void
_acb_poly_revert_series_lagrange_fast(acb_ptr Qinv, acb_srcptr Q, slong Qlen, slong n, slong prec)
{
    slong i, j, k, m;
    acb_ptr R, S, T, tmp;
    acb_t t;

    if (n <= 2)
    {
        if (n >= 1)
            acb_zero(Qinv);
        if (n == 2)
            acb_inv(Qinv + 1, Q + 1, prec);
        return;
    }

    m = n_sqrt(n);

    acb_init(t);
    R = _acb_vec_init((n - 1) * m);
    S = _acb_vec_init(n - 1);
    T = _acb_vec_init(n - 1);

    acb_zero(Qinv);
    acb_inv(Qinv + 1, Q + 1, prec);

    _acb_poly_inv_series(Ri(1), Q + 1, FLINT_MIN(Qlen, n) - 1, n - 1, prec);
    for (i = 2; i <= m; i++)
        _acb_poly_mullow(Ri(i), Ri((i + 1) / 2), n - 1, Ri(i / 2), n - 1, n - 1, prec);

    for (i = 2; i < m; i++)
        acb_div_ui(Qinv + i, Ri(i) + i - 1, i, prec);

    _acb_vec_set(S, Ri(m), n - 1);

    for (i = m; i < n; i += m)
    {
        acb_div_ui(Qinv + i, S + i - 1, i, prec);

        for (j = 1; j < m && i + j < n; j++)
        {
            acb_mul(t, S + 0, Ri(j) + i + j - 1, prec);
            for (k = 1; k <= i + j - 1; k++)
                acb_addmul(t, S + k, Ri(j) + i + j - 1 - k, prec);
            acb_div_ui(Qinv + i + j, t, i + j, prec);
        }

        if (i + 1 < n)
        {
            _acb_poly_mullow(T, S, n - 1, Ri(m), n - 1, n - 1, prec);
            tmp = S; S = T; T = tmp;
        }
    }

    acb_clear(t);
    _acb_vec_clear(R, (n - 1) * m);
    _acb_vec_clear(S, n - 1);
    _acb_vec_clear(T, n - 1);
}
Beispiel #2
0
void
_acb_poly_interpolation_weights(acb_ptr w,
    acb_ptr * tree, slong len, slong prec)
{
    acb_ptr tmp;
    slong i, n, height;

    if (len == 0)
        return;

    if (len == 1)
    {
        acb_one(w);
        return;
    }

    tmp = _acb_vec_init(len + 1);
    height = FLINT_CLOG2(len);
    n = WORD(1) << (height - 1);

    _acb_poly_mul_monic(tmp, tree[height-1], n + 1,
                        tree[height-1] + (n + 1), (len - n + 1), prec);

    _acb_poly_derivative(tmp, tmp, len + 1, prec);
    _acb_poly_evaluate_vec_fast_precomp(w, tmp, len, tree, len, prec);

    for (i = 0; i < len; i++)
        acb_inv(w + i, w + i, prec);

    _acb_vec_clear(tmp, len + 1);
}
Beispiel #3
0
void
acb_hypgeom_pfq_sum_bs_invz(acb_t s, acb_t t,
    acb_srcptr a, slong p, acb_srcptr b, slong q, const acb_t z, slong n, slong prec)
{
    acb_t u, v, w;

    if (n < 4)
    {
        acb_init(u);
        acb_inv(u, z, prec);
        acb_hypgeom_pfq_sum_forward(s, t, a, p, b, q, u, n, prec);
        acb_clear(u);
        return;
    }

    acb_init(u);
    acb_init(v);
    acb_init(w);

    bsplit(u, v, w, a, p, b, q, z, 0, n, prec, 1);

    acb_div(t, u, w, prec);
    acb_div(s, v, w, prec);

    acb_clear(u);
    acb_clear(v);
    acb_clear(w);
}
Beispiel #4
0
void
acb_lambertw_initial_asymp(acb_t w, const acb_t z, const fmpz_t k, slong prec)
{
    acb_t L1, L2, t;

    acb_init(L1);
    acb_init(L2);
    acb_init(t);

    acb_const_pi(L2, prec);
    acb_mul_2exp_si(L2, L2, 1);
    acb_mul_fmpz(L2, L2, k, prec);
    acb_mul_onei(L2, L2);
    acb_log(L1, z, prec);
    acb_add(L1, L1, L2, prec);
    acb_log(L2, L1, prec);

