Beispiel #1
0
void
_gcry_mpi_randomize (gcry_mpi_t w,
                     unsigned int nbits, enum gcry_random_level level)
{
  unsigned char *p;
  size_t nbytes = (nbits+7)/8;

  if (mpi_is_immutable (w))
    {
      mpi_immutable_failed ();
      return;
    }
  if (level == GCRY_WEAK_RANDOM)
    {
      p = mpi_is_secure(w) ? xmalloc_secure (nbytes)
                           : xmalloc (nbytes);
      _gcry_create_nonce (p, nbytes);
    }
  else
    {
      p = mpi_is_secure(w) ? _gcry_random_bytes_secure (nbytes, level)
                           : _gcry_random_bytes (nbytes, level);
    }
  _gcry_mpi_set_buffer( w, p, nbytes, 0 );
  xfree (p);
}
Beispiel #2
0
void *
gcry_random_bytes_secure (size_t nbytes, enum gcry_random_level level)
{
  if (!fips_is_operational ())
    {
      (void)fips_not_operational ();
      fips_signal_fatal_error ("called in non-operational state");
      fips_noreturn ();
    }

  return _gcry_random_bytes_secure (nbytes, level);
}
Beispiel #3
0
/*
 * Generate a random secret exponent K less than Q.
 * Note that ECDSA uses this code also to generate D.
 */
gcry_mpi_t
_gcry_dsa_gen_k (gcry_mpi_t q, int security_level)
{
  gcry_mpi_t k        = mpi_alloc_secure (mpi_get_nlimbs (q));
  unsigned int nbits  = mpi_get_nbits (q);
  unsigned int nbytes = (nbits+7)/8;
  char *rndbuf = NULL;

  /* To learn why we don't use mpi_mod to get the requested bit size,
     read the paper: "The Insecurity of the Digital Signature
     Algorithm with Partially Known Nonces" by Nguyen and Shparlinski.
     Journal of Cryptology, New York. Vol 15, nr 3 (2003)  */

  if (DBG_CIPHER)
    log_debug ("choosing a random k of %u bits at seclevel %d\n",
               nbits, security_level);
  for (;;)
    {
      if ( !rndbuf || nbits < 32 )
        {
          xfree (rndbuf);
          rndbuf = _gcry_random_bytes_secure (nbytes, security_level);
	}
      else
        { /* Change only some of the higher bits.  We could improve
	     this by directly requesting more memory at the first call
	     to get_random_bytes() and use these extra bytes here.
	     However the required management code is more complex and
	     thus we better use this simple method.  */
          char *pp = _gcry_random_bytes_secure (4, security_level);
          memcpy (rndbuf, pp, 4);
          xfree (pp);
	}
      _gcry_mpi_set_buffer (k, rndbuf, nbytes, 0);

      /* Make sure we have the requested number of bits.  This code
         looks a bit funny but it is easy to understand if you
         consider that mpi_set_highbit clears all higher bits.  We
         don't have a clear_highbit, thus we first set the high bit
         and then clear it again.  */
      if (mpi_test_bit (k, nbits-1))
        mpi_set_highbit (k, nbits-1);
      else
        {
          mpi_set_highbit (k, nbits-1);
          mpi_clear_bit (k, nbits-1);
	}

      if (!(mpi_cmp (k, q) < 0))    /* check: k < q */
        {
          if (DBG_CIPHER)
            log_debug ("\tk too large - again\n");
          continue; /* no  */
        }
      if (!(mpi_cmp_ui (k, 0) > 0)) /* check: k > 0 */
        {
          if (DBG_CIPHER)
            log_debug ("\tk is zero - again\n");
          continue; /* no */
        }
      break;	/* okay */
    }
  xfree (rndbuf);

  return k;
}
Beispiel #4
0
/**
 * _gcry_ecc_eddsa_genkey - EdDSA version of the key generation.
 *
 * @sk:  A struct to receive the secret key.
 * @E:   Parameters of the curve.
 * @ctx: Elliptic curve computation context.
 * @flags: Flags controlling aspects of the creation.
 *
 * Return: An error code.
 *
 * The only @flags bit used by this function is %PUBKEY_FLAG_TRANSIENT
 * to use a faster RNG.
 */
gpg_err_code_t
_gcry_ecc_eddsa_genkey (ECC_secret_key *sk, elliptic_curve_t *E, mpi_ec_t ctx,
                        int flags)
{
  gpg_err_code_t rc;
  int b = 256/8;             /* The only size we currently support.  */
  gcry_mpi_t a, x, y;
  mpi_point_struct Q;
  gcry_random_level_t random_level;
  char *dbuf;
  size_t dlen;
  gcry_buffer_t hvec[1];
  unsigned char *hash_d = NULL;

  point_init (&Q);
  memset (hvec, 0, sizeof hvec);

  if ((flags & PUBKEY_FLAG_TRANSIENT_KEY))
    random_level = GCRY_STRONG_RANDOM;
  else
    random_level = GCRY_VERY_STRONG_RANDOM;

  a = mpi_snew (0);
  x = mpi_new (0);
  y = mpi_new (0);

  /* Generate a secret.  */
  hash_d = xtrymalloc_secure (2*b);
  if (!hash_d)
    {
      rc = gpg_error_from_syserror ();
      goto leave;
    }
  dlen = b;
  dbuf = _gcry_random_bytes_secure (dlen, random_level);

  /* Compute the A value.  */
  hvec[0].data = dbuf;
  hvec[0].len = dlen;
  rc = _gcry_md_hash_buffers (GCRY_MD_SHA512, 0, hash_d, hvec, 1);
  if (rc)
    goto leave;
  sk->d = _gcry_mpi_set_opaque (NULL, dbuf, dlen*8);
  dbuf = NULL;
  reverse_buffer (hash_d, 32);  /* Only the first half of the hash.  */
  hash_d[0] = (hash_d[0] & 0x7f) | 0x40;
  hash_d[31] &= 0xf8;
  _gcry_mpi_set_buffer (a, hash_d, 32, 0);
  xfree (hash_d); hash_d = NULL;
  /* log_printmpi ("ecgen         a", a); */

  /* Compute Q.  */
  _gcry_mpi_ec_mul_point (&Q, a, &E->G, ctx);
  if (DBG_CIPHER)
    log_printpnt ("ecgen      pk", &Q, ctx);

  /* Copy the stuff to the key structures. */
  sk->E.model = E->model;
  sk->E.dialect = E->dialect;
  sk->E.p = mpi_copy (E->p);
  sk->E.a = mpi_copy (E->a);
  sk->E.b = mpi_copy (E->b);
  point_init (&sk->E.G);
  point_set (&sk->E.G, &E->G);
  sk->E.n = mpi_copy (E->n);
  point_init (&sk->Q);
  point_set (&sk->Q, &Q);

 leave:
  point_free (&Q);
  _gcry_mpi_release (a);
  _gcry_mpi_release (x);
  _gcry_mpi_release (y);
  xfree (hash_d);
  return rc;
}