_Simlify(&net, testgraph, cidx, sidx);
  */

  /* Find branch points */
  //Locseg_Chain *branches = Locseg_Chain_Network_Find_Branch(ns);

  //Graph *graph = Locseg_Chain_Graph(chain_array, chain_number, hit_spots);
  //Graph *graph = ns->graph;

  if (Is_Arg_Matched("-sup_root")) {
    if (Is_Arg_Matched("-rtlist")) {
      int m, n;
      double *d = darray_load_matrix(Get_String_Arg("-rtlist"), NULL, &m, &n);
      
      if (n > 0) {
	coordinate_3d_t *roots = 
	  GUARDED_MALLOC_ARRAY(roots, n, coordinate_3d_t);
	int i;
	for (i = 0; i < n; i++) {
	  roots[i][0] = d[i*3];
	  roots[i][1] = d[i*3 + 1];
	  roots[i][2] = d[i*3 + 2];
	  /*
	  if (tube_offset != NULL) {
	    roots[i][0] += tube_offset[0];
	    roots[i][1] += tube_offset[1];
	    roots[i][2] += tube_offset[2];
	  }
	  */
	}
	neuron_structure_suppress(ns, roots, n);
	free(roots);
      }
    }
  }

  Process_Neuron_Structure(ns);

  Print_Neuron_Structure(ns);

#ifdef _DEBUG_
  for (i = 0; i < NEURON_STRUCTURE_LINK_NUMBER(ns); i++) {
    printf("chain_%d (%d) -- chain_%d (%d) ", 
	chain_map[ns->graph->edges[i][0]], 
	ns->graph->edges[i][0], 
	chain_map[ns->graph->edges[i][1]],
	ns->graph->edges[i][1]);
    Print_Neurocomp_Conn(ns->conn + i);
  }
#endif

  if (Is_Arg_Matched("-ct")) {
    Neuron_Structure_Crossover_Test(ns, 
				    ctw->resolution[0] / ctw->resolution[2]);
  }

  if (Is_Arg_Matched("-al")) {
    Neuron_Structure_Adjust_Link(ns, Get_Double_Arg("-al"));
  }

  Neuron_Structure_To_Tree(ns);
  Neuron_Structure_Remove_Negative_Conn(ns);

#ifdef _DEBUG_
  printf("\nTree:\n");
  for (i = 0; i < NEURON_STRUCTURE_LINK_NUMBER(ns); i++) {
    printf("chain_%d (%d) -- chain_%d (%d) ", 
	chain_map[ns->graph->edges[i][0]], 
	ns->graph->edges[i][0], 
	chain_map[ns->graph->edges[i][1]],
	ns->graph->edges[i][1]);
    Print_Neurocomp_Conn(ns->conn + i);
  }
#endif
  /*
  printf("\ncross over changed: \n");
  Print_Neuron_Structure(ns);
  */

#ifdef _DEBUG_2
  ns->graph->nedge = 0;
  Neuron_Structure_To_Swc_File(ns, "../data/test.swc"); 
  return 1;
#endif
  
  //Print_Neuron_Structure(ns);

  
  Neuron_Structure* ns2= NULL;
  
  if (Is_Arg_Matched("-intp")) {
    ns2 = Neuron_Structure_Locseg_Chain_To_Circle_S(ns, 1.0, 1.0);
  } else {
    ns2 = Neuron_Structure_Locseg_Chain_To_Circle(ns);
  }
    
  /*
  Neuron_Structure* ns2=
    Neuron_Structure_Locseg_Chain_To_Circle_S(ns, 1.0, 1.0);
  */
  Graph_To_Dot_File(ns2->graph, full_path(dir, "graph_d.dot"));

  //Neuron_Structure_Main_Graph(ns2);
  Neuron_Structure_To_Tree(ns2);
  
  double root[3];

  if (Is_Arg_Matched("-root")) {
    root[0] = Get_Double_Arg("-root", 1);
    root[1] = Get_Double_Arg("-root", 2);
    root[2] = Get_Double_Arg("-root", 3);
  }

  Swc_Tree *tree = NULL;

  if (Is_Arg_Matched("-root")) {
    /*
    int root_index = Neuron_Structure_Find_Root_Circle(ns2, root);
    Graph_Workspace *gw2 = New_Graph_Workspace();
    Graph_Clean_Root(ns2->graph, root_index, gw2);

    Neuron_Structure_To_Swc_File_Circle_Z(ns2, full_path(dir, "graph_d.swc"),
					  z_scale, root);
    */
    tree = Neuron_Structure_To_Swc_Tree_Circle_Z(ns2, z_scale, root);
    if (Swc_Tree_Node_Is_Virtual(tree->root) == TRUE) {
      tree->root->first_child->next_sibling = NULL;
    }
    Swc_Tree_Clean_Root(tree);
  } else {
    /*
    Neuron_Structure_To_Swc_File_Circle_Z(ns2, full_path(dir, "graph_d.swc"),
					  z_scale, NULL);
    */
    tree = Neuron_Structure_To_Swc_Tree_Circle_Z(ns2, z_scale, NULL);
  }

  ns->graph->nedge = 0;
  //Neuron_Structure_To_Swc_File(ns, full_path(dir, "tube.swc"));


  if (Is_Arg_Matched("-rb")) {
    //Swc_Tree_Tune_Branch(tree);
    Swc_Tree_Tune_Fork(tree);
  }

  if (Is_Arg_Matched("-sl")) {
    Swc_Tree_Leaf_Shrink(tree);
  }

  if (Is_Arg_Matched("-rz")) {
    Swc_Tree_Remove_Zigzag(tree);
  }

  if (Is_Arg_Matched("-rs")) {
    Swc_Tree_Remove_Spur(tree);
  }
  
  Swc_Tree_Resort_Id(tree);