    /* L1 - L2 + L2/L1 + L2(L2-2)/(2 L1^2) */
    acb_inv(t, L1, prec);
    acb_mul_2exp_si(w, L2, 1);
    acb_submul(w, L2, L2, prec);
    acb_neg(w, w);
    acb_mul(w, w, t, prec);
    acb_mul_2exp_si(w, w, -1);
    acb_add(w, w, L2, prec);
    acb_mul(w, w, t, prec);
    acb_sub(w, w, L2, prec);
    acb_add(w, w, L1, prec);

    acb_clear(L1);
    acb_clear(L2);
    acb_clear(t);
}
Beispiel #5
0
int main()
{
    slong iter;
    flint_rand_t state;

    flint_printf("rsqrt....");
    fflush(stdout);

    flint_randinit(state);

    /* check (a^(-1/2))^(-2) = a */
    for (iter = 0; iter < 10000; iter++)
    {
        acb_t a, b, c;
        slong prec;

        acb_init(a);
        acb_init(b);
        acb_init(c);

        acb_randtest(a, state, 1 + n_randint(state, 2000), 10);
        acb_randtest(b, state, 1 + n_randint(state, 2000), 10);

        prec = 2 + n_randint(state, 2000);

        acb_rsqrt(b, a, prec);
        acb_inv(c, b, prec);
        acb_mul(c, c, c, prec);

        if (!acb_contains(c, a))
        {
            flint_printf("FAIL: containment\n\n");
            flint_printf("a = "); acb_print(a); flint_printf("\n\n");
            flint_printf("b = "); acb_print(b); flint_printf("\n\n");
            flint_printf("c = "); acb_print(c); flint_printf("\n\n");
            abort();
        }

        acb_rsqrt(a, a, prec);
        if (!acb_equal(a, b))
        {
            flint_printf("FAIL: aliasing\n\n");
            flint_printf("a = "); acb_print(a); flint_printf("\n\n");
            flint_printf("b = "); acb_print(b); flint_printf("\n\n");
            abort();
        }

        acb_clear(a);
        acb_clear(b);
        acb_clear(c);
    }

    flint_randclear(state);
    flint_cleanup();
    flint_printf("PASS\n");
    return EXIT_SUCCESS;
}
Beispiel #6
0
/* f(z) = 1/(1+z^2) */
int
f_atanderiv(acb_ptr res, const acb_t z, void * param, slong order, slong prec)
{
    if (order > 1)
        flint_abort();  /* Would be needed for Taylor method. */

    acb_mul(res, z, z, prec);
    acb_add_ui(res, res, 1, prec);
    acb_inv(res, res, prec);

    return 0;
}
/* note: the tmp variable t should have zero radius */
static void
acb_approx_div(acb_t z, const acb_t x, const acb_t y, acb_t t, slong prec)
{
    arf_set(arb_midref(acb_realref(t)), arb_midref(acb_realref(y)));
    arf_set(arb_midref(acb_imagref(t)), arb_midref(acb_imagref(y)));

    acb_inv(t, t, prec);

    mag_zero(arb_radref(acb_realref(t)));
    mag_zero(arb_radref(acb_imagref(t)));

    acb_approx_mul(z, x, t, prec);
}
Beispiel #8
0
void
integrals_edge_factors_gc(acb_ptr res, const acb_t cab, const acb_t ba2, sec_t c, slong prec)
{
    slong i;
    acb_t cj, ci;

    acb_init(cj);
    acb_init(ci);

    /* polynomial shift */
    acb_vec_polynomial_shift(res, cab, c.g, prec);

    /* constants cj, j = 1 */
    /* c_1 = (1-zeta^-1) ba2^(-d/2) (-I)^i
     *     = 2 / ba2^(d/2) */

    acb_pow_ui(cj, ba2, c.d / 2, prec);
    if (c.d % 2)
    {
        acb_t t;
        acb_init(t);
        acb_sqrt(t, ba2, prec);
        acb_mul(cj, cj, t, prec);
        acb_clear(t);
    }
    acb_inv(cj, cj, prec);
    acb_mul_2exp_si(cj, cj, 1);

    _acb_vec_scalar_mul(res, res, c.g, cj, prec);

    /* constant ci = -I * ba2*/
    acb_one(ci);
    for (i = 1; i < c.g; i++)
    {
        acb_mul(ci, ci, ba2, prec);
        acb_div_onei(ci, ci);
        acb_mul(res + i, res + i, ci, prec);
    }

    acb_clear(ci);
    acb_clear(cj);
}
Beispiel #9
0
int
f_lambertw(acb_ptr res, const acb_t z, void * param, slong order, slong prec)
{
    acb_t t;

    if (order > 1)
        flint_abort();  /* Would be needed for Taylor method. */

    acb_init(t);

    prec = FLINT_MIN(prec, acb_rel_accuracy_bits(z) + 10);

    if (order != 0)
    {
        /* check for branch cut */
        arb_const_e(acb_realref(t), prec);
        acb_inv(t, t, prec);
        acb_add(t, t, z, prec);

