Beispiel #1
0
static void _Thread_Free( Thread_Control *the_thread )
{
  _User_extensions_Thread_delete( the_thread );

  /*
   * Free the per-thread scheduling information.
   */
  _Scheduler_Node_destroy( _Scheduler_Get( the_thread ), the_thread );

  /*
   *  The thread might have been FP.  So deal with that.
   */
#if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE )
#if ( CPU_USE_DEFERRED_FP_SWITCH == TRUE )
  if ( _Thread_Is_allocated_fp( the_thread ) )
    _Thread_Deallocate_fp();
#endif

  _Workspace_Free( the_thread->Start.fp_context );
#endif

  /*
   *  Free the rest of the memory associated with this task
   *  and set the associated pointers to NULL for safety.
   */
  _Thread_Stack_Free( the_thread );

  _Workspace_Free( the_thread->Start.tls_area );

  _Objects_Free(
    _Objects_Get_information_id( the_thread->Object.id ),
    &the_thread->Object
  );
}
Beispiel #2
0
static void _Thread_Free( Thread_Control *the_thread )
{
  Thread_Information *information = (Thread_Information *)
    _Objects_Get_information_id( the_thread->Object.id );

  _User_extensions_Thread_delete( the_thread );
  _User_extensions_Destroy_iterators( the_thread );
  _ISR_lock_Destroy( &the_thread->Keys.Lock );
  _Scheduler_Node_destroy(
    _Thread_Scheduler_get_home( the_thread ),
    _Thread_Scheduler_get_home_node( the_thread )
  );
  _ISR_lock_Destroy( &the_thread->Timer.Lock );

  /*
   *  The thread might have been FP.  So deal with that.
   */
#if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE )
#if ( CPU_USE_DEFERRED_FP_SWITCH == TRUE )
  if ( _Thread_Is_allocated_fp( the_thread ) )
    _Thread_Deallocate_fp();
#endif

  _Workspace_Free( the_thread->Start.fp_context );
#endif

  _Freechain_Put(
    &information->Free_thread_queue_heads,
    the_thread->Wait.spare_heads
  );

  /*
   *  Free the rest of the memory associated with this task
   *  and set the associated pointers to NULL for safety.
   */
  _Thread_Stack_Free( the_thread );

  _Workspace_Free( the_thread->Start.tls_area );

#if defined(RTEMS_SMP)
  _ISR_lock_Destroy( &the_thread->Scheduler.Lock );
  _ISR_lock_Destroy( &the_thread->Wait.Lock.Default );
  _SMP_lock_Stats_destroy( &the_thread->Potpourri_stats );
#endif

  _Thread_queue_Destroy( &the_thread->Join_queue );

  _Objects_Free( &information->Objects, &the_thread->Object );
}
Beispiel #3
0
bool _Thread_Initialize(
  Thread_Information                   *information,
  Thread_Control                       *the_thread,
  const Scheduler_Control              *scheduler,
  void                                 *stack_area,
  size_t                                stack_size,
  bool                                  is_fp,
  Priority_Control                      priority,
  bool                                  is_preemptible,
  Thread_CPU_budget_algorithms          budget_algorithm,
  Thread_CPU_budget_algorithm_callout   budget_callout,
  uint32_t                              isr_level,
  Objects_Name                          name
)
{
  uintptr_t                tls_size = _TLS_Get_size();
  size_t                   actual_stack_size = 0;
  void                    *stack = NULL;
  #if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE )
    void                  *fp_area = NULL;
  #endif
  bool                     extension_status;
  size_t                   i;
  bool                     scheduler_node_initialized = false;
  Per_CPU_Control         *cpu = _Per_CPU_Get_by_index( 0 );

#if defined( RTEMS_SMP )
  if ( rtems_configuration_is_smp_enabled() && !is_preemptible ) {
    return false;
  }
#endif

  memset(
    &the_thread->current_state,
    0,
    information->Objects.size - offsetof( Thread_Control, current_state )
  );

  for ( i = 0 ; i < _Thread_Control_add_on_count ; ++i ) {
    const Thread_Control_add_on *add_on = &_Thread_Control_add_ons[ i ];

