Beispiel #1
0
void test39a()
{
  int g, p;

  subtest = 1;

  for (g = 0; g <= _ENDPOINT_MAX_GENERATION; g++) {
	for (p = -MAX_NR_TASKS; p < MAX_NR_PROCS; p++) {
		endpoint_t ept;
		int mg, mp;
		ept = _ENDPOINT(g, p);
		mg = _ENDPOINT_G(ept);
		mp = _ENDPOINT_P(ept);
		if (mg != g || mp != p) e(1);
		if (g == 0 && ept != p) e(2);
		if (ept == ANY || ept == SELF || ept == NONE) e(3);
	}
  }
}
Beispiel #2
0
/*===========================================================================*
 *				do_fork					     *
 *===========================================================================*/
int do_fork(struct proc * caller, message * m_ptr)
{
/* Handle sys_fork().
 * m_lsys_krn_sys_fork.endpt has forked.
 * The child is m_lsys_krn_sys_fork.slot.
 */
#if defined(__i386__)
  char *old_fpu_save_area_p;
#endif
  register struct proc *rpc;		/* child process pointer */
  struct proc *rpp;			/* parent process pointer */
  int gen;
  int p_proc;
  int namelen;

  if(!isokendpt(m_ptr->m_lsys_krn_sys_fork.endpt, &p_proc))
	return EINVAL;

  rpp = proc_addr(p_proc);
  rpc = proc_addr(m_ptr->m_lsys_krn_sys_fork.slot);
  if (isemptyp(rpp) || ! isemptyp(rpc)) return(EINVAL);

  assert(!(rpp->p_misc_flags & MF_DELIVERMSG));

  /* needs to be receiving so we know where the message buffer is */
  if(!RTS_ISSET(rpp, RTS_RECEIVING)) {
	printf("kernel: fork not done synchronously?\n");
	return EINVAL;
  }

  /* make sure that the FPU context is saved in parent before copy */
  save_fpu(rpp);
  /* Copy parent 'proc' struct to child. And reinitialize some fields. */
  gen = _ENDPOINT_G(rpc->p_endpoint);
#if defined(__i386__)
  old_fpu_save_area_p = rpc->p_seg.fpu_state;
#endif
  *rpc = *rpp;				/* copy 'proc' struct */
#if defined(__i386__)
  rpc->p_seg.fpu_state = old_fpu_save_area_p;
  if(proc_used_fpu(rpp))
	memcpy(rpc->p_seg.fpu_state, rpp->p_seg.fpu_state, FPU_XFP_SIZE);
#endif
  if(++gen >= _ENDPOINT_MAX_GENERATION)	/* increase generation */
	gen = 1;			/* generation number wraparound */
  rpc->p_nr = m_ptr->m_lsys_krn_sys_fork.slot;	/* this was obliterated by copy */
  rpc->p_endpoint = _ENDPOINT(gen, rpc->p_nr);	/* new endpoint of slot */

  rpc->p_reg.retreg = 0;	/* child sees pid = 0 to know it is child */
  rpc->p_user_time = 0;		/* set all the accounting times to 0 */
  rpc->p_sys_time = 0;

  rpc->p_misc_flags &=
	~(MF_VIRT_TIMER | MF_PROF_TIMER | MF_SC_TRACE | MF_SPROF_SEEN | MF_STEP);
  rpc->p_virt_left = 0;		/* disable, clear the process-virtual timers */
  rpc->p_prof_left = 0;

  /* Mark process name as being a forked copy */
  namelen = strlen(rpc->p_name);
#define FORKSTR "*F"
  if(namelen+strlen(FORKSTR) < sizeof(rpc->p_name))
	strcat(rpc->p_name, FORKSTR);

  /* the child process is not runnable until it's scheduled. */
  RTS_SET(rpc, RTS_NO_QUANTUM);
  reset_proc_accounting(rpc);

  rpc->p_cpu_time_left = 0;
  rpc->p_cycles = 0;
  rpc->p_kcall_cycles = 0;
  rpc->p_kipc_cycles = 0;
  rpc->p_signal_received = 0;

