Beispiel #1
0
inline void avx2_xy_to_uv_with_remainder_f(
  __m256& x_in_dx_out, __m256& y_in_dy_out, __m256i& u, __m256i& v)
{
  avx2_xy_to_uv_f(x_in_dx_out, y_in_dy_out, u, v);
  x_in_dx_out = _mm256_sub_ps(x_in_dx_out, _mm256_cvtepi32_ps(u));
  __m256 vf = _mm256_cvtepi32_ps(v);
  x_in_dx_out = _mm256_fnmadd_ps(vf, calin::math::simd::c_m256(_c_m256_vx), x_in_dx_out);
  y_in_dy_out = _mm256_fnmadd_ps(vf, calin::math::simd::c_m256(_c_m256_vy), y_in_dy_out);
}
Beispiel #2
0
inline void avx2_xy_to_uv_f(__m256 x, __m256 y, __m256i& u, __m256i& v)
{
  // Convert X,Y first into U,V space then round to nearest
  // integer. That gets us close to correct answer, mapping XY to a
  // lozenge-shaped space rather than hexagonal. We then correct the
  // four regions that lie outside the hexagonal cell assigning them
  // to their correct neighboring cell.
  // Writer's note: see ~/Google Drive/Work/calin

  // double dv = y*c_vy_inv;
  // double du = x-dv*c_vx;
  // u = std::lround(du);
  // v = std::lround(dv);
  // du -= u;
  // dv -= v;

  y = _mm256_mul_ps(y, calin::math::simd::c_m256(_c_m256_vy_inv));
  x = _mm256_fnmadd_ps(y, calin::math::simd::c_m256(_c_m256_vx), x);
  u = _mm256_cvtps_epi32(x);
  v = _mm256_cvtps_epi32(y);
  x = _mm256_sub_ps(x, _mm256_cvtepi32_ps(u));
  y = _mm256_sub_ps(y, _mm256_cvtepi32_ps(v));

  // double c3 = dv-du;
  const __m256i c3 = _mm256_castps_si256(_mm256_sub_ps(y, x));

  __m256i uvshift;
  __m256i mask;

  // double c1 = du+0.5*dv;
  // double c2 = dv+0.5*du;
  // if(c3<0) {
  //   if(c1>=1) u++;
  //   else if(c2<-1) v--;
  // } else {
  //   if(c2>=1) v++;
  //   else if(c1<-1) u--;
  // }

  uvshift = _mm256_cvtps_epi32(_mm256_fmadd_ps(y, calin::math::simd::c_m256(_c_m256_one_half), x));
  mask = _mm256_srai_epi32(_mm256_xor_si256(uvshift, c3), 31);
  u = _mm256_blendv_epi8(u, _mm256_add_epi32(u, uvshift), mask);

  uvshift = _mm256_cvtps_epi32(_mm256_fmadd_ps(x, calin::math::simd::c_m256(_c_m256_one_half), y));
  mask = _mm256_srai_epi32(_mm256_xor_si256(uvshift, c3), 31);
  v = _mm256_blendv_epi8(_mm256_add_epi32(v, uvshift), v, mask);
}
Beispiel #3
0
inline void avx2_xy_trans_to_uv_with_remainder_f(
  __m256& x_in_dx_out, __m256& y_in_dy_out, __m256i& u, __m256i& v,
  const float crot, const float srot, const float scale, const float dx = 0, const float dy = 0)
{
  const __m256 vsrot = _mm256_set1_ps(srot);
  const __m256 vcrot = _mm256_set1_ps(crot);
  __m256 vscale = _mm256_set1_ps(1.0f/scale);
  x_in_dx_out = _mm256_mul_ps(_mm256_sub_ps(x_in_dx_out, _mm256_set1_ps(dx)), vscale);
  y_in_dy_out = _mm256_mul_ps(_mm256_sub_ps(y_in_dy_out, _mm256_set1_ps(dy)), vscale);
  __m256 yy = _mm256_mul_ps(x_in_dx_out, vsrot);
  yy = _mm256_fmsub_ps(y_in_dy_out, vcrot, yy);
  x_in_dx_out = _mm256_mul_ps(x_in_dx_out, vcrot);
  x_in_dx_out = _mm256_fmadd_ps(y_in_dy_out, vsrot, x_in_dx_out);
  avx2_xy_to_uv_with_remainder_f(x_in_dx_out, yy, u, v);

