static inline void _put(char c) {
	input_queue_t *iqp = &USBH_DEBUG_USBHD.iq;
	if (sizeof(USBH_DEBUG_USBHD.dbg_buff) - iqp->q_counter <= 1)
		return;
	iqp->q_counter++;
	_wr(iqp, c);
}
status_t SharedBufferClient::setBufferCount(
        int bufferCount, const SetBufferCountCallback& ipc)
{
    SharedBufferStack& stack( *mSharedStack );
    if (uint32_t(bufferCount) >= SharedBufferStack::NUM_BUFFER_MAX)
        return BAD_VALUE;

    if (uint32_t(bufferCount) < SharedBufferStack::NUM_BUFFER_MIN)
        return BAD_VALUE;

    RWLock::AutoWLock _wr(mLock);

    status_t err = ipc(bufferCount);
    if (err == NO_ERROR) {
        mNumBuffers = bufferCount;
        queued_head = (stack.head + stack.queued) % mNumBuffers;
    }
    return err;
}
Beispiel #3
0
/**
 * @brief User entry point in driver/simulator installation routine.
 *
 * @param proceed -- if standard code execution should be proceed
 * @param info    -- driver info table
 * @param sptr    -- statics table
 *
 * It's up to user to set kernel-level errno (by means of @e pseterr call).
 * @e proceed parameter denotes if further standard actions should be proceed
 * after function returns. @b FALSE - means that user-desired operation done
 * all that user wants and there is no further necessaty to perfom any standard
 * operations that follow function call. @b TRUE - means that code that follows
 * function call will be executed.
 *
 * @return return value is the same as in entry point function.\n
 *         pointer to a statics data structure - if succeed.\n
 *         SYSERR                              - in case of failure.
 */
char* CvorbUserInst(int *proceed, register DevInfo_t *info,
			  register CVORBStatics_t *sptr)
{
	CVORBUserStatics_t *usp = sptr->usrst; /* user statistics table */
	int iVec = 0; /* interrupt vector */
	int m, c;

	iVec = info->iVector;		/* set up interrupt vector */

	/* map submodule address pointers */
	usp->md = (struct cvorb_module *)sysbrk(sizeof(_m));

	usp->md[0].md = (mod *)sptr->card->block00;
	usp->md[1].md = (mod *)((long)sptr->card->block00 + 0x200);
	
	if (!firmware_ok(usp, info->mlun)) {
		sysfree((char *)usp->md, sizeof(_m));
		return (char *)SYSERR;
	}
	for (m = 0; m < SMAM; m++) {
		/* reset subModules */
		_wr(m, SOFT_PULSE, SPR_FGR);

		/* initialize iolock mutex */
		cdcm_mutex_init(&usp->md[m].iol);

		/* set submodule channels addresses */
		for (c = 0; c < CHAM; c++)
			usp->md[m].cd[c] = (chd *)
				((long)usp->md[m].md + _ch_offset[c]);
	}

	/* init on-board DAC */
	ad9516o_init(usp);

	/* disable on-board clock generator */
	_wr(0, CLK_GEN_CNTL, AD9516_OFF);

	/* set normal mode operation, enable all channels and
	   set recurrent cycles to 1 (i.e. play function once) */
	enable_modules(usp);

	/* Uncomment the following code to register ISR */
#if 0
	if (iVec > 0) {
		int cc = 0; /* completion code */
		kkprintf("ISR ( vector number [%d] ) installation - ", iVec);
#ifdef __Lynx__
#ifdef __powerpc__ /* in this case we are using CES BSP */
		cc = vme_intset(iVec, (int (*)())CvorbISR,
				  (char*)sptr, 0);
#else  /* use standard system call otherwise */
		cc = iointset(iVec, (int (*)())CvorbISR, (char*)sptr);
#endif
#else  /* __linux__ */
		cc = vme_request_irq(iVec,
				     (int (*)(void *))CvorbISR,
				     (char *)sptr,
				     "CvorbD");
#endif /* __Lynx__ */
		if (cc < 0) {
			kkprintf("Failed.\n");
			pseterr(EFAULT); /* TODO. what error to set? */
			return (char*)SYSERR;	/* -1 */
		}
		kkprintf("interrupt vector managed.\n");
	}
#endif