  /* If the parent is a privileged process, take away the privileges from the 
   * child process and inhibit it from running by setting the NO_PRIV flag.
   * The caller should explicitly set the new privileges before executing.
   */
  if (priv(rpp)->s_flags & SYS_PROC) {
      rpc->p_priv = priv_addr(USER_PRIV_ID);
      rpc->p_rts_flags |= RTS_NO_PRIV;
  }

  /* Calculate endpoint identifier, so caller knows what it is. */
  m_ptr->m_krn_lsys_sys_fork.endpt = rpc->p_endpoint;
  m_ptr->m_krn_lsys_sys_fork.msgaddr = rpp->p_delivermsg_vir;

  /* Don't schedule process in VM mode until it has a new pagetable. */
  if(m_ptr->m_lsys_krn_sys_fork.flags & PFF_VMINHIBIT) {
  	RTS_SET(rpc, RTS_VMINHIBIT);
  }

  /* 
   * Only one in group should have RTS_SIGNALED, child doesn't inherit tracing.
   */
  RTS_UNSET(rpc, (RTS_SIGNALED | RTS_SIG_PENDING | RTS_P_STOP));
  (void) sigemptyset(&rpc->p_pending);

#if defined(__i386__)
  rpc->p_seg.p_cr3 = 0;
  rpc->p_seg.p_cr3_v = NULL;
#elif defined(__arm__)
  rpc->p_seg.p_ttbr = 0;
  rpc->p_seg.p_ttbr_v = NULL;
#endif

  return OK;
}
Beispiel #3
0
void main(void)
{
/* Start the ball rolling. */
	struct boot_image *ip;		/* boot image pointer */
	register struct proc *rp;	/* process pointer */
	register struct priv *sp;	/* privilege structure pointer */
	register int i, j;
	int hdrindex;			/* index to array of a.out headers */
	phys_clicks text_base;
	vir_clicks text_clicks, data_clicks, st_clicks;
	reg_t ktsb;			/* kernel task stack base */
	struct exec *e_hdr = 0;		/* for a copy of an a.out header */

	/* Global value to test segment sanity. */
	magictest = MAGICTEST;

	/* Clear the process table. Anounce each slot as empty and set up mappings 
	 * for proc_addr() and proc_nr() macros. Do the same for the table with 
	 * privilege structures for the system processes.
	 */
	for (rp = BEG_PROC_ADDR, i = -NR_TASKS; rp < END_PROC_ADDR; ++rp, ++i) {
  	rp->p_rts_flags = RTS_SLOT_FREE;		/* initialize free slot */
#ifdef CONFIG_DEBUG_KERNEL_SCHED_CHECK
		rp->p_magic = PMAGIC;
#endif
		rp->p_nr = i;				/* proc number from ptr */
		rp->p_endpoint = _ENDPOINT(0, rp->p_nr); /* generation no. 0 */
	}

	for (sp = BEG_PRIV_ADDR, i = 0; sp < END_PRIV_ADDR; ++sp, ++i) {
		sp->s_proc_nr = ENDPT_NONE;			/* initialize as free */
		sp->s_id = i;				/* priv structure index */
		ppriv_addr[i] = sp;			/* priv ptr from number */
	}

	/* Set up proc table entries for processes in boot image.  The stacks of the
	 * kernel tasks are initialized to an array in data space.  The stacks
	 * of the servers have been added to the data segment by the monitor, so
	 * the stack pointer is set to the end of the data segment.  All the
	 * processes are in low memory on the 8086.  On the 386 only the kernel
	 * is in low memory, the rest is loaded in extended memory.
	 */