    *(void **) ( (char *) the_thread + add_on->destination_offset ) =
      (char *) the_thread + add_on->source_offset;
  }

  /*
   *  Allocate and Initialize the stack for this thread.
   */
  #if !defined(RTEMS_SCORE_THREAD_ENABLE_USER_PROVIDED_STACK_VIA_API)
    actual_stack_size = _Thread_Stack_Allocate( the_thread, stack_size );
    if ( !actual_stack_size || actual_stack_size < stack_size )
      return false;                     /* stack allocation failed */

    stack = the_thread->Start.stack;
  #else
    if ( !stack_area ) {
      actual_stack_size = _Thread_Stack_Allocate( the_thread, stack_size );
      if ( !actual_stack_size || actual_stack_size < stack_size )
        return false;                     /* stack allocation failed */

      stack = the_thread->Start.stack;
      the_thread->Start.core_allocated_stack = true;
    } else {
      stack = stack_area;
      actual_stack_size = stack_size;
      the_thread->Start.core_allocated_stack = false;
    }
  #endif

  _Stack_Initialize(
     &the_thread->Start.Initial_stack,
     stack,
     actual_stack_size
  );

  /* Thread-local storage (TLS) area allocation */
  if ( tls_size > 0 ) {
    uintptr_t tls_align = _TLS_Heap_align_up( (uintptr_t) _TLS_Alignment );
    uintptr_t tls_alloc = _TLS_Get_allocation_size( tls_size, tls_align );

    the_thread->Start.tls_area =
      _Workspace_Allocate_aligned( tls_alloc, tls_align );

    if ( the_thread->Start.tls_area == NULL ) {
      goto failed;
    }
  }

  /*
   *  Allocate the floating point area for this thread
   */
  #if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE )
    if ( is_fp ) {
      fp_area = _Workspace_Allocate( CONTEXT_FP_SIZE );
      if ( !fp_area )
        goto failed;
      fp_area = _Context_Fp_start( fp_area, 0 );
    }
    the_thread->fp_context       = fp_area;
    the_thread->Start.fp_context = fp_area;
  #endif

  /*
   *  Get thread queue heads
   */
  the_thread->Wait.spare_heads = _Freechain_Get(
    &information->Free_thread_queue_heads,
    _Workspace_Allocate,
    _Objects_Extend_size( &information->Objects ),
    THREAD_QUEUE_HEADS_SIZE( _Scheduler_Count )
  );
  if ( the_thread->Wait.spare_heads == NULL ) {
    goto failed;
  }
  _Thread_queue_Heads_initialize( the_thread->Wait.spare_heads );

  /*
   *  General initialization
   */

  the_thread->is_fp                  = is_fp;
  the_thread->Start.isr_level        = isr_level;
  the_thread->Start.is_preemptible   = is_preemptible;
  the_thread->Start.budget_algorithm = budget_algorithm;
  the_thread->Start.budget_callout   = budget_callout;

  _Thread_Timer_initialize( &the_thread->Timer, cpu );

  switch ( budget_algorithm ) {
    case THREAD_CPU_BUDGET_ALGORITHM_NONE:
    case THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE:
      break;
    #if defined(RTEMS_SCORE_THREAD_ENABLE_EXHAUST_TIMESLICE)
      case THREAD_CPU_BUDGET_ALGORITHM_EXHAUST_TIMESLICE:
        the_thread->cpu_time_budget =
          rtems_configuration_get_ticks_per_timeslice();
        break;
    #endif
    #if defined(RTEMS_SCORE_THREAD_ENABLE_SCHEDULER_CALLOUT)
      case THREAD_CPU_BUDGET_ALGORITHM_CALLOUT:
	break;
    #endif
  }