        if (arb_contains_zero(acb_imagref(t)) &&
            arb_contains_nonpositive(acb_realref(t)))
        {
            acb_indeterminate(t);
        }
    }

    if (acb_is_finite(t))
    {
        fmpz_t k;
        fmpz_init(k);
        acb_lambertw(res, z, k, 0, prec);
        fmpz_clear(k);
    }
    else
    {
        acb_indeterminate(res);
    }

    acb_clear(t);

    return 0;
}
Beispiel #10
0
/* f(z) = sin(1/z), assume on real interval */
int
f_essing(acb_ptr res, const acb_t z, void * param, slong order, slong prec)
{
    if (order > 1)
        flint_abort();  /* Would be needed for Taylor method. */

    if ((order == 0) && acb_is_real(z) && arb_contains_zero(acb_realref(z)))
    {
        /* todo: arb_zero_pm_one, arb_unit_interval? */
        acb_zero(res);
        mag_one(arb_radref(acb_realref(res)));
    }
    else
    {
        acb_inv(res, z, prec);
        acb_sin(res, res, prec);
    }

    return 0;
}
Beispiel #11
0
Datei: ci.c Projekt: isuruf/arb
void
acb_hypgeom_ci_asymp(acb_t res, const acb_t z, slong prec)
{
    acb_t t, u, w, v, one;

    acb_init(t);
    acb_init(u);
    acb_init(w);
    acb_init(v);
    acb_init(one);

    acb_one(one);
    acb_mul_onei(w, z);

    /* u = U(1,1,iz) */
    acb_hypgeom_u_asymp(u, one, one, w, -1, prec);
    /* v = e^(-iz) */
    acb_neg(v, w);
    acb_exp(v, v, prec);
    acb_mul(t, u, v, prec);

    if (acb_is_real(z))
    {
        arb_div(acb_realref(t), acb_imagref(t), acb_realref(z), prec);
        arb_zero(acb_imagref(t));
        acb_neg(t, t);
    }
    else
    {
        /* u = U(1,1,-iz) */
        acb_neg(w, w);
        acb_hypgeom_u_asymp(u, one, one, w, -1, prec);
        acb_inv(v, v, prec);
        acb_submul(t, u, v, prec);

        acb_div(t, t, w, prec);
        acb_mul_2exp_si(t, t, -1);
    }

    if (arb_is_zero(acb_realref(z)))
    {
        if (arb_is_positive(acb_imagref(z)))
        {
            arb_const_pi(acb_imagref(t), prec);
            arb_mul_2exp_si(acb_imagref(t), acb_imagref(t), -1);
        }
        else if (arb_is_negative(acb_imagref(z)))
        {
            arb_const_pi(acb_imagref(t), prec);
            arb_mul_2exp_si(acb_imagref(t), acb_imagref(t), -1);
            arb_neg(acb_imagref(t), acb_imagref(t));
        }
        else
        {
            acb_const_pi(u, prec);
            acb_mul_2exp_si(u, u, -1);
            arb_zero(acb_imagref(t));
            arb_add_error(acb_imagref(t), acb_realref(u));
        }
    }
    else
    {
        /* 0 if positive or positive imaginary
           pi if upper left quadrant (including negative real axis)
           -pi if lower left quadrant (including negative imaginary axis) */
        if (arb_is_positive(acb_realref(z)))
        {
            /* do nothing */
        }
        else if (arb_is_negative(acb_realref(z)) && arb_is_nonnegative(acb_imagref(z)))
        {
            acb_const_pi(u, prec);
            arb_add(acb_imagref(t), acb_imagref(t), acb_realref(u), prec);
        }
        else if (arb_is_nonpositive(acb_realref(z)) && arb_is_negative(acb_imagref(z)))
        {
            acb_const_pi(u, prec);
            arb_sub(acb_imagref(t), acb_imagref(t), acb_realref(u), prec);
        }
        else
        {
            /* add [-pi,pi] */
            acb_const_pi(u, prec);
            arb_add_error(acb_imagref(t), acb_realref(u));
        }
    }

    acb_swap(res, t);

    acb_clear(t);
    acb_clear(u);
    acb_clear(w);
    acb_clear(v);
    acb_clear(one);
}
void
gc_integrals_precomp(acb_ptr res, acb_srcptr u, slong d1, slong d, slong g, const gc_int_t gc, int flag, slong prec)
{
    slong l;
    arb_t w, x;
    acb_t y, yxi;
    void (*sqrt_pol) (acb_t y, acb_srcptr u, slong d1, slong d,
            const arb_t x, slong prec);

    arb_init(w);
    arb_init(x);
    acb_init(y);
    acb_init(yxi);
#if DEBUG
    flint_printf("\ngc integral : d1 = %ld, d = %ld, g = %ld, n = %ld, prec = %ld",
            d1, d, g, gc->n, prec);
#endif

    sqrt_pol = &sqrt_pol_turn;
    if (flag & AJ_ROOT_DEF)
        sqrt_pol = &sqrt_pol_def;
    else if (flag & AJ_ROOT_TURN)
        sqrt_pol = &sqrt_pol_turn;