	/* Task stacks. */
	ktsb = (reg_t) t_stack;

	for (i=0; i < NR_BOOT_PROCS; ++i) {
		int schedulable_proc, proc_nr;
		int ipc_to_m, kcalls;

		ip = &image[i];				/* process' attributes */
		rp = proc_addr(ip->proc_nr);		/* get process pointer */
		ip->endpoint = rp->p_endpoint;		/* ipc endpoint */
		rp->p_max_priority = ip->priority;	/* max scheduling priority */
		rp->p_priority = ip->priority;		/* current priority */
		rp->p_quantum_size = ip->quantum;	/* quantum size in ticks */
		rp->p_ticks_left = ip->quantum;		/* current credit */

		strncpy(rp->p_name, ip->proc_name, P_NAME_LEN); /* set process name */
		/* See if this process is immediately schedulable.
		 * In that case, set its privileges now and allow it to run.
		 * Only kernel tasks and the root system process get to run immediately.
		 * All the other system processes are inhibited from running by the
		 * RTS_NO_PRIV flag. They can only be scheduled once the root system
		 * process has set their privileges.
		 */
		proc_nr = proc_nr(rp);
		schedulable_proc = (iskerneln(proc_nr) || isrootsysn(proc_nr));
		if(schedulable_proc) {
			/* Assign privilege structure. Force a static privilege id. */
			(void) get_priv(rp, static_priv_id(proc_nr));

			/* Priviliges for kernel tasks. */
			if(iskerneln(proc_nr)) {
				/* Privilege flags. */
				priv(rp)->s_flags = (proc_nr == IDLE ? IDL_F : TSK_F);
				/* Allowed traps. */
				priv(rp)->s_trap_mask = (proc_nr == CLOCK
					|| proc_nr == SYSTEM  ? CSK_T : TSK_T);
				ipc_to_m = TSK_M;                  /* allowed targets */
				kcalls = TSK_KC;                   /* allowed kernel calls */
			} else if(isrootsysn(proc_nr)) {
			/* Priviliges for the root system process. */
				priv(rp)->s_flags= RSYS_F;         /* privilege flags */
				priv(rp)->s_trap_mask= RSYS_T;     /* allowed traps */
				ipc_to_m = RSYS_M;                 /* allowed targets */
				kcalls = RSYS_KC;                  /* allowed kernel calls */
			}

			/* Fill in target mask. */
			for (j=0; j < NR_SYS_PROCS; j++) {
				if (ipc_to_m & (1 << j))
					set_sendto_bit(rp, j);
				else
					unset_sendto_bit(rp, j);
			}

			/* Fill in kernel call mask. */
			for(j = 0; j < CALL_MASK_SIZE; j++) {
				priv(rp)->s_k_call_mask[j] = (kcalls == NO_C ? 0 : (~0));
			}
		} else {
			/*Don't let the process run for now. */
			RTS_SET(rp, RTS_NO_PRIV);
		}

		if (iskerneln(proc_nr)) {               /* part of the kernel? */
			if (ip->stksize > 0) {		/* HARDWARE stack size is 0 */
				rp->p_priv->s_stack_guard = (reg_t *) ktsb;
				*rp->p_priv->s_stack_guard = STACK_GUARD;
			}

			ktsb += ip->stksize;	/* point to high end of stack */
			rp->p_reg.sp = ktsb;	/* this task's initial stack ptr */
			hdrindex = 0;		/* all use the first a.out header */
		} else {
			hdrindex = 1 + i-NR_TASKS;	/* system/user processes */
		}

		/* Architecture-specific way to find out aout header of this
		 * boot process.
		 */
		e_hdr = arch_get_aout_header(hdrindex);

		/* Convert addresses to clicks and build process memory map */
		text_base = e_hdr->a_syms >> CLICK_SHIFT;
		st_clicks= (e_hdr->a_total + CLICK_SIZE-1) >> CLICK_SHIFT;
		data_clicks = (e_hdr->a_text + e_hdr->a_data + e_hdr->a_bss + CLICK_SIZE-1) >> CLICK_SHIFT;
		text_clicks = 0;

		rp->p_memmap[T].mem_phys = text_base;
		rp->p_memmap[T].mem_len  = text_clicks;
		rp->p_memmap[D].mem_phys = text_base + text_clicks;
		rp->p_memmap[D].mem_len  = data_clicks;
		rp->p_memmap[S].mem_phys = text_base + text_clicks + st_clicks;
		rp->p_memmap[S].mem_vir  = st_clicks;
		rp->p_memmap[S].mem_len  = 0;