  Write_Swc_Tree(full_path(dir, "graph_d.swc"), tree);

  if (Is_Arg_Matched("-rtlist")) {
    int m, n;
    double *d = darray_load_matrix(Get_String_Arg("-rtlist"), NULL, &m, &n);

    if (n > 0) {
      coordinate_3d_t *roots = GUARDED_MALLOC_ARRAY(roots, n, coordinate_3d_t);
      int i;
      for (i = 0; i < n; i++) {
	roots[i][0] = d[i*3];
	roots[i][1] = d[i*3 + 1];
	roots[i][2] = d[i*3 + 2];

	/*
	if (tube_offset != NULL) {
	  roots[i][0] += tube_offset[0];
	  roots[i][1] += tube_offset[1];
	  roots[i][2] += tube_offset[2];
	}
	*/

	Swc_Tree *subtree = Swc_Tree_Pull_R(tree, roots[i]);
	char filename[MAX_PATH_LENGTH];
	if (subtree->root != NULL) {
	  //Swc_Tree_Clean_Root(subtree);
	  Swc_Tree_Clean_Root(subtree);
	  Swc_Tree_Node_Set_Pos(subtree->root, roots[i]);
	  if (Is_Arg_Matched("-jumpz")) {
	    //swc_tree_remove_zjump(subtree, Get_Double_Arg("-jumpz"));
	  }
	  Swc_Tree_Resort_Id(subtree);
	  sprintf(filename, "graph%d.swc", i + 1);
	  Write_Swc_Tree(full_path(dir, filename), subtree);
	}
      }
    }
  }

  printf("%d chains\n", chain_number);

  return 0;
}
Beispiel #3
0
int main(int argc, char *argv[])
{
#if 0
  Stack *stack = Read_Stack("../data/fly_neuron.tif");

  Stretch_Stack_Value_Q(stack, 0.99);
  Translate_Stack(stack, GREY, 1);

  Write_Stack("../data/test.tif", stack);

  Kill_Stack(stack);
#endif

#if 0
  int idx1, idx2, width, height;
  idx1 = 33332;
  idx2 = 65535;
  width = 111;
  height = 112;

  printf("%g\n", Stack_Util_Voxel_Distance(idx1, idx2, width, height));

  int x1, y1, z1, x2, y2, z2;
  Stack_Util_Coord(idx1, width, height, &x1, &y1, &z1);
  Stack_Util_Coord(idx2, width, height, &x2, &y2, &z2);

  printf("%d, %d, %d\n", x1 - x2, y1 - y2, z1 - z2);
#endif

#if 0
  Stack *stack = Read_Stack("../data/fly_neuron.tif");
  //Translate_Stack(stack, GREY16, 1);
  Image *image = Proj_Stack_Zmax(stack);
  Write_Image("../data/test.tif", image);
#endif
  
#if 0
  Stack *stack = Read_Stack("../data/fly_neuron_a1_org.tif");
  //stack = Crop_Stack(stack, 256, 256, 0, 512, 512, 170, NULL);
  
  int i;
  Stack stack2;
  stack2.width = stack->width;
  stack2.height = stack->height;
  stack2.kind = stack->kind;
  stack2.depth = 1;

  for (i = 0; i < stack->depth; i++) {
    stack2.array = stack->array + i * stack->width * stack->height;
    //Stack *locmax = Stack_Locmax_Region(&stack2, 8);
    Stack *locmax = Stack_Local_Max(&stack2, NULL, STACK_LOCMAX_SINGLE);
    int *hist = Stack_Hist_M(&stack2, locmax);
    int low, high;
    Int_Histogram_Range(hist, &low, &high);
    int thre = Int_Histogram_Triangle_Threshold(hist, low, high);
    printf("Threshold: %d\n", thre);

    Stack_Threshold_Binarize(&stack2, thre);

    Kill_Stack(locmax);
    free(hist);
  }
  //Stack_Bc_Autoadjust(result);
  /*
  Translate_Stack(stack, COLOR, 1);
  Stack_Blend_Mc(stack, result, 0.1);
  */
  Write_Stack("../data/test.tif", stack);
#endif

#if 1
  Stack *stack = Read_Stack("../data/fly_neuron_crop.tif");

  Filter_3d *filter = Gaussian_Filter_3d(1.0, 1.0, 0.5);
  Stack *out = Filter_Stack(stack, filter);
  Kill_FMatrix(filter)

  Write_Stack("../data/test.tif", out);
#endif

#if 0
  Stack *stack = Read_Stack("../data/fly_neuron_a2_org.tif");
  Stack *locmax = Stack_Locmax_Region(stack, 18);
  Stack *mask = Read_Stack("../data/fly_neuron_a2_org/threshold_s.tif");
  //Stack_And(locmax, mask, locmax);

  Object_3d_List *objs = Stack_Find_Object_N(locmax, NULL, 1, 0, 18);
  Zero_Stack(locmax);
  int objnum = 0;
  while (objs != NULL) {
    Object_3d *obj = objs->data;
    Voxel_t center;
    Object_3d_Central_Voxel(obj, center);
    Set_Stack_Pixel(locmax, center[0], center[1], center[2], 0, 1);
    objs = objs->next;
    objnum++;
  }

  Write_Stack("../data/fly_neuron_a2_org/locmax.tif", locmax);

  printf("objnum: %d\n", objnum);

  U8Matrix mat;
  mat.ndim = 3;
  mat.dim[0] = stack->width;
  mat.dim[1] = stack->height;
  mat.dim[2] = stack->depth;
  mat.array = locmax->array;

  dim_type bdim[3];
  bdim[0] = 7;
  bdim[1] = 7;
  bdim[2] = 5;
  U8Matrix *mat2 = U8Matrix_Blocksum(&mat, bdim, NULL);

  int offset[3];
  offset[0] = bdim[0] / 2;
  offset[1] = bdim[1] / 2;
  offset[2] = bdim[2] / 2;
  