#if defined(RTEMS_SMP)
  RTEMS_STATIC_ASSERT( THREAD_SCHEDULER_BLOCKED == 0, Scheduler_state );
  the_thread->Scheduler.own_control = scheduler;
  the_thread->Scheduler.control = scheduler;
  the_thread->Scheduler.own_node = the_thread->Scheduler.node;
  _Resource_Node_initialize( &the_thread->Resource_node );
  the_thread->Lock.current = &the_thread->Lock.Default;
  _SMP_ticket_lock_Initialize( &the_thread->Lock.Default );
  _SMP_lock_Stats_initialize( &the_thread->Lock.Stats, "Thread Lock" );
  _SMP_lock_Stats_initialize( &the_thread->Potpourri_stats, "Thread Potpourri" );
#endif

  _Thread_Debug_set_real_processor( the_thread, cpu );

  /* Initialize the CPU for the non-SMP schedulers */
  _Thread_Set_CPU( the_thread, cpu );

  _Thread_queue_Initialize( &the_thread->Join_queue );

  the_thread->current_state           = STATES_DORMANT;
  the_thread->Wait.operations         = &_Thread_queue_Operations_default;
  the_thread->current_priority        = priority;
  the_thread->real_priority           = priority;
  the_thread->Start.initial_priority  = priority;

  RTEMS_STATIC_ASSERT( THREAD_WAIT_FLAGS_INITIAL == 0, Wait_flags );

  _Scheduler_Node_initialize( scheduler, the_thread );
  scheduler_node_initialized = true;

  _Scheduler_Update_priority( the_thread, priority );

  /* POSIX Keys */
  _RBTree_Initialize_empty( &the_thread->Keys.Key_value_pairs );
  _ISR_lock_Initialize( &the_thread->Keys.Lock, "POSIX Key Value Pairs" );

  _Thread_Action_control_initialize( &the_thread->Post_switch_actions );

  RTEMS_STATIC_ASSERT( THREAD_LIFE_NORMAL == 0, Life_state );

  /*
   *  Open the object
   */
  _Objects_Open( &information->Objects, &the_thread->Object, name );

  /*
   *  We assume the Allocator Mutex is locked and dispatching is
   *  enabled when we get here.  We want to be able to run the
   *  user extensions with dispatching enabled.  The Allocator
   *  Mutex provides sufficient protection to let the user extensions
   *  run safely.
   */
  extension_status = _User_extensions_Thread_create( the_thread );
  if ( extension_status )
    return true;

failed:

  if ( scheduler_node_initialized ) {
    _Scheduler_Node_destroy( scheduler, the_thread );
  }

  _Workspace_Free( the_thread->Start.tls_area );

  _Freechain_Put(
    &information->Free_thread_queue_heads,
    the_thread->Wait.spare_heads
  );

  #if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE )
    _Workspace_Free( fp_area );
  #endif

   _Thread_Stack_Free( the_thread );
  return false;
}
Beispiel #4
0
void _Thread_Close(
  Objects_Information  *information,
  Thread_Control       *the_thread
)
{
  /*
   *  Now we are in a dispatching critical section again and we
   *  can take the thread OUT of the published set.  It is invalid
   *  to use this thread's Id after this call.  This will prevent
   *  any other task from attempting to initiate a call on this task.
   */
  _Objects_Invalidate_Id( information, &the_thread->Object );

  /*
   *  We assume the Allocator Mutex is locked when we get here.
   *  This provides sufficient protection to let the user extensions
   *  run but as soon as we get back, we will make the thread
   *  disappear and set a transient state on it.  So we temporarily
   *  unnest dispatching.
   */
  _Thread_Unnest_dispatch();

  _User_extensions_Thread_delete( the_thread );

  _Thread_Disable_dispatch();

  /*
   *  Now we are in a dispatching critical section again and we
   *  can take the thread OUT of the published set.  It is invalid
   *  to use this thread's Id OR name after this call.
   */
  _Objects_Close( information, &the_thread->Object );

