Beispiel #1
0
void
_acb_poly_atan_series(acb_ptr g, acb_srcptr h, slong hlen, slong n, slong prec)
{
    acb_t c;
    acb_init(c);

    acb_atan(c, h, prec);

    hlen = FLINT_MIN(hlen, n);

    if (hlen == 1)
    {
        _acb_vec_zero(g + 1, n - 1);
    }
    else
    {
        acb_ptr t, u;
        slong ulen;

        t = _acb_vec_init(n);
        u = _acb_vec_init(n);

        /* atan(h(x)) = integral(h'(x)/(1+h(x)^2)) */
        ulen = FLINT_MIN(n, 2 * hlen - 1);
        _acb_poly_mullow(u, h, hlen, h, hlen, ulen, prec);
        acb_add_ui(u, u, 1, prec);

        _acb_poly_derivative(t, h, hlen, prec);
        _acb_poly_div_series(g, t, hlen - 1, u, ulen, n, prec);
        _acb_poly_integral(g, g, n, prec);

        _acb_vec_clear(t, n);
        _acb_vec_clear(u, n);
    }

    acb_swap(g, c);
    acb_clear(c);
}
Beispiel #2
0
void
_acb_poly_digamma_series(acb_ptr res, acb_srcptr h, slong hlen, slong len, slong prec)
{
    int reflect;
    slong i, r, n, rflen, wp;
    acb_t zr;
    acb_ptr t, u, v;

    hlen = FLINT_MIN(hlen, len);

    if (hlen == 1)
    {
        acb_digamma(res, h, prec);
        if (acb_is_finite(res))
            _acb_vec_zero(res + 1, len - 1);
        else
            _acb_vec_indeterminate(res + 1, len - 1);
        return;
    }

    /* use real code for real input */
    if (_acb_vec_is_real(h, hlen))
    {
        arb_ptr tmp = _arb_vec_init(len);
        for (i = 0; i < hlen; i++)
            arb_set(tmp + i, acb_realref(h + i));
        _arb_poly_digamma_series(tmp, tmp, hlen, len, prec);
        for (i = 0; i < len; i++)
            acb_set_arb(res + i, tmp + i);
        _arb_vec_clear(tmp, len);
        return;
    }

    wp = prec + FLINT_BIT_COUNT(prec);

    t = _acb_vec_init(len + 1);
    u = _acb_vec_init(len + 1);
    v = _acb_vec_init(len + 1);
    acb_init(zr);

    /* use Stirling series */
    acb_gamma_stirling_choose_param(&reflect, &r, &n, h, 1, 1, wp);

    /* psi(x) = psi((1-x)+r) - h(1-x,r) - pi*cot(pi*x) */
    if (reflect)
    {
        if (r != 0) /* otherwise t = 0 */
        {
            acb_sub_ui(v, h, 1, wp);
            acb_neg(v, v);
            acb_one(v + 1);
            rflen = FLINT_MIN(len + 1, r + 1);
            _acb_poly_rising_ui_series(u, v, 2, r, rflen, wp);
            _acb_poly_derivative(v, u, rflen, wp);
            _acb_poly_div_series(t, v, rflen - 1, u, rflen, len, wp);
            for (i = 1; i < len; i += 2)
                acb_neg(t + i, t + i);
        }

        acb_sub_ui(zr, h, r + 1, wp);
        acb_neg(zr, zr);
        _acb_poly_gamma_stirling_eval2(u, zr, n, len + 1, 1, wp);
        for (i = 1; i < len; i += 2)
            acb_neg(u + i, u + i);

        _acb_vec_sub(u, u, t, len, wp);

        acb_set(t, h);
        acb_one(t + 1);
        _acb_poly_cot_pi_series(t, t, 2, len, wp);
        acb_const_pi(v, wp);
        _acb_vec_scalar_mul(t, t, len, v, wp);

        _acb_vec_sub(u, u, t, len, wp);
    }
    else
    {
        if (r == 0)
        {
            acb_add_ui(zr, h, r, wp);
            _acb_poly_gamma_stirling_eval2(u, zr, n, len + 1, 1, wp);
        }
        else
        {
            acb_set(v, h);
            acb_one(v + 1);
            rflen = FLINT_MIN(len + 1, r + 1);
            _acb_poly_rising_ui_series(u, v, 2, r, rflen, wp);
            _acb_poly_derivative(v, u, rflen, wp);
            _acb_poly_div_series(t, v, rflen - 1, u, rflen, len, wp);

            acb_add_ui(zr, h, r, wp);
            _acb_poly_gamma_stirling_eval2(u, zr, n, len + 1, 1, wp);

            _acb_vec_sub(u, u, t, len, wp);
        }
    }

    /* compose with nonconstant part */
    acb_zero(t);
    _acb_vec_set(t + 1, h + 1, hlen - 1);
    _acb_poly_compose_series(res, u, len, t, hlen, len, prec);

    acb_clear(zr);
    _acb_vec_clear(t, len + 1);
    _acb_vec_clear(u, len + 1);
    _acb_vec_clear(v, len + 1);
}
Beispiel #3
0
void
acb_elliptic_p_jet(acb_ptr r, const acb_t z, const acb_t tau, slong len, slong prec)
{
    acb_t t01, t02, t03, t04;
    acb_ptr tz1, tz2, tz3, tz4;
    acb_t t;
    int real;
    slong k;

    if (len < 1)
        return;

    if (len == 1)
    {
        acb_elliptic_p(r, z, tau, prec);
        return;
    }

    real = acb_is_real(z) && arb_is_int_2exp_si(acb_realref(tau), -1) &&
                arb_is_positive(acb_imagref(tau));

    acb_init(t);

    acb_init(t01);
    acb_init(t02);
    acb_init(t03);
    acb_init(t04);

    tz1 = _acb_vec_init(len);
    tz2 = _acb_vec_init(len);
    tz3 = _acb_vec_init(len);
    tz4 = _acb_vec_init(len);

    acb_modular_theta_jet(tz1, tz2, tz3, tz4, z, tau, len, prec);

    /* [theta_4(z) / theta_1(z)]^2 */
    _acb_poly_div_series(tz2, tz4, len, tz1, len, len, prec);
    _acb_poly_mullow(tz1, tz2, len, tz2, len, len, prec);

    acb_zero(t);
    acb_modular_theta(t01, t02, t03, t04, t, tau, prec);

    /* [theta_2(0) * theta_3(0)] ^2 */
    acb_mul(t, t02, t03, prec);
    acb_mul(t, t, t, prec);
    _acb_vec_scalar_mul(tz1, tz1, len, t, prec);

    /* - [theta_2(0)^4 + theta_3(0)^4] / 3 */
    acb_pow_ui(t02, t02, 4, prec);
    acb_pow_ui(t03, t03, 4, prec);
    acb_add(t, t02, t03, prec);
    acb_div_ui(t, t, 3, prec);
    acb_sub(tz1, tz1, t, prec);

    /* times pi^2 */
    acb_const_pi(t, prec);
    acb_mul(t, t, t, prec);
    _acb_vec_scalar_mul(r, tz1, len, t, prec);

    if (real)
    {
        for (k = 0; k < len; k++)
            arb_zero(acb_imagref(r + k));
    }

    acb_clear(t);

    acb_clear(t01);
    acb_clear(t02);
    acb_clear(t03);
    acb_clear(t04);

    _acb_vec_clear(tz1, len);
    _acb_vec_clear(tz2, len);
    _acb_vec_clear(tz3, len);
    _acb_vec_clear(tz4, len);
}