  Crop_U8Matrix(mat2, offset, mat.dim, &mat);

  Write_Stack("../data/fly_neuron_a2_org/locmax_sum.tif", locmax);

  Stack_Threshold_Binarize(locmax, 6);
  
  Stack *clear_stack = Stack_Majority_Filter_R(locmax, NULL, 26, 4);
  Struct_Element *se = Make_Cuboid_Se(3, 3, 3);
  Stack *dilate_stack = Stack_Dilate(clear_stack, NULL, se);
  Stack *fill_stack = Stack_Fill_Hole_N(dilate_stack, NULL, 1, 4, NULL);
  Kill_Stack(dilate_stack);
  

  Stack_Not(fill_stack, fill_stack);
  Stack_And(fill_stack, mask, mask);

  Write_Stack("../data/test.tif", mask);
#endif

#if 0
  Stack *stack = Read_Stack("../data/fly_neuron_t1.tif");
  Stack *locmax = Stack_Locmax_Region(stack, 6);
  Stack_Label_Objects_Ns(locmax, NULL, 1, 2, 3, 6);
  
  int nvoxel = Stack_Voxel_Number(locmax);
  int i;
  int s[26];
  for (i = 0; i < nvoxel; i++) {
    if (locmax->array[i] < 3) {
      locmax->array[i] = 0;
    } else {
      locmax->array[i] = 1;
      printf("%u\n", stack->array[i]);
      Stack_Neighbor_Sampling_I(stack, 6, i, -1, s);
      iarray_print2(s, 6, 1);
    }
  }

  //Stack *locmax = Stack_Local_Max(stack, NULL, STACK_LOCMAX_SINGLE);
  Write_Stack("../data/test.tif", locmax);
#endif

#if 0
  Stack *stack = Read_Stack("../data/fly_neuron_n1.tif");
  Stack *stack2 = Flip_Stack_Y(stack, NULL);
  Flip_Stack_Y(stack2, stack2);
  if (!Stack_Identical(stack, stack2)) {
    printf("bug found\n");
  }

  Write_Stack("../data/test.tif", stack);
#endif

#if 0
  Mc_Stack *stack = Read_Mc_Stack("../data/benchmark/L3_12bit.lsm", -1);
  Mc_Stack_Grey16_To_8(stack, 3);
  Write_Mc_Stack("../data/test.lsm", stack, "../data/benchmark/L3_12bit.lsm");
#endif

#if 0
  //Stack *stack = Read_Stack("../data/C2-Slice06_R1_GR1_B1_L18.tif");
  Stack *stack = Read_Stack("../data/fly_neuron_n1/traced.tif");
  Print_Stack_Info(stack);
#endif

#if 0
  Mc_Stack *stack = Make_Mc_Stack(GREY, 1024, 1024, 1024, 5);

  /*
  stack.width = 1024;
  stack.height = 1024;
  stack.depth = 1024;
  stack.kind = GREY;
  stack.nchannel = 5;
  printf("%zd\n", ((size_t)stack.kind * stack.width * stack.height *
		 stack.depth * stack.nchannel));
  */
#endif

#if 0
  Stack *stack = Make_Stack(GREY, 1, 1, 1);
  printf("stack usage: %d\n", Stack_Usage());
  uint8 *data = stack->array;
  stack->array = NULL;
  Kill_Stack(stack);
  stack = Read_Stack("../data/benchmark/line.tif");
  free(data);
  printf("stack usage: %d\n", Stack_Usage());
#endif

#if 0
  Stack *stack = Read_Stack("../data/test.tif");
  int *hist = Stack_Hist(stack);
  Print_Int_Histogram(hist);
#endif

#if 0
  Stack *stack = Read_Stack("../data/benchmark/mouse_neuron_single/stack.tif");
  Stack dst;
  dst.text = "\0";
  dst.array = stack->array;

  Crop_Stack(stack, 0, 0, 0, stack->width - 100, stack->height - 100, 
	     stack->depth - 30, &dst);
  Write_Stack("../data/test.tif", &dst);
#endif

#if 0
  Stack *stack = Make_Stack(GREY, 5, 5, 3);
  Zero_Stack(stack);
  Set_Stack_Pixel(stack, 2, 2, 1, 0, 1.0);
  
  Print_Stack_Value(stack);

  Stack *out = Stack_Running_Max(stack, 0, NULL);
  out = Stack_Running_Max(out, 1, out);
  out = Stack_Running_Max(out, 2, out);

  Print_Stack_Value(out);
#endif

#if 0
  Stack *stack = Read_Stack("../data/benchmark/stack_graph/fork/fork.tif");
  Stack *out = Stack_Running_Median(stack, 0, NULL);
  Stack_Running_Median(out, 1, out);
  //Stack_Running_Max(stack, 0, out);
  //Stack_Running_Max(out, 1, out);

  Write_Stack("../data/test.tif", out);

  Stack *out2 = Stack_Running_Median(stack, 0, NULL);
  Stack *out3 = Stack_Running_Median(out2, 1, NULL);
  
  if (Stack_Identical(out, out3)) {
    printf("Same in-place and out-place\n");
  }
#endif

#if 0
  Stack *stack = Read_Stack_U("../data/diadem_d1_147.xml");
  printf("%d\n", Stack_Threshold_Quantile(stack, 0.9));
#endif

#if 0
  const char *filepath = "/Users/zhaot/Data/Julie/All_tiled_nsyb5_Sum.lsm";
  char filename[100];
  fname(filepath, filename);
  
  Mc_Stack *stack = Read_Mc_Stack(filepath, -1);
  Print_Mc_Stack_Info(stack);

