__complex__ double __ccos (__complex__ double x) { __complex__ double res; if (!isfinite (__real__ x) || __isnan (__imag__ x)) { if (__real__ x == 0.0 || __imag__ x == 0.0) { __real__ res = __nan (""); __imag__ res = 0.0; #ifdef FE_INVALID if (__isinf (__real__ x)) feraiseexcept (FE_INVALID); #endif } else if (__isinf (__imag__ x)) { __real__ res = HUGE_VAL; __imag__ res = __nan (""); #ifdef FE_INVALID if (__isinf (__real__ x)) feraiseexcept (FE_INVALID); #endif } else { __real__ res = __nan (""); __imag__ res = __nan (""); #ifdef FE_INVALID if (isfinite (__imag__ x)) feraiseexcept (FE_INVALID); #endif } } else { __complex__ double y; __real__ y = -__imag__ x; __imag__ y = __real__ x; res = __ccosh (y); } return res; }
__complex__ double __ctanh (__complex__ double x) { __complex__ double res; if (!isfinite (__real__ x) || !isfinite (__imag__ x)) { if (__isinf (__real__ x)) { __real__ res = __copysign (1.0, __real__ x); __imag__ res = __copysign (0.0, __imag__ x); } else if (__imag__ x == 0.0) { res = x; } else { __real__ res = __nan (""); __imag__ res = __nan (""); #ifdef FE_INVALID if (__isinf (__imag__ x)) feraiseexcept (FE_INVALID); #endif } } else { double sin2ix, cos2ix; double den; __sincos (2.0 * __imag__ x, &sin2ix, &cos2ix); den = (__ieee754_cosh (2.0 * __real__ x) + cos2ix); __real__ res = __ieee754_sinh (2.0 * __real__ x) / den; __imag__ res = sin2ix / den; } return res; }
int main(void) { assert(floor(2.7) == 2.0); assert(floor(-2.7) == -3.0); double c = floor(-0.0); assert(c == -0.0); assert(sizeof(c) == sizeof(float) ? __signbitf(c) : sizeof(c) == sizeof(double) ? __signbit(c) : __signbitl(c)); c = floor(-(__builtin_inff())); assert(sizeof((__builtin_inff())) == sizeof(float) ? __isinff((__builtin_inff())) : sizeof((__builtin_inff())) == sizeof(double) ? __isinf((__builtin_inff())) : __isinfl((__builtin_inff()))); assert(sizeof(c) == sizeof(float) ? __signbitf(c) : sizeof(c) == sizeof(double) ? __signbit(c) : __signbitl(c)); return 0; }
int main() { double a = __VERIFIER_nondet_double(); __VERIFIER_assume(!__isnan(a)); __VERIFIER_assume(!__isinf(a)); __VERIFIER_assume(a != 0.0); double plus_zero = 0.0; double plus_zero_mod = fmod(plus_zero, a); _Bool plus_zero_mod_sign = __signbit(plus_zero); __VERIFIER_assert((plus_zero_mod == 0.0) && !plus_zero_mod_sign); double minus_zero = -0.0; double minus_zero_mod = fmod(minus_zero, a); _Bool minus_zero_mod_sign = signbit(minus_zero); __VERIFIER_assert((minus_zero_mod == 0.0) && minus_zero_mod_sign); return 0; }
int main(void) { double NaN = 0.0 / 0.0; double Inf = 1.0 / 0.0; double negInf = -1.0 / 0.0; double x = 2.0; double y = -8.5; double a = 5.1; double b = -3.0; double c = fmod(a, b); assert(fabs(c - 2.1) < 1e-8); if (!__isnan(y)) { assert(__isnan(fmod(Inf, y))); assert(__isnan(fmod(negInf, y))); } if (!__isnan(x)) { assert(__isnan(fmod(x, 0.0))); assert(__isnan(fmod(x, -0.0))); } if (!__isnan(x) && !__isinf(x)) { assert(fmod(x, Inf) == x); assert(fmod(x, negInf) == x); } if (!__isnan(y) && !__iszero(y)) { assert(fmod(0.0, y) == 0.0); assert(fmod(-0.0, y) == -0.0); int isNeg = __signbit(fmod(-0.0, y)); assert(isNeg); } assert(__isnan(fmod(NaN, y))); assert(__isnan(fmod(x, NaN))); return 0; }