  vscale = _mm256_set1_ps(scale);
  y_in_dy_out = _mm256_mul_ps(yy, vcrot);
  y_in_dy_out = _mm256_fmadd_ps(x_in_dx_out, vsrot, y_in_dy_out);
  y_in_dy_out = _mm256_mul_ps(y_in_dy_out, vscale);

  x_in_dx_out = _mm256_mul_ps(x_in_dx_out, vcrot);
  x_in_dx_out = _mm256_fnmadd_ps(yy, vsrot, x_in_dx_out);
  x_in_dx_out = _mm256_mul_ps(x_in_dx_out, vscale);
}
Beispiel #4
0
__m256 test_mm256_fnmadd_ps(__m256 a, __m256 b, __m256 c) {
  // CHECK-LABEL: test_mm256_fnmadd_ps
  // CHECK: [[NEG:%.+]] = fsub <8 x float> <float -0.000000e+00, float -0.000000e+00, float -0.000000e+00, float -0.000000e+00, float -0.000000e+00, float -0.000000e+00, float -0.000000e+00, float -0.000000e+00>, %{{.*}}
  // CHECK: @llvm.x86.fma.vfmadd.ps.256(<8 x float> [[NEG]], <8 x float> %{{.+}}, <8 x float> %{{.+}})
  return _mm256_fnmadd_ps(a, b, c);
}
Beispiel #5
0
__m256 test_mm256_fnmadd_ps(__m256 a, __m256 b, __m256 c) {
  // CHECK: @llvm.x86.fma.vfnmadd.ps.256
  return _mm256_fnmadd_ps(a, b, c);
}
	template <> __m256 fnmadd_ps<2>(__m256 a, __m256 b, __m256 c)
	{
		return _mm256_fnmadd_ps(a, b, c);
	}
Beispiel #7
0
void molec_quadrant_neighbor_interaction_fma(molec_Quadrant_t q, molec_Quadrant_t q_n, float* Epot_)
{
#ifdef __AVX2__
    const __m256 sigLJ = _mm256_set1_ps(molec_parameter->sigLJ);
    const __m256 epsLJ = _mm256_set1_ps(molec_parameter->epsLJ);

    const __m256 Rcut2 = _mm256_set1_ps(molec_parameter->Rcut2);

    const int N = q.N;
    const int N_n = q_n.N_pad;

    __m256 Epot8 = _mm256_setzero_ps();
    __m256 _1 = _mm256_set1_ps(1.f);
    __m256 _2 = _mm256_set1_ps(2.f);
    __m256 _24epsLJ = _mm256_mul_ps(_mm256_set1_ps(24.f), epsLJ);

    for(int i = 0; i < N; ++i)
    {
        const __m256 xi = _mm256_set1_ps(q.x[i]);
        const __m256 yi = _mm256_set1_ps(q.y[i]);
        const __m256 zi = _mm256_set1_ps(q.z[i]);

        __m256 f_xi = _mm256_setzero_ps();
        __m256 f_yi = _mm256_setzero_ps();
        __m256 f_zi = _mm256_setzero_ps();

        for(int j = 0; j < N_n; j += 8)
        {
            // count number of interactions
            if(MOLEC_CELLLIST_COUNT_INTERACTION)
                ++num_potential_interactions;

            // load coordinates and fores into AVX vectors
            const __m256 xj = _mm256_load_ps(&q_n.x[j]);
            const __m256 yj = _mm256_load_ps(&q_n.y[j]);
            const __m256 zj = _mm256_load_ps(&q_n.z[j]);

