Beispiel #1
0
void
_arb_poly_asin_series(arb_ptr g, arb_srcptr h, slong hlen, slong n, slong prec)
{
    arb_t c;
    arb_init(c);

    arb_asin(c, h, prec);

    hlen = FLINT_MIN(hlen, n);

    if (hlen == 1)
    {
        _arb_vec_zero(g + 1, n - 1);
    }
    else
    {
        arb_ptr t, u;
        slong ulen;

        t = _arb_vec_init(n);
        u = _arb_vec_init(n);

        /* asin(h(x)) = integral(h'(x)/sqrt(1-h(x)^2)) */
        ulen = FLINT_MIN(n, 2 * hlen - 1);
        _arb_poly_mullow(u, h, hlen, h, hlen, ulen, prec);
        arb_sub_ui(u, u, 1, prec);
        _arb_vec_neg(u, u, ulen);
        _arb_poly_rsqrt_series(t, u, ulen, n, prec);
        _arb_poly_derivative(u, h, hlen, prec);
        _arb_poly_mullow(g, t, n, u, hlen - 1, n, prec);
        _arb_poly_integral(g, g, n, prec);

        _arb_vec_clear(t, n);
        _arb_vec_clear(u, n);
    }

    arb_swap(g, c);
    arb_clear(c);
}
Beispiel #2
0
void
_arb_poly_inv_series(arb_ptr Qinv,
    arb_srcptr Q, slong Qlen, slong len, slong prec)
{
    arb_inv(Qinv, Q, prec);

    if (Qlen == 1)
    {
        _arb_vec_zero(Qinv + 1, len - 1);
    }
    else if (len == 2)
    {
        arb_div(Qinv + 1, Qinv, Q, prec);
        arb_mul(Qinv + 1, Qinv + 1, Q + 1, prec);
        arb_neg(Qinv + 1, Qinv + 1);
    }
    else
    {
        slong Qnlen, Wlen, W2len;
        arb_ptr W;

        W = _arb_vec_init(len);

        NEWTON_INIT(1, len)
        NEWTON_LOOP(m, n)

        Qnlen = FLINT_MIN(Qlen, n);
        Wlen = FLINT_MIN(Qnlen + m - 1, n);
        W2len = Wlen - m;
        MULLOW(W, Q, Qnlen, Qinv, m, Wlen, prec);
        MULLOW(Qinv + m, Qinv, m, W + m, W2len, n - m, prec);
        _arb_vec_neg(Qinv + m, Qinv + m, n - m);

        NEWTON_END_LOOP
        NEWTON_END

        _arb_vec_clear(W, len);
    }
}
Beispiel #3
0
void
keiper_li_series(arb_ptr z, slong len, slong prec)
{
    arb_ptr t, u, v;

    t = _arb_vec_init(len);
    u = _arb_vec_init(len);
    v = _arb_vec_init(len);

    /* -zeta(s) */
    flint_printf("zeta: ");
    TIMEIT_ONCE_START
    arb_zero(t + 0);
    arb_one(t + 1);
    arb_one(u);
    _arb_poly_zeta_series(v, t, 2, u, 0, len, prec);
    _arb_vec_neg(v, v, len);
    TIMEIT_ONCE_STOP

    SHOW_MEMORY_USAGE

    /* logarithm */
    flint_printf("log: ");
    TIMEIT_ONCE_START
    _arb_poly_log_series(t, v, len, len, prec);
    TIMEIT_ONCE_STOP

    /* add log(gamma(1+s/2)) */
    flint_printf("gamma: ");
    TIMEIT_ONCE_START
    arb_one(u);
    arb_one(u + 1);
    arb_mul_2exp_si(u + 1, u + 1, -1);
    _arb_poly_lgamma_series(v, u, 2, len, prec);
    _arb_vec_add(t, t, v, len, prec);
    TIMEIT_ONCE_STOP

    /* subtract 0.5 s log(pi) */
    arb_const_pi(u, prec);
    arb_log(u, u, prec);
    arb_mul_2exp_si(u, u, -1);
    arb_sub(t + 1, t + 1, u, prec);

    /* add log(1-s) */
    arb_one(u);
    arb_set_si(u + 1, -1);
    _arb_poly_log_series(v, u, 2, len, prec);
    _arb_vec_add(t, t, v, len, prec);