		/* Patch (override) the non-kernel process' entry points in image table. The
		 * image table is located in kernel/kernel_syms.c. The kernel processes like
		 * IDLE, SYSTEM, CLOCK, HARDWARE are not changed because they are part of kernel
		 * and the entry points are set at compilation time. In case of IDLE or HARDWARE
		 * the entry point can be ignored becasue they never run (set RTS_PROC_STOP).
		 */
		if (!iskerneln(proc_nr(rp)))
			ip->initial_pc = (task_t*)e_hdr->a_entry;

		/* Set initial register values.  The processor status word for tasks 
		 * is different from that of other processes because tasks can
		 * access I/O; this is not allowed to less-privileged processes 
		 */
		rp->p_reg.pc = (reg_t) ip->initial_pc;
		rp->p_reg.psw = (iskerneln(proc_nr)) ? INIT_TASK_PSW : INIT_PSW;

		/* Initialize the server stack pointer. Take it down one word
		 * to give crtso.s something to use as "argc","argv" and "envp".
		 */
		if (isusern(proc_nr)) {		/* user-space process? */
			rp->p_reg.sp = (rp->p_memmap[S].mem_vir + rp->p_memmap[S].mem_len)
					<< CLICK_SHIFT;
			rp->p_reg.sp -= 3*sizeof(reg_t);
		}

		/* scheduling functions depend on proc_ptr pointing somewhere. */
		if(!proc_ptr)
			proc_ptr = rp;

		/* If this process has its own page table, VM will set the
		 * PT up and manage it. VM will signal the kernel when it has
		 * done this; until then, don't let it run.
		 */
		if(ip->flags & PROC_FULLVM)
			RTS_SET(rp, RTS_VMINHIBIT);

		/* IDLE & HARDWARE task is never put on a run queue as it is
		 * never ready to run.
		 */
		if (rp->p_nr == HARDWARE)
			RTS_SET(rp, RTS_PROC_STOP);

		if (rp->p_nr == IDLE)
			RTS_SET(rp, RTS_PROC_STOP);

		RTS_UNSET(rp, RTS_SLOT_FREE); /* remove RTS_SLOT_FREE and schedule */
		alloc_segments(rp);
	} /* for */

	/* Architecture-dependent initialization. */
	arch_init();

#ifdef CONFIG_DEBUG_KERNEL_STATS_PROFILE
	sprofiling = 0;      /* we're not profiling until instructed to */
#endif
	cprof_procs_no = 0;  /* init nr of hash table slots used */

#ifdef CONFIG_IDLE_TSC
	idle_tsc = cvu64(0);
#endif

	vm_running = 0;
	krandom.random_sources = RANDOM_SOURCES;
	krandom.random_elements = RANDOM_ELEMENTS;

	/* Nucleos is now ready. All boot image processes are on the ready queue.
	 * Return to the assembly code to start running the current process. 
	 */
	bill_ptr = proc_addr(IDLE);		/* it has to point somewhere */
	announce();				/* print Nucleos startup banner */

	/*
	 * enable timer interrupts and clock task on the boot CPU
	 */
	if (boot_cpu_init_timer(system_hz)) {
		kernel_panic("FATAL : failed to initialize timer interrupts, "
			    "cannot continue without any clock source!",
			    NO_NUM);
	}

	/* Warnings for sanity checks that take time. These warnings are printed
	 * so it's a clear warning no full release should be done with them
	 * enabled.
	 */
#ifdef CONFIG_DEBUG_KERNEL_SCHED_CHECK
	FIXME("CONFIG_DEBUG_KERNEL_SCHED_CHECK enabled");
#endif

#ifdef CONFIG_DEBUG_KERNEL_VMASSERT
	FIXME("CONFIG_DEBUG_KERNEL_VMASSERT enabled");
#endif