  /*
   *  By setting the dormant state, the thread will not be considered
   *  for scheduling when we remove any blocking states.
   */
  _Thread_Set_state( the_thread, STATES_DORMANT );

  if ( !_Thread_queue_Extract_with_proxy( the_thread ) ) {
    if ( _Watchdog_Is_active( &the_thread->Timer ) )
      (void) _Watchdog_Remove( &the_thread->Timer );
  }

  /*
   * Free the per-thread scheduling information.
   */
  _Scheduler_Free( the_thread );

  /*
   *  The thread might have been FP.  So deal with that.
   */
#if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE )
#if ( CPU_USE_DEFERRED_FP_SWITCH == TRUE )
  if ( _Thread_Is_allocated_fp( the_thread ) )
    _Thread_Deallocate_fp();
#endif
  the_thread->fp_context = NULL;

  _Workspace_Free( the_thread->Start.fp_context );
#endif

  /*
   *  Free the rest of the memory associated with this task
   *  and set the associated pointers to NULL for safety.
   */
  _Thread_Stack_Free( the_thread );
  the_thread->Start.stack = NULL;

  _Workspace_Free( the_thread->extensions );
  the_thread->extensions = NULL;

  _Workspace_Free( the_thread->Start.tls_area );
}
Beispiel #5
0
bool _Thread_Initialize(
    Objects_Information                  *information,
    Thread_Control                       *the_thread,
    void                                 *stack_area,
    size_t                                stack_size,
    bool                                  is_fp,
    Priority_Control                      priority,
    bool                                  is_preemptible,
    Thread_CPU_budget_algorithms          budget_algorithm,
    Thread_CPU_budget_algorithm_callout   budget_callout,
    uint32_t                              isr_level,
    Objects_Name                          name
)
{
    size_t               actual_stack_size = 0;
    void                *stack = NULL;
#if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE )
    void              *fp_area;
#endif
    void                *sched = NULL;
    void                *extensions_area;
    bool                 extension_status;
    int                  i;

#if defined( RTEMS_SMP )
    if ( rtems_configuration_is_smp_enabled() && !is_preemptible ) {
        return false;
    }
#endif

    /*
     *  Initialize the Ada self pointer
     */
#if __RTEMS_ADA__
    the_thread->rtems_ada_self = NULL;
#endif

    /*
     *  Zero out all the allocated memory fields
     */
    for ( i=0 ; i <= THREAD_API_LAST ; i++ )
        the_thread->API_Extensions[i] = NULL;

    extensions_area = NULL;
    the_thread->libc_reent = NULL;

#if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE )
    fp_area = NULL;
#endif

    /*
     *  Allocate and Initialize the stack for this thread.
     */
#if !defined(RTEMS_SCORE_THREAD_ENABLE_USER_PROVIDED_STACK_VIA_API)
    actual_stack_size = _Thread_Stack_Allocate( the_thread, stack_size );
    if ( !actual_stack_size || actual_stack_size < stack_size )
        return false;                     /* stack allocation failed */

    stack = the_thread->Start.stack;
#else
    if ( !stack_area ) {
        actual_stack_size = _Thread_Stack_Allocate( the_thread, stack_size );
        if ( !actual_stack_size || actual_stack_size < stack_size )
            return false;                     /* stack allocation failed */

        stack = the_thread->Start.stack;
        the_thread->Start.core_allocated_stack = true;
    } else {
        stack = stack_area;
        actual_stack_size = stack_size;
        the_thread->Start.core_allocated_stack = false;
    }
#endif

    _Stack_Initialize(
        &the_thread->Start.Initial_stack,
        stack,
        actual_stack_size
    );