    /* binomial transform */
    flint_printf("binomial transform: ");
    TIMEIT_ONCE_START
    arb_set(z, t);
    _arb_vec_neg(t + 1, t + 1, len - 1);
    _arb_poly_binomial_transform(z + 1, t + 1, len - 1, len - 1, prec);
    TIMEIT_ONCE_STOP

    _arb_vec_clear(t, len);
    _arb_vec_clear(u, len);
    _arb_vec_clear(v, len);
}
Beispiel #4
0
void
_arb_poly_rgamma_series(arb_ptr res, arb_srcptr h, long hlen, long len, long prec)
{
    int reflect;
    long i, rflen, r, n, wp;
    arb_ptr t, u, v;
    arb_struct f[2];

    hlen = FLINT_MIN(hlen, len);
    wp = prec + FLINT_BIT_COUNT(prec);

    t = _arb_vec_init(len);
    u = _arb_vec_init(len);
    v = _arb_vec_init(len);
    arb_init(f);
    arb_init(f + 1);

    /* use zeta values at small integers */
    if (arb_is_int(h) && (arf_cmpabs_ui(arb_midref(h), prec / 2) < 0))
    {
        r = arf_get_si(arb_midref(h), ARF_RND_DOWN);

        _arb_poly_lgamma_series_at_one(u, len, wp);

        _arb_vec_neg(u, u, len);
        _arb_poly_exp_series(t, u, len, len, wp);

        if (r == 1)
        {
            _arb_vec_swap(v, t, len);
        }
        else if (r <= 0)
        {
            arb_set(f, h);
            arb_one(f + 1);
            rflen = FLINT_MIN(len, 2 - r);
            _arb_poly_rising_ui_series(u, f, FLINT_MIN(2, len), 1 - r, rflen, wp);
            _arb_poly_mullow(v, t, len, u, rflen, len, wp);
        }
        else
        {
            arb_one(f);
            arb_one(f + 1);
            rflen = FLINT_MIN(len, r);
            _arb_poly_rising_ui_series(v, f, FLINT_MIN(2, len), r - 1, rflen, wp);

            /* TODO: use div_series? */
            _arb_poly_inv_series(u, v, rflen, len, wp);
            _arb_poly_mullow(v, t, len, u, len, len, wp);
        }
    }
    else
    {
        /* otherwise use Stirling series */
        arb_gamma_stirling_choose_param(&reflect, &r, &n, h, 1, 0, wp);

        /* rgamma(h) = (gamma(1-h+r) sin(pi h)) / (rf(1-h, r) * pi), h = h0 + t*/
        if (reflect)
        {
            /* u = gamma(r+1-h) */
            arb_sub_ui(f, h, r + 1, wp);
            arb_neg(f, f);
            _arb_poly_gamma_stirling_eval(t, f, n, len, wp);
            _arb_poly_exp_series(u, t, len, len, wp);
            for (i = 1; i < len; i += 2)
                arb_neg(u + i, u + i);

            /* v = sin(pi x) */
            arb_const_pi(f + 1, wp);
            arb_mul(f, h, f + 1, wp);
            _arb_poly_sin_series(v, f, 2, len, wp);

            _arb_poly_mullow(t, u, len, v, len, len, wp);

            /* rf(1-h,r) * pi */
            if (r == 0)
            {
                arb_const_pi(u, wp);
                _arb_vec_scalar_div(v, t, len, u, wp);
            }
            else
            {
                arb_sub_ui(f, h, 1, wp);
                arb_neg(f, f);
                arb_set_si(f + 1, -1);
                rflen = FLINT_MIN(len, r + 1);
                _arb_poly_rising_ui_series(v, f, FLINT_MIN(2, len), r, rflen, wp);
                arb_const_pi(u, wp);
                _arb_vec_scalar_mul(v, v, rflen, u, wp);

                /* divide by rising factorial */
                /* TODO: might better to use div_series, when it has a good basecase */
                _arb_poly_inv_series(u, v, rflen, len, wp);
                _arb_poly_mullow(v, t, len, u, len, len, wp);
            }
        }
        else
        {
            /* rgamma(h) = rgamma(h+r) rf(h,r) */
            if (r == 0)
            {
                arb_add_ui(f, h, r, wp);
                _arb_poly_gamma_stirling_eval(t, f, n, len, wp);
                _arb_vec_neg(t, t, len);
                _arb_poly_exp_series(v, t, len, len, wp);
            }
            else
            {
                arb_set(f, h);
                arb_one(f + 1);
                rflen = FLINT_MIN(len, r + 1);
                _arb_poly_rising_ui_series(t, f, FLINT_MIN(2, len), r, rflen, wp);

                arb_add_ui(f, h, r, wp);
                _arb_poly_gamma_stirling_eval(v, f, n, len, wp);
                _arb_vec_neg(v, v, len);
                _arb_poly_exp_series(u, v, len, len, wp);

