Beispiel #1
0
void __init build_cnode_tables(void)
{
	int nasid;
	int node;
	lboard_t *brd;

	memset(physical_node_map, -1, sizeof(physical_node_map));
	memset(sn_cnodeid_to_nasid, -1,
			sizeof(__ia64_per_cpu_var(__sn_cnodeid_to_nasid)));

	/*
	 * First populate the tables with C/M bricks. This ensures that
	 * cnode == node for all C & M bricks.
	 */
	for_each_online_node(node) {
		nasid = pxm_to_nasid(node_to_pxm(node));
		sn_cnodeid_to_nasid[node] = nasid;
		physical_node_map[nasid] = node;
	}

	/*
	 * num_cnodes is total number of C/M/TIO bricks. Because of the 256 node
	 * limit on the number of nodes, we can't use the generic node numbers 
	 * for this. Note that num_cnodes is incremented below as TIOs or
	 * headless/memoryless nodes are discovered.
	 */
	num_cnodes = num_online_nodes();

	/* fakeprom does not support klgraph */
	if (IS_RUNNING_ON_FAKE_PROM())
		return;

	/* Find TIOs & headless/memoryless nodes and add them to the tables */
	for_each_online_node(node) {
		kl_config_hdr_t *klgraph_header;
		nasid = cnodeid_to_nasid(node);
		klgraph_header = ia64_sn_get_klconfig_addr(nasid);
		if (klgraph_header == NULL)
			BUG();
		brd = NODE_OFFSET_TO_LBOARD(nasid, klgraph_header->ch_board_info);
		while (brd) {
			if (board_needs_cnode(brd->brd_type) && physical_node_map[brd->brd_nasid] < 0) {
				sn_cnodeid_to_nasid[num_cnodes] = brd->brd_nasid;
				physical_node_map[brd->brd_nasid] = num_cnodes++;
			}
			brd = find_lboard_next(brd);
		}
	}
}
Beispiel #2
0
irqreturn_t
handle_IPI (int irq, void *dev_id)
{
	int this_cpu = get_cpu();
	unsigned long *pending_ipis = &__ia64_per_cpu_var(ipi_operation);
	unsigned long ops;

	mb();	/*                                  */
	while ((ops = xchg(pending_ipis, 0)) != 0) {
		mb();	/*                                     */
		do {
			unsigned long which;

			which = ffz(~ops);
			ops &= ~(1 << which);

			switch (which) {
			case IPI_CPU_STOP:
				stop_this_cpu();
				break;
			case IPI_CALL_FUNC:
				generic_smp_call_function_interrupt();
				break;
			case IPI_CALL_FUNC_SINGLE:
				generic_smp_call_function_single_interrupt();
				break;
#ifdef CONFIG_KEXEC
			case IPI_KDUMP_CPU_STOP:
				unw_init_running(kdump_cpu_freeze, NULL);
				break;
#endif
			default:
				printk(KERN_CRIT "Unknown IPI on CPU %d: %lu\n",
						this_cpu, which);
				break;
			}
		} while (ops);
		mb();	/*                                    */
	}
	put_cpu();
	return IRQ_HANDLED;
}
Beispiel #3
0
/*
 * cpu_init() initializes state that is per-CPU.  This function acts
 * as a 'CPU state barrier', nothing should get across.
 */
void
cpu_init (void)
{
	extern void __devinit ia64_mmu_init (void *);
	unsigned long num_phys_stacked;
	pal_vm_info_2_u_t vmi;
	unsigned int max_ctx;
	struct cpuinfo_ia64 *cpu_info;
	void *cpu_data;

	cpu_data = per_cpu_init();

	get_max_cacheline_size();

	/*
	 * We can't pass "local_cpu_data" to identify_cpu() because we haven't called
	 * ia64_mmu_init() yet.  And we can't call ia64_mmu_init() first because it
	 * depends on the data returned by identify_cpu().  We break the dependency by
	 * accessing cpu_data() through the canonical per-CPU address.
	 */
	cpu_info = cpu_data + ((char *) &__ia64_per_cpu_var(cpu_info) - __per_cpu_start);
	identify_cpu(cpu_info);