    /*
     *  Allocate the floating point area for this thread
     */
#if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE )
    if ( is_fp ) {
        fp_area = _Workspace_Allocate( CONTEXT_FP_SIZE );
        if ( !fp_area )
            goto failed;
        fp_area = _Context_Fp_start( fp_area, 0 );
    }
    the_thread->fp_context       = fp_area;
    the_thread->Start.fp_context = fp_area;
#endif

    /*
     *  Initialize the thread timer
     */
    _Watchdog_Initialize( &the_thread->Timer, NULL, 0, NULL );

#ifdef __RTEMS_STRICT_ORDER_MUTEX__
    /* Initialize the head of chain of held mutexes */
    _Chain_Initialize_empty(&the_thread->lock_mutex);
#endif

    /*
     *  Allocate the extensions area for this thread
     */
    if ( _Thread_Maximum_extensions ) {
        extensions_area = _Workspace_Allocate(
                              (_Thread_Maximum_extensions + 1) * sizeof( void * )
                          );
        if ( !extensions_area )
            goto failed;
    }
    the_thread->extensions = (void **) extensions_area;

    /*
     * Clear the extensions area so extension users can determine
     * if they are linked to the thread. An extension user may
     * create the extension long after tasks have been created
     * so they cannot rely on the thread create user extension
     * call.
     */
    if ( the_thread->extensions ) {
        for ( i = 0; i <= _Thread_Maximum_extensions ; i++ )
            the_thread->extensions[i] = NULL;
    }

    /*
     *  General initialization
     */

    the_thread->Start.is_preemptible   = is_preemptible;
    the_thread->Start.budget_algorithm = budget_algorithm;
    the_thread->Start.budget_callout   = budget_callout;

    switch ( budget_algorithm ) {
    case THREAD_CPU_BUDGET_ALGORITHM_NONE:
    case THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE:
        break;
#if defined(RTEMS_SCORE_THREAD_ENABLE_EXHAUST_TIMESLICE)
    case THREAD_CPU_BUDGET_ALGORITHM_EXHAUST_TIMESLICE:
        the_thread->cpu_time_budget = _Thread_Ticks_per_timeslice;
        break;
#endif
#if defined(RTEMS_SCORE_THREAD_ENABLE_SCHEDULER_CALLOUT)
    case THREAD_CPU_BUDGET_ALGORITHM_CALLOUT:
        break;
#endif
    }

    the_thread->Start.isr_level         = isr_level;

#if defined(RTEMS_SMP)
    the_thread->is_scheduled            = false;
    the_thread->is_executing            = false;

    /* Initialize the cpu field for the non-SMP schedulers */
    the_thread->cpu                     = _Per_CPU_Get_by_index( 0 );
#endif

    the_thread->current_state           = STATES_DORMANT;
    the_thread->Wait.queue              = NULL;
    the_thread->resource_count          = 0;
    the_thread->real_priority           = priority;
    the_thread->Start.initial_priority  = priority;
    sched =_Scheduler_Allocate( the_thread );
    if ( !sched )
        goto failed;
    _Thread_Set_priority( the_thread, priority );

    /*
     *  Initialize the CPU usage statistics
     */
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
    _Timestamp_Set_to_zero( &the_thread->cpu_time_used );
#else
    the_thread->cpu_time_used = 0;
#endif

    /*
     *  Open the object
     */
    _Objects_Open( information, &the_thread->Object, name );

    /*
     *  We assume the Allocator Mutex is locked and dispatching is
     *  enabled when we get here.  We want to be able to run the
     *  user extensions with dispatching enabled.  The Allocator
     *  Mutex provides sufficient protection to let the user extensions
     *  run safely.
     */
    extension_status = _User_extensions_Thread_create( the_thread );
    if ( extension_status )
        return true;

failed:
    _Workspace_Free( the_thread->libc_reent );

    for ( i=0 ; i <= THREAD_API_LAST ; i++ )
        _Workspace_Free( the_thread->API_Extensions[i] );

    _Workspace_Free( extensions_area );

#if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE )
    _Workspace_Free( fp_area );
#endif

    _Workspace_Free( sched );