int main(void) { double NaN = 0.0 / 0.0; double Inf = 1.0 / 0.0; double negInf = -1.0 / 0.0; double val = __VERIFIER_nondet_double(); if (!__isnan(val) && !__isinf(val) && !__iszero(val)) { double rval = round(val); assert(rval == floor(val) || rval == ceil(val)); } assert(round(0.0) == 0.0); assert(round(-0.0) == -0.0); int isNeg = __signbit(round(-0.0)); assert(isNeg); assert(round(Inf) == Inf); assert(round(negInf) == negInf); assert(__isnan(round(NaN))); return 0; }
Err mathlib_isinf(UInt16 refnum, double x, Int16 *result) { #pragma unused(refnum) *result = __isinf(x); return mlErrNone; }
/* An ultimate power routine. Given two IEEE double machine numbers y, x it computes the correctly rounded (to nearest) value of X^y. */ double SECTION __ieee754_pow (double x, double y) { double z, a, aa, error, t, a1, a2, y1, y2; mynumber u, v; int k; int4 qx, qy; v.x = y; u.x = x; if (v.i[LOW_HALF] == 0) { /* of y */ qx = u.i[HIGH_HALF] & 0x7fffffff; /* Is x a NaN? */ if (((qx == 0x7ff00000) && (u.i[LOW_HALF] != 0)) || (qx > 0x7ff00000)) return x; if (y == 1.0) return x; if (y == 2.0) return x * x; if (y == -1.0) return 1.0 / x; if (y == 0) return 1.0; } /* else */ if (((u.i[HIGH_HALF] > 0 && u.i[HIGH_HALF] < 0x7ff00000) || /* x>0 and not x->0 */ (u.i[HIGH_HALF] == 0 && u.i[LOW_HALF] != 0)) && /* 2^-1023< x<= 2^-1023 * 0x1.0000ffffffff */ (v.i[HIGH_HALF] & 0x7fffffff) < 0x4ff00000) { /* if y<-1 or y>1 */ double retval; { SET_RESTORE_ROUND (FE_TONEAREST); /* Avoid internal underflow for tiny y. The exact value of y does not matter if |y| <= 2**-64. */ if (ABS (y) < 0x1p-64) y = y < 0 ? -0x1p-64 : 0x1p-64; z = log1 (x, &aa, &error); /* x^y =e^(y log (X)) */ t = y * CN; y1 = t - (t - y); y2 = y - y1; t = z * CN; a1 = t - (t - z); a2 = (z - a1) + aa; a = y1 * a1; aa = y2 * a1 + y * a2; a1 = a + aa; a2 = (a - a1) + aa; error = error * ABS (y); t = __exp1 (a1, a2, 1.9e16 * error); /* return -10 or 0 if wasn't computed exactly */ retval = (t > 0) ? t : power1 (x, y); } if (__isinf (retval)) retval = huge * huge; else if (retval == 0) retval = tiny * tiny; return retval; } if (x == 0) { if (((v.i[HIGH_HALF] & 0x7fffffff) == 0x7ff00000 && v.i[LOW_HALF] != 0) || (v.i[HIGH_HALF] & 0x7fffffff) > 0x7ff00000) /* NaN */ return y; if (ABS (y) > 1.0e20) return (y > 0) ? 0 : 1.0 / 0.0; k = checkint (y); if (k == -1) return y < 0 ? 1.0 / x : x; else return y < 0 ? 1.0 / 0.0 : 0.0; /* return 0 */ } qx = u.i[HIGH_HALF] & 0x7fffffff; /* no sign */ qy = v.i[HIGH_HALF] & 0x7fffffff; /* no sign */ if (qx >= 0x7ff00000 && (qx > 0x7ff00000 || u.i[LOW_HALF] != 0)) /* NaN */ return x; if (qy >= 0x7ff00000 && (qy > 0x7ff00000 || v.i[LOW_HALF] != 0)) /* NaN */ return x == 1.0 ? 1.0 : y; /* if x<0 */ if (u.i[HIGH_HALF] < 0) { k = checkint (y); if (k == 0) { if (qy == 0x7ff00000) { if (x == -1.0) return 1.0; else if (x > -1.0) return v.i[HIGH_HALF] < 0 ? INF.x : 0.0; else return v.i[HIGH_HALF] < 0 ? 0.0 : INF.x; } else if (qx == 0x7ff00000) return y < 0 ? 0.0 : INF.x; return (x - x) / (x - x); /* y not integer and x<0 */ } else if (qx == 0x7ff00000) { if (k < 0) return y < 0 ? nZERO.x : nINF.x; else return y < 0 ? 0.0 : INF.x; } /* if y even or odd */ if (k == 1) return __ieee754_pow (-x, y); else { double retval; { SET_RESTORE_ROUND (FE_TONEAREST); retval = -__ieee754_pow (-x, y); } if (__isinf (retval)) retval = -huge * huge; else if (retval == 0) retval = -tiny * tiny; return retval; } } /* x>0 */ if (qx == 0x7ff00000) /* x= 2^-0x3ff */ return y > 0 ? x : 0; if (qy > 0x45f00000 && qy < 0x7ff00000) { if (x == 1.0) return 1.0; if (y > 0) return (x > 1.0) ? huge * huge : tiny * tiny; if (y < 0) return (x < 1.0) ? huge * huge : tiny * tiny; } if (x == 1.0) return 1.0; if (y > 0) return (x > 1.0) ? INF.x : 0; if (y < 0) return (x < 1.0) ? INF.x : 0; return 0; /* unreachable, to make the compiler happy */ }