#ifdef CONFIG_DEBUG_PROC_CHECK
	FIXME("PROC check enabled");
#endif

	restart();
}
Beispiel #4
0
/*===========================================================================*
 *				main                                         *
 *===========================================================================*/
PUBLIC void main()
{
/* Start the ball rolling. */
  struct boot_image *ip;	/* boot image pointer */
  register struct proc *rp;	/* process pointer */
  register struct priv *sp;	/* privilege structure pointer */
  register int i, j, s;
  int hdrindex;			/* index to array of a.out headers */
  phys_clicks text_base;
  vir_clicks text_clicks, data_clicks, st_clicks;
  reg_t ktsb;			/* kernel task stack base */
  struct exec e_hdr;		/* for a copy of an a.out header */

   /* Architecture-dependent initialization. */
   arch_init();

   /* Global value to test segment sanity. */
   magictest = MAGICTEST;
 
  /* Clear the process table. Anounce each slot as empty and set up mappings 
   * for proc_addr() and proc_nr() macros. Do the same for the table with 
   * privilege structures for the system processes. 
   */
  for (rp = BEG_PROC_ADDR, i = -NR_TASKS; rp < END_PROC_ADDR; ++rp, ++i) {
  	rp->p_rts_flags = SLOT_FREE;		/* initialize free slot */
#if DEBUG_SCHED_CHECK
	rp->p_magic = PMAGIC;
#endif
	rp->p_nr = i;				/* proc number from ptr */
	rp->p_endpoint = _ENDPOINT(0, rp->p_nr); /* generation no. 0 */
  }
  for (sp = BEG_PRIV_ADDR, i = 0; sp < END_PRIV_ADDR; ++sp, ++i) {
	sp->s_proc_nr = NONE;			/* initialize as free */
	sp->s_id = i;				/* priv structure index */
	ppriv_addr[i] = sp;			/* priv ptr from number */
  }

  /* Set up proc table entries for processes in boot image.  The stacks of the
   * kernel tasks are initialized to an array in data space.  The stacks
   * of the servers have been added to the data segment by the monitor, so
   * the stack pointer is set to the end of the data segment.  All the
   * processes are in low memory on the 8086.  On the 386 only the kernel
   * is in low memory, the rest is loaded in extended memory.
   */

  /* Task stacks. */
  ktsb = (reg_t) t_stack;

  for (i=0; i < NR_BOOT_PROCS; ++i) {
	int ci;
	bitchunk_t fv;

	ip = &image[i];				/* process' attributes */
	rp = proc_addr(ip->proc_nr);		/* get process pointer */
	ip->endpoint = rp->p_endpoint;		/* ipc endpoint */
	rp->p_max_priority = ip->priority;	/* max scheduling priority */
	rp->p_priority = ip->priority;		/* current priority */
	rp->p_quantum_size = ip->quantum;	/* quantum size in ticks */
	rp->p_ticks_left = ip->quantum;		/* current credit */
	strncpy(rp->p_name, ip->proc_name, P_NAME_LEN); /* set process name */
	(void) get_priv(rp, (ip->flags & SYS_PROC));    /* assign structure */
	priv(rp)->s_flags = ip->flags;			/* process flags */
	priv(rp)->s_trap_mask = ip->trap_mask;		/* allowed traps */

	/* Warn about violations of the boot image table order consistency. */
	if (priv_id(rp) != s_nr_to_id(ip->proc_nr) && (ip->flags & SYS_PROC))
		kprintf("Warning: boot image table has wrong process order\n");