    _Thread_Stack_Free( the_thread );
    return false;
}
bool _Thread_Initialize(
  Objects_Information                  *information,
  Thread_Control                       *the_thread,
  const Scheduler_Control              *scheduler,
  void                                 *stack_area,
  size_t                                stack_size,
  bool                                  is_fp,
  Priority_Control                      priority,
  bool                                  is_preemptible,
  Thread_CPU_budget_algorithms          budget_algorithm,
  Thread_CPU_budget_algorithm_callout   budget_callout,
  uint32_t                              isr_level,
  Objects_Name                          name
)
{
  uintptr_t                tls_size = _TLS_Get_size();
  size_t                   actual_stack_size = 0;
  void                    *stack = NULL;
  #if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE )
    void                  *fp_area = NULL;
  #endif
  bool                     extension_status;
  size_t                   i;
  bool                     scheduler_node_initialized = false;
  Per_CPU_Control         *cpu = _Per_CPU_Get_by_index( 0 );

#if defined( RTEMS_SMP )
  if ( rtems_configuration_is_smp_enabled() && !is_preemptible ) {
    return false;
  }
#endif

  for ( i = 0 ; i < _Thread_Control_add_on_count ; ++i ) {
    const Thread_Control_add_on *add_on = &_Thread_Control_add_ons[ i ];

    *(void **) ( (char *) the_thread + add_on->destination_offset ) =
      (char *) the_thread + add_on->source_offset;
  }

  /*
   *  Initialize the Ada self pointer
   */
  #if __RTEMS_ADA__
    the_thread->rtems_ada_self = NULL;
  #endif

  the_thread->Start.tls_area = NULL;

  /*
   *  Allocate and Initialize the stack for this thread.
   */
  #if !defined(RTEMS_SCORE_THREAD_ENABLE_USER_PROVIDED_STACK_VIA_API)
    actual_stack_size = _Thread_Stack_Allocate( the_thread, stack_size );
    if ( !actual_stack_size || actual_stack_size < stack_size )
      return false;                     /* stack allocation failed */

    stack = the_thread->Start.stack;
  #else
    if ( !stack_area ) {
      actual_stack_size = _Thread_Stack_Allocate( the_thread, stack_size );
      if ( !actual_stack_size || actual_stack_size < stack_size )
        return false;                     /* stack allocation failed */

      stack = the_thread->Start.stack;
      the_thread->Start.core_allocated_stack = true;
    } else {
      stack = stack_area;
      actual_stack_size = stack_size;
      the_thread->Start.core_allocated_stack = false;
    }
  #endif

  _Stack_Initialize(
     &the_thread->Start.Initial_stack,
     stack,
     actual_stack_size
  );

  /* Thread-local storage (TLS) area allocation */
  if ( tls_size > 0 ) {
    uintptr_t tls_align = _TLS_Heap_align_up( (uintptr_t) _TLS_Alignment );
    uintptr_t tls_alloc = _TLS_Get_allocation_size( tls_size, tls_align );

    the_thread->Start.tls_area =
      _Workspace_Allocate_aligned( tls_alloc, tls_align );

    if ( the_thread->Start.tls_area == NULL ) {
      goto failed;
    }
  }

  /*
   *  Allocate the floating point area for this thread
   */
  #if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE )
    if ( is_fp ) {
      fp_area = _Workspace_Allocate( CONTEXT_FP_SIZE );
      if ( !fp_area )
        goto failed;
      fp_area = _Context_Fp_start( fp_area, 0 );
    }
    the_thread->fp_context       = fp_area;
    the_thread->Start.fp_context = fp_area;
  #endif

  /*
   *  Initialize the thread timer
   */
  _Watchdog_Initialize( &the_thread->Timer, NULL, 0, NULL );

  #ifdef __RTEMS_STRICT_ORDER_MUTEX__
    /* Initialize the head of chain of held mutexes */
    _Chain_Initialize_empty(&the_thread->lock_mutex);
  #endif