int printf_size (FILE *fp, const struct printf_info *info, const void *const *args) { /* Units for the both formats. */ #define BINARY_UNITS " kmgtpezy" #define DECIMAL_UNITS " KMGTPEZY" static const char units[2][sizeof (BINARY_UNITS)] = { BINARY_UNITS, /* For binary format. */ DECIMAL_UNITS /* For decimal format. */ }; const char *tag = units[isupper (info->spec) != 0]; int divisor = isupper (info->spec) ? 1000 : 1024; /* The floating-point value to output. */ union { union ieee754_double dbl; union ieee854_long_double ldbl; } fpnum; const void *ptr = &fpnum; int negative = 0; /* "NaN" or "Inf" for the special cases. */ const char *special = NULL; const wchar_t *wspecial = NULL; struct printf_info fp_info; int done = 0; int wide = info->wide; /* Fetch the argument value. */ #ifndef __NO_LONG_DOUBLE_MATH if (info->is_long_double && sizeof (long double) > sizeof (double)) { fpnum.ldbl.d = *(const long double *) args[0]; /* Check for special values: not a number or infinity. */ if (__isnanl (fpnum.ldbl.d)) { special = "nan"; wspecial = L"nan"; negative = 0; } else if (__isinfl (fpnum.ldbl.d)) { special = "inf"; wspecial = L"inf"; negative = fpnum.ldbl.d < 0; } else while (fpnum.ldbl.d >= divisor && tag[1] != '\0') { fpnum.ldbl.d /= divisor; ++tag; } } else #endif /* no long double */ { fpnum.dbl.d = *(const double *) args[0]; /* Check for special values: not a number or infinity. */ if (__isnan (fpnum.dbl.d)) { special = "nan"; wspecial = L"nan"; negative = 0; } else if (__isinf (fpnum.dbl.d)) { special = "inf"; wspecial = L"inf"; negative = fpnum.dbl.d < 0; } else while (fpnum.dbl.d >= divisor && tag[1] != '\0') { fpnum.dbl.d /= divisor; ++tag; } } if (special) { int width = info->prec > width ? info->prec : info->width; if (negative || info->showsign || info->space) --width; width -= 3; if (!info->left && width > 0) PADN (' ', width); if (negative) outchar ('-'); else if (info->showsign) outchar ('+'); else if (info->space) outchar (' '); PRINT (special, wspecial, 3); if (info->left && width > 0) PADN (' ', width); return done; } /* Prepare to print the number. We want to use `__printf_fp' so we have to prepare a `printf_info' structure. */ fp_info.spec = 'f'; fp_info.prec = info->prec < 0 ? 3 : info->prec; fp_info.is_long_double = info->is_long_double; fp_info.is_short = info->is_short; fp_info.is_long = info->is_long; fp_info.alt = info->alt; fp_info.space = info->space; fp_info.left = info->left; fp_info.showsign = info->showsign; fp_info.group = info->group; fp_info.extra = info->extra; fp_info.pad = info->pad; fp_info.wide = wide; if (fp_info.left && fp_info.pad == L' ') { /* We must do the padding ourself since the unit character must be placed before the padding spaces. */ fp_info.width = 0; done = __printf_fp (fp, &fp_info, &ptr); if (done > 0) { outchar (*tag); if (info->width > done) PADN (' ', info->width - done); } } else { /* We can let __printf_fp do all the printing and just add our unit character afterwards. */ fp_info.width = info->width - 1; done = __printf_fp (fp, &fp_info, &ptr); if (done > 0) outchar (*tag); } return done; }