#ifdef CONFIG_MCKINLEY
	{
#		define FEATURE_SET 16
		struct ia64_pal_retval iprv;

		if (cpu_info->family == 0x1f) {
			PAL_CALL_PHYS(iprv, PAL_PROC_GET_FEATURES, 0, FEATURE_SET, 0);
			if ((iprv.status == 0) && (iprv.v0 & 0x80) && (iprv.v2 & 0x80))
				PAL_CALL_PHYS(iprv, PAL_PROC_SET_FEATURES,
				              (iprv.v1 | 0x80), FEATURE_SET, 0);
		}
	}
#endif

	/* Clear the stack memory reserved for pt_regs: */
	memset(ia64_task_regs(current), 0, sizeof(struct pt_regs));

	ia64_set_kr(IA64_KR_FPU_OWNER, 0);

	/*
	 * Initialize default control register to defer all speculative faults.  The
	 * kernel MUST NOT depend on a particular setting of these bits (in other words,
	 * the kernel must have recovery code for all speculative accesses).  Turn on
	 * dcr.lc as per recommendation by the architecture team.  Most IA-32 apps
	 * shouldn't be affected by this (moral: keep your ia32 locks aligned and you'll
	 * be fine).
	 */
	ia64_setreg(_IA64_REG_CR_DCR,  (  IA64_DCR_DP | IA64_DCR_DK | IA64_DCR_DX | IA64_DCR_DR
					| IA64_DCR_DA | IA64_DCR_DD | IA64_DCR_LC));
	atomic_inc(&init_mm.mm_count);
	current->active_mm = &init_mm;
	if (current->mm)
		BUG();

	ia64_mmu_init(ia64_imva(cpu_data));

#ifdef CONFIG_IA32_SUPPORT
	ia32_cpu_init();
#endif

	/* Clear ITC to eliminiate sched_clock() overflows in human time.  */
	ia64_set_itc(0);

	/* disable all local interrupt sources: */
	ia64_set_itv(1 << 16);
	ia64_set_lrr0(1 << 16);
	ia64_set_lrr1(1 << 16);
	ia64_setreg(_IA64_REG_CR_PMV, 1 << 16);
	ia64_setreg(_IA64_REG_CR_CMCV, 1 << 16);

	/* clear TPR & XTP to enable all interrupt classes: */
	ia64_setreg(_IA64_REG_CR_TPR, 0);
#ifdef CONFIG_SMP
	normal_xtp();
#endif

	/* set ia64_ctx.max_rid to the maximum RID that is supported by all CPUs: */
	if (ia64_pal_vm_summary(NULL, &vmi) == 0)
		max_ctx = (1U << (vmi.pal_vm_info_2_s.rid_size - 3)) - 1;
	else {
		printk(KERN_WARNING "cpu_init: PAL VM summary failed, assuming 18 RID bits\n");
		max_ctx = (1U << 15) - 1;	/* use architected minimum */
	}
	while (max_ctx < ia64_ctx.max_ctx) {
		unsigned int old = ia64_ctx.max_ctx;
		if (cmpxchg(&ia64_ctx.max_ctx, old, max_ctx) == old)
			break;
	}

	if (ia64_pal_rse_info(&num_phys_stacked, NULL) != 0) {
		printk(KERN_WARNING "cpu_init: PAL RSE info failed; assuming 96 physical "
		       "stacked regs\n");
		num_phys_stacked = 96;
	}
	/* size of physical stacked register partition plus 8 bytes: */
	__get_cpu_var(ia64_phys_stacked_size_p8) = num_phys_stacked*8 + 8;
	platform_cpu_init();
}
Beispiel #4
0
/**
 * sn_cpu_init - initialize per-cpu data areas
 * @cpuid: cpuid of the caller
 *
 * Called during cpu initialization on each cpu as it starts.
 * Currently, initializes the per-cpu data area for SNIA.
 * Also sets up a few fields in the nodepda.  Also known as
 * platform_cpu_init() by the ia64 machvec code.
 */
void __cpuinit sn_cpu_init(void)
{
	int cpuid;
	int cpuphyid;
	int nasid;
	int subnode;
	int slice;
	int cnode;
	int i;
	static int wars_have_been_checked;

	cpuid = smp_processor_id();
	if (cpuid == 0 && IS_MEDUSA()) {
		if (ia64_sn_is_fake_prom())
			sn_prom_type = 2;
		else
			sn_prom_type = 1;
		printk(KERN_INFO "Running on medusa with %s PROM\n",
		       (sn_prom_type == 1) ? "real" : "fake");
	}

	memset(pda, 0, sizeof(pda));
	if (ia64_sn_get_sn_info(0, &sn_hub_info->shub2,
				&sn_hub_info->nasid_bitmask,
				&sn_hub_info->nasid_shift,
				&sn_system_size, &sn_sharing_domain_size,
				&sn_partition_id, &sn_coherency_id,
				&sn_region_size))
		BUG();
	sn_hub_info->as_shift = sn_hub_info->nasid_shift - 2;