                _arb_poly_mullow(v, u, len, t, rflen, len, wp);
            }
        }
    }

    /* compose with nonconstant part */
    arb_zero(t);
    _arb_vec_set(t + 1, h + 1, hlen - 1);
    _arb_poly_compose_series(res, v, len, t, hlen, len, prec);

    arb_clear(f);
    arb_clear(f + 1);
    _arb_vec_clear(t, len);
    _arb_vec_clear(u, len);
    _arb_vec_clear(v, len);
}
Beispiel #5
0
/* with inverse=1 simultaneously computes g = exp(-x) to length n
with inverse=0 uses g as scratch space, computing
g = exp(-x) only to length (n+1)/2 */
static void
_arb_poly_exp_series_newton(arb_ptr f, arb_ptr g,
                            arb_srcptr h, slong len, slong prec, int inverse, slong cutoff)
{
    slong alloc;
    arb_ptr T, U, hprime;

    alloc = 3 * len;
    T = _arb_vec_init(alloc);
    U = T + len;
    hprime = U + len;

    _arb_poly_derivative(hprime, h, len, prec);
    arb_zero(hprime + len - 1);

    NEWTON_INIT(cutoff, len)

    /* f := exp(h) + O(x^m), g := exp(-h) + O(x^m2) */
    NEWTON_BASECASE(n)
    _arb_poly_exp_series_basecase(f, h, n, n, prec);
    _arb_poly_inv_series(g, f, (n + 1) / 2, (n + 1) / 2, prec);
    NEWTON_END_BASECASE

    /* extend from length m to length n */
    NEWTON_LOOP(m, n)

    slong m2 = (m + 1) / 2;
    slong l = m - 1; /* shifted for derivative */

    /* g := exp(-h) + O(x^m) */
    _arb_poly_mullow(T, f, m, g, m2, m, prec);
    _arb_poly_mullow(g + m2, g, m2, T + m2, m - m2, m - m2, prec);
    _arb_vec_neg(g + m2, g + m2, m - m2);

    /* U := h' + g (f' - f h') + O(x^(n-1))
        Note: should replace h' by h' mod x^(m-1) */
    _arb_vec_zero(f + m, n - m);
    _arb_poly_mullow(T, f, n, hprime, n, n, prec); /* should be mulmid */
    _arb_poly_derivative(U, f, n, prec);
    arb_zero(U + n - 1); /* should skip low terms */
    _arb_vec_sub(U + l, U + l, T + l, n - l, prec);
    _arb_poly_mullow(T + l, g, n - m, U + l, n - m, n - m, prec);
    _arb_vec_add(U + l, hprime + l, T + l, n - m, prec);

    /* f := f + f * (h - int U) + O(x^n) = exp(h) + O(x^n) */
    _arb_poly_integral(U, U, n, prec); /* should skip low terms */
    _arb_vec_sub(U + m, h + m, U + m, n - m, prec);
    _arb_poly_mullow(f + m, f, n - m, U + m, n - m, n - m, prec);

    /* g := exp(-h) + O(x^n) */
    /* not needed if we only want exp(x) */
    if (n == len && inverse)
    {
        _arb_poly_mullow(T, f, n, g, m, n, prec);
        _arb_poly_mullow(g + m, g, m, T + m, n - m, n - m, prec);
        _arb_vec_neg(g + m, g + m, n - m);
    }

    NEWTON_END_LOOP

    NEWTON_END

    _arb_vec_clear(T, alloc);
}
Beispiel #6
0
void
_arb_poly_inv_series(arb_ptr Qinv,
    arb_srcptr Q, slong Qlen, slong len, slong prec)
{
    Qlen = FLINT_MIN(Qlen, len);

    arb_inv(Qinv, Q, prec);

    if (Qlen == 1)
    {
        _arb_vec_zero(Qinv + 1, len - 1);
    }
    else if (len == 2)
    {
        arb_mul(Qinv + 1, Qinv, Qinv, prec);
        arb_mul(Qinv + 1, Qinv + 1, Q + 1, prec);
        arb_neg(Qinv + 1, Qinv + 1);
    }
    else
    {
        slong i, j, blen;