  Mc_Stack *tmpstack = Make_Mc_Stack(stack->kind, stack->width, stack->height,
      stack->depth / 8, stack->nchannel);

  size_t channel_size = stack->kind * stack->width *stack->height
    * stack->depth;
  size_t channel_size2 = tmpstack->kind * tmpstack->width *tmpstack->height
    * tmpstack->depth;

  int i;
  int k;
  uint8_t *array = stack->array;
  for (k = 0; k < 8; k++) {
    int offset = 0;
    int offset2 = 0;
    for (i = 0; i < stack->nchannel; i++) {
      memcpy(tmpstack->array + offset2, array + offset, channel_size2);
      offset += channel_size;
      offset2 += channel_size2;
    }
    array += channel_size2;

    char outpath[500];
    
    sprintf(outpath, "../data/test/%s_%03d.lsm", filename, k);
    Write_Mc_Stack(outpath, tmpstack, filepath);
  }
#endif

#if 0
  Stack *stack = Index_Stack(GREY16, 5, 5, 1);
  Set_Stack_Pixel(stack, 1, 1, 0, 0, 0);
  Set_Stack_Pixel(stack, 1, 2, 0, 0, 0);
  Print_Stack_Value(stack);
  Stack *out = Stack_Neighbor_Median(stack, 8, NULL);
  Print_Stack_Value(out);
#endif

#if 0
  Stack *stack = Make_Stack(GREY, 10, 10, 3);

  Zero_Stack(stack);
  Cuboid_I bound_box;

  Set_Stack_Pixel(stack, 1, 1, 1, 0, 1);
  Set_Stack_Pixel(stack, 1, 2, 1, 0, 1);
  Set_Stack_Pixel(stack, 3, 1, 2, 0, 1);

  Stack_Bound_Box(stack, &bound_box);

  Print_Cuboid_I(&bound_box);
  
#endif

#if 0
  Stack_Document *doc = Xml_Read_Stack_Document("../data/test.xml");
  File_List *list = (File_List*) doc->ci;

  Cuboid_I bound_box;
  Stack_Bound_Box_F(list, &bound_box);
  Print_Cuboid_I(&bound_box);
#endif
  
#if 0
  Stack_Document *doc = Xml_Read_Stack_Document("../data/test.xml");
  File_List *list = (File_List*) doc->ci;
  Print_File_List(list);
  Stack *stack = Read_Image_List_Bounded(list);

  Stack *out = stack;
  out = Stack_Region_Expand(stack, 8, 1, NULL);
  out = Downsample_Stack(out, 4, 4, 0);
  Write_Stack("../data/test.tif", out);

#endif

#if 0
  Stack_Document *doc = Xml_Read_Stack_Document(
      "../data/ting_example_stack/test.xml");
  File_List *list = (File_List*) doc->ci;
  Print_File_List(list);

  int i;
  for (i = 0; i < list->file_number; i++) {
    Stack *stack = Read_Stack_U(list->file_path[i]);
    Stack *ds = Downsample_Stack(stack, 39, 39, 0);
    char file_path[500];
    sprintf(file_path, "../data/ting_example_stack/thumbnails/tb%05d.tif", i);
    Write_Stack(file_path, ds);
    Free_Stack(stack);
  }

#endif

#if 0
  Stack *stack = Read_Stack("../data/test2.tif");

  Stack_Threshold_Binarize(stack, 6);

  Objlabel_Workspace ow;
  STACK_OBJLABEL_OPEN_WORKSPACE(stack, (&ow));

  Object_3d *obj = Stack_Find_Largest_Object_N(stack, ow.chord, 1, 26);
  //Print_Object_3d(obj);
  //printf("%llu\n", obj->size);

  double vec[3];
  Object_3d_Orientation(obj, vec, MAJOR_AXIS);
  double center[3];
  Object_3d_Centroid(obj, center);

  darray_print2(vec, 3, 1);

  double span[2] = {100000, -100000};

  for (int i = 0; i < obj->size; i++) {
    double proj = Geo3d_Dot_Product(vec[0], vec[1], vec[2], 
        (double) obj->voxels[i][0] - center[0], 
        (double) obj->voxels[i][1] - center[1], 
        (double) obj->voxels[i][2] - center[2]);
    if (proj < span[0]) {
      span[0] = proj;
    }
    if (proj > span[1]) {
      span[1] = proj;
    }
  }
  
  darray_print2(span, 2, 1);
  
  double vec2[3];
  Object_3d_Orientation(obj, vec2, PLANE_NORMAL); 
  darray_print2(vec2, 3, 1);

  double span2[2] = {100000, -100000};

  for (int i = 0; i < obj->size; i++) {
    double proj = Geo3d_Dot_Product(vec2[0], vec2[1], vec2[2], 
        (double) obj->voxels[i][0] - center[0], 
        (double) obj->voxels[i][1] - center[1], 
        (double) obj->voxels[i][2] - center[2]);
    if (proj < span2[0]) {
      span2[0] = proj;
    }
    if (proj > span2[1]) {
      span2[1] = proj;
    }
  }
  
  darray_print2(span2, 2, 1);

  double vec3[3];
  Geo3d_Cross_Product(vec[0], vec[1], vec[2], vec2[0], vec2[1], vec2[2],
      vec3, vec3+1, vec3+2);
  double span3[2] = {100000, -100000};

  int i;
  for (i = 0; i < obj->size; i++) {
    double proj = Geo3d_Dot_Product(vec3[0], vec3[1], vec3[2], 
        (double) obj->voxels[i][0] - center[0], 
        (double) obj->voxels[i][1] - center[1], 
        (double) obj->voxels[i][2] - center[2]);
    if (proj < span3[0]) {
      span3[0] = proj;
    }
    if (proj > span3[1]) {
      span3[1] = proj;
    }
  }
  