	/* Initialize call mask bitmap from unordered set.
	 * A single SYS_ALL_CALLS is a special case - it
	 * means all calls are allowed.
	 */
	if(ip->nr_k_calls == 1 && ip->k_calls[0] == SYS_ALL_CALLS)
		fv = ~0;		/* fill call mask */
	else
		fv = 0;			/* clear call mask */

	for(ci = 0; ci < CALL_MASK_SIZE; ci++) 	/* fill or clear call mask */
		priv(rp)->s_k_call_mask[ci] = fv;
	if(!fv)			/* not all full? enter calls bit by bit */
		for(ci = 0; ci < ip->nr_k_calls; ci++)
			SET_BIT(priv(rp)->s_k_call_mask,
				ip->k_calls[ci]-KERNEL_CALL);

	for (j = 0; j < NR_SYS_PROCS && j < BITCHUNK_BITS; j++)
		if (ip->ipc_to & (1 << j))
			set_sendto_bit(rp, j);	/* restrict targets */

	if (iskerneln(proc_nr(rp))) {		/* part of the kernel? */ 
		if (ip->stksize > 0) {		/* HARDWARE stack size is 0 */
			rp->p_priv->s_stack_guard = (reg_t *) ktsb;
			*rp->p_priv->s_stack_guard = STACK_GUARD;
		}
		ktsb += ip->stksize;	/* point to high end of stack */
		rp->p_reg.sp = ktsb;	/* this task's initial stack ptr */
		hdrindex = 0;		/* all use the first a.out header */
	} else {
		hdrindex = 1 + i-NR_TASKS;	/* servers, drivers, INIT */
	}

	/* Architecture-specific way to find out aout header of this
	 * boot process.
	 */
	arch_get_aout_headers(hdrindex, &e_hdr);

	/* Convert addresses to clicks and build process memory map */
	text_base = e_hdr.a_syms >> CLICK_SHIFT;
	text_clicks = (e_hdr.a_text + CLICK_SIZE-1) >> CLICK_SHIFT;
	data_clicks = (e_hdr.a_data+e_hdr.a_bss + CLICK_SIZE-1) >> CLICK_SHIFT;
	st_clicks= (e_hdr.a_total + CLICK_SIZE-1) >> CLICK_SHIFT;
	if (!(e_hdr.a_flags & A_SEP))
	{
		data_clicks= (e_hdr.a_text+e_hdr.a_data+e_hdr.a_bss +
			CLICK_SIZE-1) >> CLICK_SHIFT;
		text_clicks = 0;	   /* common I&D */
	}
	rp->p_memmap[T].mem_phys = text_base;
	rp->p_memmap[T].mem_len  = text_clicks;
	rp->p_memmap[D].mem_phys = text_base + text_clicks;
	rp->p_memmap[D].mem_len  = data_clicks;
	rp->p_memmap[S].mem_phys = text_base + text_clicks + st_clicks;
	rp->p_memmap[S].mem_vir  = st_clicks;
	rp->p_memmap[S].mem_len  = 0;

	/* Set initial register values.  The processor status word for tasks 
	 * is different from that of other processes because tasks can
	 * access I/O; this is not allowed to less-privileged processes 
	 */
	rp->p_reg.pc = (reg_t) ip->initial_pc;
	rp->p_reg.psw = (iskernelp(rp)) ? INIT_TASK_PSW : INIT_PSW;

	/* Initialize the server stack pointer. Take it down one word
	 * to give crtso.s something to use as "argc".
	 */
	if (isusern(proc_nr(rp))) {		/* user-space process? */ 
		rp->p_reg.sp = (rp->p_memmap[S].mem_vir +
				rp->p_memmap[S].mem_len) << CLICK_SHIFT;
		rp->p_reg.sp -= sizeof(reg_t);
	}

	/* scheduling functions depend on proc_ptr pointing somewhere. */
	if(!proc_ptr) proc_ptr = rp;

	/* If this process has its own page table, VM will set the
	 * PT up and manage it. VM will signal the kernel when it has
	 * done this; until then, don't let it run.
	 */
	if(priv(rp)->s_flags & PROC_FULLVM)
		RTS_SET(rp, VMINHIBIT);
	
	/* Set ready. The HARDWARE task is never ready. */
	if (rp->p_nr == HARDWARE) RTS_SET(rp, PROC_STOP);
	RTS_UNSET(rp, SLOT_FREE); /* remove SLOT_FREE and schedule */
	alloc_segments(rp);
  }