            __m256 f_xj = _mm256_load_ps(&q_n.f_x[j]);
            __m256 f_yj = _mm256_load_ps(&q_n.f_y[j]);
            __m256 f_zj = _mm256_load_ps(&q_n.f_z[j]);


            // distance computation
            const __m256 xij = _mm256_sub_ps(xi, xj);
            const __m256 yij = _mm256_sub_ps(yi, yj);
            const __m256 zij = _mm256_sub_ps(zi, zj);


            const __m256 zij2 = _mm256_mul_ps(zij, zij);
            const __m256 r2 = _mm256_fmadd_ps(xij, xij, _mm256_fmadd_ps(yij, yij, zij2));


            // r2 < Rcut2
            const __m256 mask = _mm256_cmp_ps(r2, Rcut2, _CMP_LT_OQ);

            // if( any(r2 < R2) )
            if(_mm256_movemask_ps(mask))
            {
                const __m256 r2inv = _mm256_div_ps(_1, r2);

                const __m256 s2 = _mm256_mul_ps(_mm256_mul_ps(sigLJ, sigLJ), r2inv);
                const __m256 s6 = _mm256_mul_ps(_mm256_mul_ps(s2, s2), s2);
                const __m256 s12 = _mm256_mul_ps(s6, s6);

                const __m256 s12_minus_s6 = _mm256_sub_ps(s12, s6);
                const __m256 two_s12_minus_s6 = _mm256_sub_ps(_mm256_mul_ps(_2, s12), s6);

                Epot8 = _mm256_add_ps(Epot8, _mm256_and_ps(s12_minus_s6, mask));

                const __m256 fr = _mm256_mul_ps(_mm256_mul_ps(_24epsLJ, r2inv), two_s12_minus_s6);
                const __m256 fr_mask = _mm256_and_ps(fr, mask);


                // update forces
                f_xi = _mm256_fmadd_ps(fr_mask, xij,f_xi);
                f_yi = _mm256_fmadd_ps(fr_mask, yij,f_yi);
                f_zi = _mm256_fmadd_ps(fr_mask, zij,f_zi);

                f_xj = _mm256_fnmadd_ps(fr_mask,xij,f_xj);
                f_yj = _mm256_fnmadd_ps(fr_mask,yij,f_yj);
                f_zj = _mm256_fnmadd_ps(fr_mask,zij,f_zj);

                // store back j-forces
                _mm256_store_ps(&q_n.f_x[j], f_xj);
                _mm256_store_ps(&q_n.f_y[j], f_yj);
                _mm256_store_ps(&q_n.f_z[j], f_zj);
            }
        }

        // update i-forces
        float MOLEC_ALIGNAS(32) f_array[8];
        _mm256_store_ps(f_array, f_xi);
        q.f_x[i] += f_array[0] + f_array[1] + f_array[2] + f_array[3] + f_array[4] + f_array[5]
                    + f_array[6] + f_array[7];
        _mm256_store_ps(f_array, f_yi);
        q.f_y[i] += f_array[0] + f_array[1] + f_array[2] + f_array[3] + f_array[4] + f_array[5]
                    + f_array[6] + f_array[7];
        _mm256_store_ps(f_array, f_zi);
        q.f_z[i] += f_array[0] + f_array[1] + f_array[2] + f_array[3] + f_array[4] + f_array[5]
                    + f_array[6] + f_array[7];
    }

    float MOLEC_ALIGNAS(32) E_pot_array[8];
    _mm256_store_ps(E_pot_array, Epot8);

    // perform reduction of potential energy
    *Epot_ += 4
              * molec_parameter->epsLJ*(E_pot_array[0] + E_pot_array[1] + E_pot_array[2]
                                        + E_pot_array[3] + E_pot_array[4] + E_pot_array[5]
                                        + E_pot_array[6] + E_pot_array[7]);
#endif
}
Beispiel #8
0
__m256
check_mm256_fnmadd_ps (__m256 a, __m256 b, __m256 c)
{
  return _mm256_fnmadd_ps (a, b, c);
}