  darray_print2(span3, 2, 1);

  coordinate_3d_t vertex[8];
  for (i = 0; i < 8; i++) {
    Coordinate_3d_Copy(vertex[i], center);
    int j;
    for (j = 0; j < 3; j++) {
      vertex[i][j] += 
        span[0] * vec[j] + span2[0] * vec2[j] + span3[0] * vec3[j];    
    }
  }

  for (i = 0; i < 3; i++) {
    vertex[1][i] += (span[1] - span[0]) * vec[i]; 
    vertex[2][i] += (span2[1] - span2[0]) * vec2[i]; 
    vertex[3][i] += (span3[1] - span3[0]) * vec3[i]; 

    vertex[4][i] = vertex[1][i] + (span2[1] - span2[0]) * vec2[i]; 
    vertex[5][i] = vertex[2][i] + (span3[1] - span3[0]) * vec3[i]; 
    vertex[6][i] = vertex[3][i] + (span[1] - span[0]) * vec[i]; 

    vertex[7][i] = vertex[5][i] + (span[1] - span[0]) * vec[i]; 
  }

  FILE *fp = fopen("../data/test.swc", "w");
  fprintf(fp, "%d %d %g %g %g %g %d\n", 1, 2, vertex[0][0], vertex[0][1],
      vertex[0][2], 3.0, -1);
  fprintf(fp, "%d %d %g %g %g %g %d\n", 2, 2, vertex[1][0], vertex[1][1],
      vertex[1][2], 3.0, 1);
  fprintf(fp, "%d %d %g %g %g %g %d\n", 3, 2, vertex[2][0], vertex[2][1],
      vertex[2][2], 3.0, 1);
  fprintf(fp, "%d %d %g %g %g %g %d\n", 4, 2, vertex[3][0], vertex[3][1],
      vertex[3][2], 3.0, 1);

  fprintf(fp, "%d %d %g %g %g %g %d\n", 5, 2, vertex[4][0], vertex[4][1],
      vertex[4][2], 3.0, 2);
  fprintf(fp, "%d %d %g %g %g %g %d\n", 6, 2, vertex[5][0], vertex[5][1],
      vertex[5][2], 3.0, 3);
  fprintf(fp, "%d %d %g %g %g %g %d\n", 7, 2, vertex[6][0], vertex[6][1],
      vertex[6][2], 3.0, 4);

  fprintf(fp, "%d %d %g %g %g %g %d\n", 8, 2, vertex[7][0], vertex[7][1],
      vertex[7][2], 3.0, 7);

  fprintf(fp, "%d %d %g %g %g %g %d\n", 9, 2, vertex[4][0], vertex[4][1],
      vertex[4][2], 3.0, 8);
  fprintf(fp, "%d %d %g %g %g %g %d\n", 10, 2, vertex[4][0], vertex[4][1],
      vertex[4][2], 3.0, 3);
  fprintf(fp, "%d %d %g %g %g %g %d\n", 11, 2, vertex[5][0], vertex[5][1],
      vertex[5][2], 3.0, 8);
  fprintf(fp, "%d %d %g %g %g %g %d\n", 12, 2, vertex[5][0], vertex[5][1],
      vertex[5][2], 3.0, 4);
  fprintf(fp, "%d %d %g %g %g %g %d\n", 13, 2, vertex[6][0], vertex[6][1],
      vertex[6][2], 3.0, 2);
  /*
  Geo3d_Scalar_Field *field = Make_Geo3d_Scalar_Field(6);
  field->points[0][0] = span[0] * vec[0] + center[0];
  field->points[0][1] = span[0] * vec[1] + center[1];
  field->points[0][2] = span[0] * vec[2] + center[2];
  field->points[1][0] = span[1] * vec[0] + center[0];
  field->points[1][1] = span[1] * vec[1] + center[1];
  field->points[1][2] = span[1] * vec[2] + center[2];

  field->points[2][0] = span2[0] * vec2[0] + center[0];
  field->points[2][1] = span2[0] * vec2[1] + center[1];
  field->points[2][2] = span2[0] * vec2[2] + center[2];
  field->points[3][0] = span2[1] * vec2[0] + center[0];
  field->points[3][1] = span2[1] * vec2[1] + center[1];
  field->points[3][2] = span2[1] * vec2[2] + center[2];

  field->points[4][0] = span3[0] * vec3[0] + center[0];
  field->points[4][1] = span3[0] * vec3[1] + center[1];
  field->points[4][2] = span3[0] * vec3[2] + center[2];
  field->points[5][0] = span3[1] * vec3[0] + center[0];
  field->points[5][1] = span3[1] * vec3[1] + center[1];
  field->points[5][2] = span3[1] * vec3[2] + center[2];

  coordinate_3d_t corner[2];
  Geo3d_Scalar_Field_Boundbox(field, corner);
  darray_print2(corner[0], 3, 1);
  darray_print2(corner[1], 3, 1);

  fprintf(fp, "%d %d %g %g %g %g %d\n", 1, 2, corner[0][0], corner[0][1],
      corner[0][2], 3.0, -1);
  fprintf(fp, "%d %d %g %g %g %g %d\n", 2, 2, corner[1][0], corner[0][1],
      corner[0][2], 3.0, 1);
  fprintf(fp, "%d %d %g %g %g %g %d\n", 3, 2, corner[1][0], corner[1][1],
      corner[0][2], 3.0, 2);
  fprintf(fp, "%d %d %g %g %g %g %d\n", 4, 2, corner[0][0], corner[1][1],
      corner[0][2], 3.0, 3);
  fprintf(fp, "%d %d %g %g %g %g %d\n", 5, 2, corner[0][0], corner[0][1],
      corner[0][2], 3.0, 4);