	/*
	 * Don't check status. The SAL call is not supported on all PROMs
	 * but a failure is harmless.
	 */
	(void) ia64_sn_set_cpu_number(cpuid);

	/*
	 * The boot cpu makes this call again after platform initialization is
	 * complete.
	 */
	if (nodepdaindr[0] == NULL)
		return;

	for (i = 0; i < MAX_PROM_FEATURE_SETS; i++)
		if (ia64_sn_get_prom_feature_set(i, &sn_prom_features[i]) != 0)
			break;

	cpuphyid = get_sapicid();

	if (ia64_sn_get_sapic_info(cpuphyid, &nasid, &subnode, &slice))
		BUG();

	for (i=0; i < MAX_NUMNODES; i++) {
		if (nodepdaindr[i]) {
			nodepdaindr[i]->phys_cpuid[cpuid].nasid = nasid;
			nodepdaindr[i]->phys_cpuid[cpuid].slice = slice;
			nodepdaindr[i]->phys_cpuid[cpuid].subnode = subnode;
		}
	}

	cnode = nasid_to_cnodeid(nasid);

	sn_nodepda = nodepdaindr[cnode];

	pda->led_address =
	    (typeof(pda->led_address)) (LED0 + (slice << LED_CPU_SHIFT));
	pda->led_state = LED_ALWAYS_SET;
	pda->hb_count = HZ / 2;
	pda->hb_state = 0;
	pda->idle_flag = 0;

	if (cpuid != 0) {
		/* copy cpu 0's sn_cnodeid_to_nasid table to this cpu's */
		memcpy(sn_cnodeid_to_nasid,
		       (&per_cpu(__sn_cnodeid_to_nasid, 0)),
		       sizeof(__ia64_per_cpu_var(__sn_cnodeid_to_nasid)));
	}

	/*
	 * Check for WARs.
	 * Only needs to be done once, on BSP.
	 * Has to be done after loop above, because it uses this cpu's
	 * sn_cnodeid_to_nasid table which was just initialized if this
	 * isn't cpu 0.
	 * Has to be done before assignment below.
	 */
	if (!wars_have_been_checked) {
		sn_check_for_wars();
		wars_have_been_checked = 1;
	}
	sn_hub_info->shub_1_1_found = shub_1_1_found;

	/*
	 * Set up addresses of PIO/MEM write status registers.
	 */
	{
		u64 pio1[] = {SH1_PIO_WRITE_STATUS_0, 0, SH1_PIO_WRITE_STATUS_1, 0};
		u64 pio2[] = {SH2_PIO_WRITE_STATUS_0, SH2_PIO_WRITE_STATUS_2,
			SH2_PIO_WRITE_STATUS_1, SH2_PIO_WRITE_STATUS_3};
		u64 *pio;
		pio = is_shub1() ? pio1 : pio2;
		pda->pio_write_status_addr =
		   (volatile unsigned long *)GLOBAL_MMR_ADDR(nasid, pio[slice]);
		pda->pio_write_status_val = is_shub1() ? SH_PIO_WRITE_STATUS_PENDING_WRITE_COUNT_MASK : 0;
	}

	/*
	 * WAR addresses for SHUB 1.x.
	 */
	if (local_node_data->active_cpu_count++ == 0 && is_shub1()) {
		int buddy_nasid;
		buddy_nasid =
		    cnodeid_to_nasid(numa_node_id() ==
				     num_online_nodes() - 1 ? 0 : numa_node_id() + 1);
		pda->pio_shub_war_cam_addr =
		    (volatile unsigned long *)GLOBAL_MMR_ADDR(nasid,
							      SH1_PI_CAM_CONTROL);
	}
}