int __printf_fphex (FILE *fp, const struct printf_info *info, const void *const *args) { /* The floating-point value to output. */ union { union ieee754_double dbl; long double ldbl; } fpnum; /* Locale-dependent representation of decimal point. */ const char *decimal; wchar_t decimalwc; /* "NaN" or "Inf" for the special cases. */ const char *special = NULL; const wchar_t *wspecial = NULL; /* Buffer for the generated number string for the mantissa. The maximal size for the mantissa is 128 bits. */ char numbuf[32]; char *numstr; char *numend; wchar_t wnumbuf[32]; wchar_t *wnumstr; wchar_t *wnumend; int negative; /* The maximal exponent of two in decimal notation has 5 digits. */ char expbuf[5]; char *expstr; wchar_t wexpbuf[5]; wchar_t *wexpstr; int expnegative; int exponent; /* Non-zero is mantissa is zero. */ int zero_mantissa; /* The leading digit before the decimal point. */ char leading; /* Precision. */ int precision = info->prec; /* Width. */ int width = info->width; /* Number of characters written. */ int done = 0; /* Nonzero if this is output on a wide character stream. */ #if __OPTION_POSIX_C_LANG_WIDE_CHAR int wide = info->wide; #else /* This should never be called on a wide-oriented stream when OPTION_POSIX_C_LANG_WIDE_CHAR is disabled, but the compiler can't be trusted to figure that out. */ const int wide = 0; #endif /* Figure out the decimal point character. */ #if __OPTION_EGLIBC_LOCALE_CODE if (info->extra == 0) { decimal = _NL_CURRENT (LC_NUMERIC, DECIMAL_POINT); decimalwc = _NL_CURRENT_WORD (LC_NUMERIC, _NL_NUMERIC_DECIMAL_POINT_WC); } else { decimal = _NL_CURRENT (LC_MONETARY, MON_DECIMAL_POINT); decimalwc = _NL_CURRENT_WORD (LC_MONETARY, _NL_MONETARY_DECIMAL_POINT_WC); } /* The decimal point character must never be zero. */ assert (*decimal != '\0' && decimalwc != L'\0'); #else decimal = "."; decimalwc = L'.'; #endif /* Fetch the argument value. */ #ifndef __NO_LONG_DOUBLE_MATH if (info->is_long_double && sizeof (long double) > sizeof (double)) { fpnum.ldbl = *(const long double *) args[0]; /* Check for special values: not a number or infinity. */ if (__isnanl (fpnum.ldbl)) { if (isupper (info->spec)) { special = "NAN"; wspecial = L"NAN"; } else { special = "nan"; wspecial = L"nan"; } } else { if (__isinfl (fpnum.ldbl)) { if (isupper (info->spec)) { special = "INF"; wspecial = L"INF"; } else { special = "inf"; wspecial = L"inf"; } } } negative = signbit (fpnum.ldbl); } else #endif /* no long double */ { fpnum.dbl.d = *(const double *) args[0]; /* Check for special values: not a number or infinity. */ if (__isnan (fpnum.dbl.d)) { negative = fpnum.dbl.ieee.negative != 0; if (isupper (info->spec)) { special = "NAN"; wspecial = L"NAN"; } else { special = "nan"; wspecial = L"nan"; } } else { int res = __isinf (fpnum.dbl.d); if (res) { if (isupper (info->spec)) { special = "INF"; wspecial = L"INF"; } else { special = "inf"; wspecial = L"inf"; } negative = res < 0; } else negative = signbit (fpnum.dbl.d); } } if (special) { int width = info->width; if (negative || info->showsign || info->space) --width; width -= 3; if (!info->left && width > 0) PADN (' ', width); if (negative) outchar ('-'); else if (info->showsign) outchar ('+'); else if (info->space) outchar (' '); PRINT (special, wspecial, 3); if (info->left && width > 0) PADN (' ', width); return done; } if (info->is_long_double == 0 || sizeof (double) == sizeof (long double)) { /* We have 52 bits of mantissa plus one implicit digit. Since 52 bits are representable without rest using