  fprintf(fp, "%d %d %g %g %g %g %d\n", 6, 2, corner[0][0], corner[0][1],
      corner[1][2], 3.0, -1);
  fprintf(fp, "%d %d %g %g %g %g %d\n", 7, 2, corner[1][0], corner[0][1],
      corner[1][2], 3.0, 6);
  fprintf(fp, "%d %d %g %g %g %g %d\n", 8, 2, corner[1][0], corner[1][1],
      corner[1][2], 3.0, 7);
  fprintf(fp, "%d %d %g %g %g %g %d\n", 9, 2, corner[0][0], corner[1][1],
      corner[1][2], 3.0, 8);
  fprintf(fp, "%d %d %g %g %g %g %d\n", 10, 2, corner[0][0], corner[0][1],
      corner[1][2], 3.0, 9);

  fprintf(fp, "%d %d %g %g %g %g %d\n", 11, 2, corner[0][0], corner[0][1],
      corner[1][2], 3.0, 1);
  fprintf(fp, "%d %d %g %g %g %g %d\n", 12, 2, corner[1][0], corner[0][1],
      corner[1][2], 3.0, 2);
  fprintf(fp, "%d %d %g %g %g %g %d\n", 13, 2, corner[1][0], corner[1][1],
      corner[1][2], 3.0, 3);
  fprintf(fp, "%d %d %g %g %g %g %d\n", 14, 2, corner[0][0], corner[1][1],
      corner[1][2], 3.0, 4);
      */
  /*
  fprintf(fp, "%d %d %g %g %g %g %d\n", 5, 2, corner[1][0], corner[1][1],
      corner[1][2], 3.0, -1);
  fprintf(fp, "%d %d %g %g %g %g %d\n", 6, 2, corner[0][0], corner[1][1],
      corner[1][2], 3.0, 6);
  fprintf(fp, "%d %d %g %g %g %g %d\n", 7, 2, corner[1][0], corner[0][1],
      corner[1][2], 3.0, 7);
  fprintf(fp, "%d %d %g %g %g %g %d\n", 8, 2, corner[1][0], corner[1][1],
      corner[0][2], 3.0, 7);
  fprintf(fp, "%d %d %g %g %g %g %d\n", 12, 2, corner[1][0], corner[1][1],
      corner[0][2], 3.0, 2);

  fprintf(fp, "%d %d %g %g %g %g %d\n", 9, 2, corner[1][0], corner[1][1],
      corner[1][2], 3.0, 6);
  fprintf(fp, "%d %d %g %g %g %g %d\n", 10, 2, corner[0][0], corner[1][1],
      corner[1][2], 3.0, 3);
  fprintf(fp, "%d %d %g %g %g %g %d\n", 11, 2, corner[1][0], corner[0][1],
      corner[1][2], 3.0, 4);
  fprintf(fp, "%d %d %g %g %g %g %d\n", 12, 2, corner[1][0], corner[1][1],
      corner[0][2], 3.0, -1);
      */

  fprintf(fp, "%d %d %g %g %g %g %d\n", 21, 2, span[0] * vec[0] + center[0], 
      span[0] * vec[1] + center[1], span[0] * vec[2] + center[2], 3.0, -1);
  fprintf(fp, "%d %d %g %g %g %g %d\n", 22, 2, span[1] * vec[0] + center[0], 
      span[1] * vec[1] + center[1], span[1] * vec[2] + center[2], 3.0, 21);
  fprintf(fp, "%d %d %g %g %g %g %d\n", 23, 2, span2[0] * vec2[0] + center[0], 
      span2[0] * vec2[1] + center[1], span2[0] * vec2[2] + center[2], 3.0, -1);
  fprintf(fp, "%d %d %g %g %g %g %d\n", 24, 2, span2[1] * vec2[0] + center[0], 
      span2[1] * vec2[1] + center[1], span2[1] * vec2[2] + center[2], 3.0, 23);
  fprintf(fp, "%d %d %g %g %g %g %d\n", 25, 2, span3[0] * vec3[0] + center[0], 
      span3[0] * vec3[1] + center[1], span3[0] * vec3[2] + center[2], 3.0, -1);
  fprintf(fp, "%d %d %g %g %g %g %d\n", 26, 2, span3[1] * vec3[0] + center[0], 
      span3[1] * vec3[1] + center[1], span3[1] * vec3[2] + center[2], 3.0, 25);

  fclose(fp);
  //double corner[6];

  /*
  FILE *fp = fopen("../data/test.swc", "w");
  fprintf(fp, "%d %d %g %g %g %g %d\n", 1, 2, span[0] * vec[0] + center[0], 
      span[0] * vec[1] + center[1], span[0] * vec[2] + center[2], 3.0, -1);
  fprintf(fp, "%d %d %g %g %g %g %d\n", 2, 2, span[1] * vec[0] + center[0], 
      span[1] * vec[1] + center[1], span[1] * vec[2] + center[2], 3.0, 1);
  fprintf(fp, "%d %d %g %g %g %g %d\n", 3, 2, span2[0] * vec2[0] + center[0], 
      span2[0] * vec2[1] + center[1], span2[0] * vec2[2] + center[2], 3.0, -1);
  fprintf(fp, "%d %d %g %g %g %g %d\n", 4, 2, span2[1] * vec2[0] + center[0], 
      span2[1] * vec2[1] + center[1], span2[1] * vec2[2] + center[2], 3.0, 3);
  fprintf(fp, "%d %d %g %g %g %g %d\n", 5, 2, span3[0] * vec3[0] + center[0], 
      span3[0] * vec3[1] + center[1], span3[0] * vec3[2] + center[2], 3.0, -1);
  fprintf(fp, "%d %d %g %g %g %g %d\n", 6, 2, span3[1] * vec3[0] + center[0], 
      span3[1] * vec3[1] + center[1], span3[1] * vec3[2] + center[2], 3.0, 5);
  fclose(fp);
  */
  //calculate corners