  /*
   * Clear the extensions area so extension users can determine
   * if they are linked to the thread. An extension user may
   * create the extension long after tasks have been created
   * so they cannot rely on the thread create user extension
   * call.  The object index starts with one, so the first extension context is
   * unused.
   */
  for ( i = 1 ; i <= rtems_configuration_get_maximum_extensions() ; ++i )
    the_thread->extensions[ i ] = NULL;

  /*
   *  General initialization
   */

  the_thread->Start.isr_level        = isr_level;
  the_thread->Start.is_preemptible   = is_preemptible;
  the_thread->Start.budget_algorithm = budget_algorithm;
  the_thread->Start.budget_callout   = budget_callout;

  switch ( budget_algorithm ) {
    case THREAD_CPU_BUDGET_ALGORITHM_NONE:
    case THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE:
      break;
    #if defined(RTEMS_SCORE_THREAD_ENABLE_EXHAUST_TIMESLICE)
      case THREAD_CPU_BUDGET_ALGORITHM_EXHAUST_TIMESLICE:
        the_thread->cpu_time_budget =
          rtems_configuration_get_ticks_per_timeslice();
        break;
    #endif
    #if defined(RTEMS_SCORE_THREAD_ENABLE_SCHEDULER_CALLOUT)
      case THREAD_CPU_BUDGET_ALGORITHM_CALLOUT:
	break;
    #endif
  }

#if defined(RTEMS_SMP)
  the_thread->Scheduler.state = THREAD_SCHEDULER_BLOCKED;
  the_thread->Scheduler.own_control = scheduler;
  the_thread->Scheduler.control = scheduler;
  the_thread->Scheduler.own_node = the_thread->Scheduler.node;
  _Resource_Node_initialize( &the_thread->Resource_node );
  _CPU_Context_Set_is_executing( &the_thread->Registers, false );
#endif

  _Thread_Debug_set_real_processor( the_thread, cpu );

  /* Initialize the CPU for the non-SMP schedulers */
  _Thread_Set_CPU( the_thread, cpu );

  the_thread->current_state           = STATES_DORMANT;
  the_thread->Wait.queue              = NULL;
  the_thread->resource_count          = 0;
  the_thread->real_priority           = priority;
  the_thread->Start.initial_priority  = priority;

  _Scheduler_Node_initialize( scheduler, the_thread );
  scheduler_node_initialized = true;

  _Thread_Set_priority( the_thread, priority );

  /*
   *  Initialize the CPU usage statistics
   */
  #ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
    _Timestamp_Set_to_zero( &the_thread->cpu_time_used );
  #else
    the_thread->cpu_time_used = 0;
  #endif

  /*
   * initialize thread's key vaule node chain
   */
  _Chain_Initialize_empty( &the_thread->Key_Chain );

  _Thread_Action_control_initialize( &the_thread->Post_switch_actions );

  _Thread_Action_initialize(
    &the_thread->Life.Action,
    _Thread_Life_action_handler
  );
  the_thread->Life.state = THREAD_LIFE_NORMAL;
  the_thread->Life.terminator = NULL;

  /*
   *  Open the object
   */
  _Objects_Open( information, &the_thread->Object, name );

  /*
   *  We assume the Allocator Mutex is locked and dispatching is
   *  enabled when we get here.  We want to be able to run the
   *  user extensions with dispatching enabled.  The Allocator
   *  Mutex provides sufficient protection to let the user extensions
   *  run safely.
   */
  extension_status = _User_extensions_Thread_create( the_thread );
  if ( extension_status )
    return true;

failed:

  if ( scheduler_node_initialized ) {
    _Scheduler_Node_destroy( scheduler, the_thread );
  }

  _Workspace_Free( the_thread->Start.tls_area );

  #if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE )
    _Workspace_Free( fp_area );
  #endif

   _Thread_Stack_Free( the_thread );
  return false;
}