        /* The basecase algorithm is faster for much larger Qlen or len than
           this, but unfortunately also much less numerically stable. */
        if (Qlen == 2 || len <= 8)
            blen = len;
        else
            blen = FLINT_MIN(len, 4);

        for (i = 1; i < blen; i++)
        {
            arb_mul(Qinv + i, Q + 1, Qinv + i - 1, prec);

            for (j = 2; j < FLINT_MIN(i + 1, Qlen); j++)
                arb_addmul(Qinv + i, Q + j, Qinv + i - j, prec);

            if (!arb_is_one(Qinv))
                arb_mul(Qinv + i, Qinv + i, Qinv, prec);

            arb_neg(Qinv + i, Qinv + i);
        }

        if (len > blen)
        {
            slong Qnlen, Wlen, W2len;
            arb_ptr W;

            W = _arb_vec_init(len);

            NEWTON_INIT(blen, len)
            NEWTON_LOOP(m, n)

            Qnlen = FLINT_MIN(Qlen, n);
            Wlen = FLINT_MIN(Qnlen + m - 1, n);
            W2len = Wlen - m;
            MULLOW(W, Q, Qnlen, Qinv, m, Wlen, prec);
            MULLOW(Qinv + m, Qinv, m, W + m, W2len, n - m, prec);
            _arb_vec_neg(Qinv + m, Qinv + m, n - m);

            NEWTON_END_LOOP
            NEWTON_END

            _arb_vec_clear(W, len);
        }
    }
}
void
_arb_poly_sin_cos_series_tangent(arb_ptr s, arb_ptr c,
        arb_srcptr h, slong hlen, slong len, slong prec, int times_pi)
{
    arb_ptr t, u, v;
    arb_t s0, c0;
    hlen = FLINT_MIN(hlen, len);

    if (hlen == 1)
    {
        if (times_pi)
            arb_sin_cos_pi(s, c, h, prec);
        else
            arb_sin_cos(s, c, h, prec);
        _arb_vec_zero(s + 1, len - 1);
        _arb_vec_zero(c + 1, len - 1);
        return;
    }

    /*
    sin(x) = 2*tan(x/2)/(1+tan(x/2)^2)
    cos(x) = (1-tan(x/2)^2)/(1+tan(x/2)^2)
    */

    arb_init(s0);
    arb_init(c0);

    t = _arb_vec_init(3 * len);
    u = t + len;
    v = u + len;

    /* sin, cos of h0 */
    if (times_pi)
        arb_sin_cos_pi(s0, c0, h, prec);
    else
        arb_sin_cos(s0, c0, h, prec);

    /* t = tan((h-h0)/2) */
    arb_zero(u);
    _arb_vec_scalar_mul_2exp_si(u + 1, h + 1, hlen - 1, -1);
    if (times_pi)
    {
        arb_const_pi(t, prec);
        _arb_vec_scalar_mul(u + 1, u + 1, hlen - 1, t, prec);
    }

    _arb_poly_tan_series(t, u, hlen, len, prec);

    /* v = 1 + t^2 */
    _arb_poly_mullow(v, t, len, t, len, len, prec);
    arb_add_ui(v, v, 1, prec);

    /* u = 1/(1+t^2) */
    _arb_poly_inv_series(u, v, len, len, prec);

    /* sine */
    _arb_poly_mullow(s, t, len, u, len, len, prec);
    _arb_vec_scalar_mul_2exp_si(s, s, len, 1);

    /* cosine */
    arb_sub_ui(v, v, 2, prec);
    _arb_vec_neg(v, v, len);
    _arb_poly_mullow(c, v, len, u, len, len, prec);

    /* sin(h0 + h1) = cos(h0) sin(h1) + sin(h0) cos(h1)
       cos(h0 + h1) = cos(h0) cos(h1) - sin(h0) sin(h1) */
    if (!arb_is_zero(s0))
    {
        _arb_vec_scalar_mul(t, s, len, c0, prec);
        _arb_vec_scalar_mul(u, c, len, s0, prec);
        _arb_vec_scalar_mul(v, s, len, s0, prec);
        _arb_vec_add(s, t, u, len, prec);
        _arb_vec_scalar_mul(t, c, len, c0, prec);
        _arb_vec_sub(c, t, v, len, prec);
    }

    _arb_vec_clear(t, 3 * len);

    arb_clear(s0);
    arb_clear(c0);
}