  //Draw the six line of the corners

  /*
  Stack *stack2 = Copy_Stack(stack);
  Zero_Stack(stack2);
  int i = 0;
  for (i = 0; i < obj->size; i++) {

    stack2->array[Stack_Util_Offset(obj->voxels[i][0], obj->voxels[i][1],
        obj->voxels[i][2], stack->width, stack->height, stack->depth)] = 1;
  }

  Write_Stack("../data/test.tif", stack2);
  */
#endif

#if 0
  Stack *stack = Read_Stack("../data/test2.tif");

  Stack_Threshold_Binarize(stack, 6);

  Objlabel_Workspace ow;
  STACK_OBJLABEL_OPEN_WORKSPACE(stack, (&ow));
  ow.conn = 26;
  ow.init_chord = TRUE;

  int obj_size = Stack_Label_Largest_Object_W(stack, 1, 2, &ow);

  Object_3d *obj = Make_Object_3d(obj_size, ow.conn);
  extract_object(ow.chord, ow.seed, obj);
  //Print_Object_3d(obj);

  /*
  STACK_OBJLABEL_CLOSE_WORKSPACE((&ow));
  Objlabel_Workspace *ow = New_Objlabel_Workspace();
  ow->conn = 26;
  ow->init_chord = TRUE;

  STACK_OBJLABEL_OPEN_WORKSPACE(stack, ow);
  Stack_Label_Largest_Object_W(stack, 1, 2, ow); 
*/
  Write_Stack("../data/test3.tif", stack);
#endif
  

#if 0
  Mc_Stack *stack = Read_Mc_Stack("../data/test2.tif", -1);

  Print_Mc_Stack_Info(stack);

  size_t offset;
  size_t voxelNumber = Mc_Stack_Voxel_Number(stack);

  uint8_t* arrayc[3] = {NULL, NULL, NULL};
  arrayc[0] = stack->array;
  arrayc[1] = stack->array + voxelNumber;
  arrayc[2] = stack->array + voxelNumber * 2;

  for (offset = 0; offset < voxelNumber; ++offset) {
    if ((arrayc[0][offset] != 128) || (arrayc[1][offset] != 6) ||
        (arrayc[2][offset] != 0)) {
      arrayc[0][offset] = 0;
      arrayc[1][offset] = 0;
      arrayc[2][offset] = 0;
    }
  }

  Write_Mc_Stack("../data/test.tif", stack, NULL);

  Kill_Mc_Stack(stack);
#endif

#if 0
  Mc_Stack *stack = Read_Mc_Stack("../data/flyem/TEM/slice_figure/segmentation/selected_body.tif", -1);

  Print_Mc_Stack_Info(stack);

  size_t offset;
  size_t voxelNumber = Mc_Stack_Voxel_Number(stack);

  Stack *mask = Make_Stack(GREY, stack->width, stack->height, stack->depth);

  uint8_t* arrayc[4] = {NULL, NULL, NULL, NULL};
  int i;
  for (i = 0; i < 4; ++i) {
    arrayc[i] = stack->array + voxelNumber * i;
  }

  for (offset = 0; offset < voxelNumber; ++offset) {
    if ((arrayc[0][offset] > 0) || (arrayc[1][offset] > 0) ||
        (arrayc[2][offset] > 0) || (arrayc[3][offset] > 0)) {
      mask->array[offset] = 1;
    } else {
      mask->array[offset] = 0;
    }
  }

  mask = Downsample_Stack_Max(mask, 7, 7, 0, NULL);

  Write_Stack("../data/test.tif", mask);
#endif

#if 0
  Stack *stack = Read_Stack("../data/test2.tif");
  size_t offset;
  size_t voxelNumber = Stack_Voxel_Number(stack);
  color_t *arrayc = (color_t*) stack->array;
  for (offset = 0; offset < voxelNumber; ++offset) {
    if ((arrayc[offset][0] != 128) || (arrayc[offset][1] != 6) ||
        (arrayc[offset][2] != 0)) {
      arrayc[offset][0] = 0;
      arrayc[offset][1] = 0;
      arrayc[offset][2] = 0;
    }
  }

  Write_Stack("../data/test.tif", stack);
#endif

#if 0
  Stack *stack = Read_Stack("../data/flyem/TEM/slice_figure/segmentation/selected_body_volume.tif");
  Stack *out = Make_Stack(COLOR, stack->width, stack->height, stack->depth);
  Zero_Stack(out);

  Object_3d_List *objs = Stack_Find_Object_N(stack, NULL, 255, 0, 26);
  Print_Object_3d_List_Compact(objs);
  uint8_t color[] = {0, 200, 50, 200, 0, 0};
  uint8_t *color2 = color;
  while (objs != NULL) {
    Object_3d *obj = objs->data;

    Stack_Draw_Object_C(out, obj, color2[0], color2[1], color2[2]);
    color2 += 3;

    objs = objs->next;
    break;
  }

  Write_Stack("../data/test.tif", out);
  