	if (proceed)
		*proceed = TRUE; /* continue standard code execution */

	return (char *)sptr; /* succeed */
}
Beispiel #4
0
/**
 * @brief User entry point in driver/simulator ioctl routine.
 *
 * @param proceed -- if standard code execution should be proceed
 * @param sptr    -- statics table pointer
 * @param f       -- file pointer. Lynx/Linux specific.
 *                   See (sys/file.h) for Lynx and (linux/fs.h) for Linux.
 * @param lun     -- minor number (LUN)
 * @param com     -- ioctl number
 * @param arg     -- ioctl arguments
 *
 * It's up to user to set kernel-level errno (by means of @e pseterr call).
 * @e proceed parameter denotes if further standard actions should be proceed
 * after function returns. @b FALSE - means that user-desired operation done
 * all that user wants and there is no further necessaty to perfom any standard
 * operations that follow function call. @b TRUE - means that code that follows
 * function call will be executed.
 *
 * @return return value is the same as in entry point function\n
 *         OK     - if succeed.\n
 *         SYSERR - in case of failure.
 */
int CvorbUserIoctl(int *proceed, register CVORBStatics_t *sptr,
			 struct file *f, int lun, int com, char *arg)
{
	CVORBUserStatics_t *usp = sptr->usrst; /* user statistics table */
	ushort edp[3]; /* [select/get function] ioctl parameters
			  [0] -- module idx
			  [1] -- chan idx
			  [2] -- func idx */
	*proceed = FALSE;

	switch (com) {
	case CVORB_VHDL:
		return read_vhdl(usp, arg);
	case CVORB_PCB:
		return read_pcb(usp, arg);
	case CVORB_TEMP:
		return read_temp(usp, arg);
	case CVORB_MOD_CFG_RD:
		return read_mod_config_reg(usp, arg);
	case CVORB_MOD_CFG_WR:
		return write_mod_config_reg(usp, arg);
	case CVORB_CH_CFG_RD:
		return read_ch_config_reg(usp, arg);
	case CVORB_CH_CFG_WR:
		return write_ch_config_reg(usp, arg);
	case CVORB_MOD_STAT:
		return read_mod_stat(usp, arg);
	case CVORB_CH_STAT:
		return read_ch_stat(usp, arg);
	case CVORB_LOAD_SRAM:
		return load_sram(usp, arg);
	case CVORB_READ_SRAM:
		return read_sram(usp, arg);
	case CVORB_FEN: /* enable function in the function bitmask */
		return enable_function(usp, arg);
	case CVORB_FDIS: /* disable function in the function bitmask */
		return disable_function(usp, arg);
	case CVORB_FEN_RD: /* read Funciton Enable Mask */
		{
			uint m[2]; /* [0] -- bits[63-32]
				      [1] -- bits[31-0] */

			/* ioctl parameters */
			struct {
				ushort m; /* module idx */
				ushort c; /* channel idx */
				uint  *p; /* results goes here */
			} par;

			if (cdcm_copy_from_user(&par, arg, sizeof(par)))
				return SYSERR;

			m[0] = _rcr(par.m, par.c, FCT_EM_H);
			m[1] = _rcr(par.m, par.c, FCT_EM_L);
			return cdcm_copy_to_user(par.p, m, sizeof(m));
		}
	case CVORB_FEN_WR: /* write Function Enable Mask */
		return write_fem_regs(usp, arg);
	case CVORB_FUNC_SEL: /* select function to be played */
		if (cdcm_copy_from_user(&edp, arg, sizeof(edp)))
			return SYSERR;
		_wcr(edp[0], edp[1], FUNC_SEL, edp[2]);
		/* Should wait on Channel Status register bit[9] -- function
		   copy in progress, when data is copying into local SRAM. */
		while(_rcr(edp[0], edp[1], CH_STAT) & 1<<9)
			usec_sleep(1);
		return OK;
	case CVORB_FUNC_GET:	/* get currently selected function */
		if (cdcm_copy_from_user(&edp, arg, sizeof(edp)))
			return SYSERR;
		return _rcr(edp[0], edp[1], FUNC_SEL);
	case CVORB_WRSWP: /* action register.
			     Simulate front panel pulse inputs */
		return write_swp(usp, arg);
	case CVORB_RC_RD:
		return read_recurrent_cycles_reg(usp, arg);
	case CVORB_RC_WR:
		return write_recurrent_cycles_reg(usp, arg);
	case CVORB_DAC_ON:
		return dac_on(usp, arg);
	case CVORB_DAC_OFF:
		/* disable on-board clock generator */
		_wr(0, CLK_GEN_CNTL, AD9516_OFF);
		return OK;
	case AD9516_GET_PLL:
		return get_pll(usp, arg);
	case CVORB_WR_SAR:
		return write_sar(usp, arg);
	default:
		*proceed = TRUE; /* continue standard code execution */
	}

	return OK;
}