hexadecimal digits we use only the implicit digits for the number before the decimal point. */ unsigned long long int num; num = (((unsigned long long int) fpnum.dbl.ieee.mantissa0) << 32 | fpnum.dbl.ieee.mantissa1); zero_mantissa = num == 0; if (sizeof (unsigned long int) > 6) { wnumstr = _itowa_word (num, wnumbuf + (sizeof wnumbuf) / sizeof (wchar_t), 16, info->spec == 'A'); numstr = _itoa_word (num, numbuf + sizeof numbuf, 16, info->spec == 'A'); } else { wnumstr = _itowa (num, wnumbuf + sizeof wnumbuf / sizeof (wchar_t), 16, info->spec == 'A'); numstr = _itoa (num, numbuf + sizeof numbuf, 16, info->spec == 'A'); } /* Fill with zeroes. */ while (wnumstr > wnumbuf + (sizeof wnumbuf - 52) / sizeof (wchar_t)) { *--wnumstr = L'0'; *--numstr = '0'; } leading = fpnum.dbl.ieee.exponent == 0 ? '0' : '1'; exponent = fpnum.dbl.ieee.exponent; if (exponent == 0) { if (zero_mantissa) expnegative = 0; else { /* This is a denormalized number. */ expnegative = 1; exponent = IEEE754_DOUBLE_BIAS - 1; } } else if (exponent >= IEEE754_DOUBLE_BIAS) { expnegative = 0; exponent -= IEEE754_DOUBLE_BIAS; } else { expnegative = 1; exponent = -(exponent - IEEE754_DOUBLE_BIAS); } } #ifdef PRINT_FPHEX_LONG_DOUBLE else PRINT_FPHEX_LONG_DOUBLE; #endif /* Look for trailing zeroes. */ if (! zero_mantissa) { wnumend = &wnumbuf[sizeof wnumbuf / sizeof wnumbuf[0]]; numend = &numbuf[sizeof numbuf / sizeof numbuf[0]]; while (wnumend[-1] == L'0') { --wnumend; --numend; } bool do_round_away = false; if (precision != -1 && precision < numend - numstr) { char last_digit = precision > 0 ? numstr[precision - 1] : leading; char next_digit = numstr[precision]; int last_digit_value = (last_digit >= 'A' && last_digit <= 'F' ? last_digit - 'A' + 10 : (last_digit >= 'a' && last_digit <= 'f' ? last_digit - 'a' + 10 : last_digit - '0')); int next_digit_value = (next_digit >= 'A' && next_digit <= 'F' ? next_digit - 'A' + 10 : (next_digit >= 'a' && next_digit <= 'f' ? next_digit - 'a' + 10 : next_digit - '0')); bool more_bits = ((next_digit_value & 7) != 0 || precision + 1 < numend - numstr); int rounding_mode = get_rounding_mode (); do_round_away = round_away (negative, last_digit_value & 1, next_digit_value >= 8, more_bits, rounding_mode); } if (precision == -1) precision = numend - numstr; else if (do_round_away) { /* Round up. */ int cnt = precision; while (--cnt >= 0) { char ch = numstr[cnt]; /* We assume that the digits and the letters are ordered like in ASCII. This is true for the rest of GNU, too. */ if (ch == '9') { wnumstr[cnt] = (wchar_t) info->spec; numstr[cnt] = info->spec; /* This is tricky, think about it! */ break; } else if (tolower (ch) < 'f') { ++numstr[cnt]; ++wnumstr[cnt]; break; } else { numstr[cnt] = '0'; wnumstr[cnt] = L'0'; } } if (cnt < 0) { /* The mantissa so far was fff...f Now increment the leading digit. Here it is again possible that we get an overflow. */ if (leading == '9') leading = info->spec; else if (tolower (leading) < 'f') ++leading; else { leading = '1'; if (expnegative) { exponent -= 4; if (exponent <= 0) { exponent = -exponent; expnegative = 0; } } else exponent += 4; } } } } else { if (precision == -1) precision = 0; numend = numstr; wnumend = wnumstr; } /* Now we can compute the exponent string. */ expstr = _itoa_word (exponent, expbuf + sizeof expbuf, 10, 0); wexpstr = _itowa_word (exponent, wexpbuf + sizeof wexpbuf / sizeof (wchar_t), 10, 0); /* Now we have all information to compute the size. */ width -= ((negative || info->showsign || info->space) /* Sign. */ + 2 + 1 + 0 + precision + 1 + 1 /* 0x h . hhh P ExpoSign. */ + ((expbuf + sizeof expbuf) - expstr)); /* Exponent. */ /* Count the decimal point. A special case when the mantissa or the precision is zero and the `#' is not given. In this case we must not print the decimal point. */ if (precision > 0 || info->alt) width -= wide ? 