#endif

#if 0
  //Stack *stack = Read_Stack("../data/benchmark/binary/2d/btrig2.tif");
  Stack *stack = Make_Stack(GREY, 3, 3, 3);
  One_Stack(stack);
  //Zero_Stack(stack);
  //Set_Stack_Pixel(stack, 0, 1, 1, 1, 1);
  Set_Stack_Pixel(stack, 0, 1, 1, 1, 0);
  Set_Stack_Pixel(stack, 0, 1, 1, 0, 0);
  Set_Stack_Pixel(stack, 0, 0, 0, 0, 0);
  Set_Stack_Pixel(stack, 0, 0, 2, 0, 0);
  Set_Stack_Pixel(stack, 0, 2, 0, 0, 0);
  Set_Stack_Pixel(stack, 0, 2, 2, 0, 0);
  Set_Stack_Pixel(stack, 0, 0, 0, 2, 0);
  Set_Stack_Pixel(stack, 0, 0, 2, 2, 0);
  Set_Stack_Pixel(stack, 0, 2, 0, 2, 0);
  Set_Stack_Pixel(stack, 0, 2, 2, 2, 0);
  //Set_Stack_Pixel(stack, 0, 1, 1, 2, 0);
  Stack_Graph_Workspace *sgw = New_Stack_Graph_Workspace();
  //Default_Stack_Graph_Workspace(sgw);
  sgw->signal_mask = stack;
  Graph *graph = Stack_Graph_W(stack, sgw);
  sgw->signal_mask = NULL;
  //Print_Graph(graph);
  //Graph_To_Dot_File(graph, "../data/test.dot");

  if (Graph_Has_Hole(graph) == TRUE) {
    printf("The graph has a hole.\n");
  }
#endif

#if 0
  Stack *stack = Read_Stack("../data/flyem/skeletonization/session3/T1_207.tif");

  size_t voxel_number = Stack_Voxel_Number(stack);
  size_t i;
  for (i = 0; i < voxel_number; ++i) {
    if (stack->array[i] == 1) {
      stack->array[i] = 255;
    }
  }
  
  Filter_3d *filter = Gaussian_Filter_3d(0.5, 0.5, 0.5);
  Stack *out = Filter_Stack(stack, filter);

  Write_Stack("../data/test2.tif", out);
#endif

#if 0
  Stack *stack = Make_Stack(GREY, 3, 3, 3);
  Zero_Stack(stack);
  Cuboid_I cuboid;
  Cuboid_I_Set_S(&cuboid, 0, 0, 0, 4, 2, 3);
  Cuboid_I_Label_Stack(&cuboid, 1, stack);
  Print_Stack_Value(stack);

#endif

#if 0
  Stack *stack = Make_Stack(GREY, 3, 3, 1);
  Zero_Stack(stack);
  Set_Stack_Pixel(stack, 1, 1, 0, 0, 1);
  Print_Stack_Value(stack);

  Stack *out = Downsample_Stack_Max(stack, 2, 2, 2, NULL);

  Print_Stack_Value(out);
#endif

#if 0
  double t[3] = {1, 2 * 256 + 12, 255 * 256};
  printf("%g\n", Stack_Voxel_Weight_C(t));

#endif

#if 0
  Stack *stack = Read_Stack_U("../data/vr/label.tif");
  Stack_Binarize_Level(stack, 1);
  Stack_Label_Large_Objects_N(stack, NULL, 1, 2, 2000, 4);

  Stack_Threshold_Binarize(stack, 2);
  Write_Stack("../data/vr/label1.tif", stack);
#endif

#if 0
  Stack *stack = Read_Stack_U("../data/vr/label.tif");
  Stack_Binarize_Level(stack, 5);
  Stack_Label_Large_Objects_N(stack, NULL, 1, 2, 5000, 4);

  Stack_Threshold_Binarize(stack, 2);
  Write_Stack("../data/vr/label5.tif", stack);
#endif


#if 0
  Stack *stack = Read_Stack_U("../data/vr/original.tif");

  /* Make mask */
  Stack *mask = Make_Stack(GREY, Stack_Width(stack), Stack_Height(stack),
			   Stack_Depth(stack));
  Zero_Stack(mask);

  Stack *overallLabel = Copy_Stack(mask);

  Stack *labelStack[5];

  size_t voxelNumber = Stack_Voxel_Number(mask);
  size_t k;

  Struct_Element *se = Make_Disc_Se(5);

  int i;
  char filePath[100];
  for (i = 0; i < 5; ++i) {
    sprintf(filePath, "../data/vr/label%d.tif", i + 1);
    labelStack[i] = Read_Stack_U(filePath);
    //labelStack[i] = Stack_Erode_Fast(labelStack[i], NULL, se);
    Stack_Or(mask, labelStack[i], mask);
    for (k = 0; k < voxelNumber; ++k) {
      if (labelStack[i]->array[k] == 1) {
        overallLabel->array[k] = i + 1;
      }
    }
  }
  
  for (k = 0; k < voxelNumber; ++k) {
    if (mask->array[k] == 1) {
      mask->array[k] = SP_GROW_SOURCE;
    }
  }

  Sp_Grow_Workspace *sgw = New_Sp_Grow_Workspace();
  sgw->size = voxelNumber;
  Sp_Grow_Workspace_Set_Mask(sgw, mask->array);
  sgw->wf = Stack_Voxel_Weight_C;
  sgw->sp_option = 1;

  tic();
  Int_Arraylist *path = Stack_Sp_Grow(stack, NULL, 0, NULL, 0, sgw);
  printf("time: %llu\n", toc());

  Kill_Int_Arraylist(path);

  for (k = 0; k < voxelNumber; ++k) {
    if (mask->array[k] == 0) {
      int idx = (int) k;
      while (overallLabel->array[idx] == 0) {
        idx = sgw->path[idx];
      }
      int label = overallLabel->array[idx];
      idx = (int) k;
      while (overallLabel->array[idx] == 0) {
        overallLabel->array[idx] = label;
        idx = sgw->path[idx];
      }
    }
  }

  for (k = 0; k < voxelNumber; ++k) {
    if (overallLabel->array[k] == 1 || overallLabel->array[k] == 5) {
      overallLabel->array[k] = 0;
    }
  }

  Write_Stack("../data/test.tif", overallLabel);   
  
  Kill_Stack(stack);
#endif

  return 0;
}