1 : strlen (decimal); if (!info->left && info->pad != '0' && width > 0) PADN (' ', width); if (negative) outchar ('-'); else if (info->showsign) outchar ('+'); else if (info->space) outchar (' '); outchar ('0'); if ('X' - 'A' == 'x' - 'a') outchar (info->spec + ('x' - 'a')); else outchar (info->spec == 'A' ? 'X' : 'x'); if (!info->left && info->pad == '0' && width > 0) PADN ('0', width); outchar (leading); if (precision > 0 || info->alt) { const wchar_t *wtmp = &decimalwc; PRINT (decimal, wtmp, wide ? 1 : strlen (decimal)); } if (precision > 0) { ssize_t tofill = precision - (numend - numstr); PRINT (numstr, wnumstr, MIN (numend - numstr, precision)); if (tofill > 0) PADN ('0', tofill); } if ('P' - 'A' == 'p' - 'a') outchar (info->spec + ('p' - 'a')); else outchar (info->spec == 'A' ? 'P' : 'p'); outchar (expnegative ? '-' : '+'); PRINT (expstr, wexpstr, (expbuf + sizeof expbuf) - expstr); if (info->left && info->pad != '0' && width > 0) PADN (info->pad, width); return done; }
int __printf_size (FILE *fp, const struct printf_info *info, const void *const *args) { /* Units for the both formats. */ #define BINARY_UNITS " kmgtpezy" #define DECIMAL_UNITS " KMGTPEZY" static const char units[2][sizeof (BINARY_UNITS)] = { BINARY_UNITS, /* For binary format. */ DECIMAL_UNITS /* For decimal format. */ }; const char *tag = units[isupper (info->spec) != 0]; int divisor = isupper (info->spec) ? 1000 : 1024; /* The floating-point value to output. */ union { union ieee754_double dbl; union ieee854_long_double ldbl; } fpnum; const void *ptr = &fpnum; int fpnum_sign = 0; /* "NaN" or "Inf" for the special cases. */ const char *special = NULL; const wchar_t *wspecial = NULL; struct printf_info fp_info; int done = 0; #if __OPTION_POSIX_C_LANG_WIDE_CHAR int wide = info->wide; #else /* This should never be called on a wide-oriented stream when OPTION_POSIX_C_LANG_WIDE_CHAR is disabled, but the compiler can't be trusted to figure that out. */ const int wide = 0; #endif int res; /* Fetch the argument value. */ #ifndef __NO_LONG_DOUBLE_MATH if (info->is_long_double && sizeof (long double) > sizeof (double)) { fpnum.ldbl.d = *(const long double *) args[0]; /* Check for special values: not a number or infinity. */ if (__isnanl (fpnum.ldbl.d)) { special = "nan"; wspecial = L"nan"; // fpnum_sign = 0; Already zero } else if ((res = __isinfl (fpnum.ldbl.d))) { fpnum_sign = res; special = "inf"; wspecial = L"inf"; } else while (fpnum.ldbl.d >= divisor && tag[1] != '\0') { fpnum.ldbl.d /= divisor; ++tag; } } else #endif /* no long double */ { fpnum.dbl.d = *(const double *) args[0]; /* Check for special values: not a number or infinity. */ if (__isnan (fpnum.dbl.d)) { special = "nan"; wspecial = L"nan"; // fpnum_sign = 0; Already zero } else if ((res = __isinf (fpnum.dbl.d))) { fpnum_sign = res; special = "inf"; wspecial = L"inf"; } else while (fpnum.dbl.d >= divisor && tag[1] != '\0') { fpnum.dbl.d /= divisor; ++tag; } } if (special) { int width = info->prec > info->width ? info->prec : info->width; if (fpnum_sign < 0 || info->showsign || info->space) --width; width -= 3; if (!info->left && width > 0) PADN (' ', width); if (fpnum_sign < 0) outchar ('-'); else if (info->showsign) outchar ('+'); else if (info->space) outchar (' '); PRINT (special, wspecial, 3); if (info->left && width > 0) PADN (' ', width); return done; } /* Prepare to print the number. We want to use `__printf_fp' so we have to prepare a `printf_info' structure. */ fp_info = *info; fp_info.spec = 'f'; fp_info.prec = info->prec < 0 ? 3 : info->prec; fp_info.wide = wide; if (fp_info.left && fp_info.pad == L' ') { /* We must do the padding ourself since the unit character must be placed before the padding spaces. */ fp_info.width = 0; done = __printf_fp (fp, &fp_info, &ptr); if (done > 0) { outchar (*tag); if (info->width > done) PADN (' ', info->width - done); } } else { /* We can let __printf_fp do all the printing and just add our unit character afterwards. */ fp_info.width = info->width - 1; done = __printf_fp (fp, &fp_info, &ptr); if (done > 0) outchar (*tag); } return done; }
double __ieee754_exp2 (double x) { static const double himark = (double) DBL_MAX_EXP; static const double lomark = (double) (DBL_MIN_EXP - DBL_MANT_DIG - 1); /* Check for usual case. */ if (__builtin_expect (isless (x, himark), 1)) { /* Exceptional cases: */ if (__builtin_expect (! isgreaterequal (x, lomark), 0)) { if (__isinf (x)) /* e^-inf == 0, with no error. */ return 0; else /* Underflow */ return TWOM1000 * TWOM1000; } static const double THREEp42 = 13194139533312.0; int tval, unsafe; double rx, x22, result; union ieee754_double ex2_u, scale_u; fenv_t oldenv; libc_feholdexcept_setround (&oldenv, FE_TONEAREST); /* 1. Argument reduction. Choose integers ex, -256 <= t < 256, and some real -1/1024 <= x1 <= 1024 so that x = ex + t/512 + x1. First, calculate rx = ex + t/512. */ rx = x + THREEp42; rx -= THREEp42; x -= rx; /* Compute x=x1. */ /* Compute tval = (ex*512 + t)+256. Now, t = (tval mod 512)-256 and ex=tval/512 [that's mod, NOT %; and /-round-to-nearest not the usual c integer /]. */ tval = (int) (rx * 512.0 + 256.0); /* 2. Adjust for accurate table entry. Find e so that x = ex + t/512 + e + x2 where -1e6 < e < 1e6, and (double)(2^(t/512+e)) is accurate to one part in 2^-64. */ /* 'tval & 511' is the same as 'tval%512' except that it's always positive. Compute x = x2. */ x -= exp2_deltatable[tval & 511]; /* 3. Compute ex2 = 2^(t/512+e+ex). */ ex2_u.d = exp2_accuratetable[tval & 511]; tval >>= 9; unsafe = abs(tval) >= -DBL_MIN_EXP - 1; ex2_u.ieee.exponent += tval >> unsafe; scale_u.d = 1.0; scale_u.ieee.exponent += tval - (tval >> unsafe); /* 4. Approximate 2^x2 - 1, using a fourth-degree polynomial, with maximum error in [-2^-10-2^-30,2^-10+2^-30] less than 10^-19. */ x22 = (((.0096181293647031180 * x + .055504110254308625) * x + .240226506959100583) * x + .69314718055994495) * ex2_u.d; math_opt_barrier (x22); /* 5. Return (2^x2-1) * 2^(t/512+e+ex) + 2^(t/512+e+ex). */ libc_fesetenv (&oldenv); result = x22 * x + ex2_u.d; if (!unsafe) return result; else return result * scale_u.d; } else /* Return x, if x is a NaN or Inf; or overflow, otherwise. */ return TWO1023*x;
int isinf(double val) { return __isinf(val); } /* isinf */
__MATH_FUNCTIONS_DBL_PTX3_DECL__ int __isinfl(/* we do not support long double yet, hence double */double a) { return __isinf((double)a); }