    /* compute integral */
    _acb_vec_zero(res, g);

    for (l = 0; l < gc->len; l++)
    {

        /* compute 1/y(x) */
        sqrt_pol(y, u, d1, d, gc->x + l, prec);
        acb_inv(y, y, prec);

        /* differentials */
        acb_vec_add_geom_arb(res, g, y, gc->x + l, prec);

        /* now on -x */
        arb_neg(x, gc->x + l);

        sqrt_pol(y, u, d1, d, x, prec);
        acb_inv(y, y, prec);
        acb_vec_add_geom_arb(res, g, y, x, prec);
    }

    if (gc->n % 2)
    {
        arb_zero(x);
        /* FIXME: pb with turn */
        sqrt_pol_def(y, u, d1, d, x, prec);
#if DEBUG > 1
        flint_printf("\nend integration sum");
        _acb_vec_printd(res, g, 30, "\n");
        flint_printf("\nroots (d1=%ld, d=%ld)\n",d1,d);
        _acb_vec_printd(u, d, 30, "\n");
        flint_printf("\n -> y = ");
        acb_printd(y, 30);
#endif
        acb_inv(y, y, prec);
        acb_add(res + 0, res + 0, y, prec);
    }

    /* multiply by weight = Pi / n */
    arb_const_pi(w, prec);
    arb_div_ui(w, w, gc->n, prec);
    _acb_vec_scalar_mul_arb(res, res, g, w, prec);
#if DEBUG > 1
        flint_printf("\nend integration ");
        _acb_vec_printd(res, g, 30, "\n");
#endif

    arb_clear(x);
    arb_clear(w);
    acb_clear(y);
    acb_clear(yxi);
}
Beispiel #13
0
void
acb_pow_fmpz_binexp(acb_t y, const acb_t b, const fmpz_t e, long prec)
{
    long i, wp, bits;

    if (-2L <= *e && *e <= 4L)
    {
        if (*e == 0L)
        {
            acb_one(y);
        }
        else if (*e == 1L)
        {
            acb_set_round(y, b, prec);
        }
        else if (*e == -1L)
        {
            acb_inv(y, b, prec);
        }
        else if (*e == 2L)
        {
            acb_mul(y, b, b, prec);
        }
        else if (*e == 3L)
        {
            acb_cube(y, b, prec);
        }
        else if (*e == 4L)
        {
            acb_mul(y, b, b, prec);
            acb_mul(y, y, y, prec);
        }
        else
        {
            acb_inv(y, b, prec);
            acb_mul(y, y, y, prec);
        }
        return;
    }

    if (fmpz_sgn(e) < 0)
    {
        fmpz_t f;
        fmpz_init(f);
        fmpz_neg(f, e);
        acb_pow_fmpz_binexp(y, b, f, prec + 2);
        acb_inv(y, y, prec);
        fmpz_clear(f);
        return;
    }

    if (!COEFF_IS_MPZ(*e) && ((*e) % 3 == 0))
    {
        fmpz e3 = (*e) / 3;
        acb_pow_fmpz_binexp(y, b, &e3, prec);
        acb_cube(y, y, prec);
        return;
    }

    if (y == b)
    {
        acb_t t;
        acb_init(t);
        acb_set(t, b);
        acb_pow_fmpz_binexp(y, t, e, prec);
        acb_clear(t);
        return;
    }

    acb_set(y, b);

    bits = fmpz_bits(e);
    wp = ARF_PREC_ADD(prec, bits);

    for (i = bits - 2; i >= 0; i--)
    {
        acb_mul(y, y, y, wp);
        if (fmpz_tstbit(e, i))
            acb_mul(y, y, b, wp);
    }
}
Beispiel #14
0
void
_acb_poly_zeta_cpx_reflect(acb_ptr t, const acb_t h, const acb_t a, int deflate, slong len, slong prec)
{
    /* use reflection formula */
    if (arf_sgn(arb_midref(acb_realref(h))) < 0 && acb_is_one(a))
    {
        /* zeta(s) = (2*pi)**s * sin(pi*s/2) / pi * gamma(1-s) * zeta(1-s) */
        acb_t pi, hcopy;
        acb_ptr f, s1, s2, s3, s4, u;
        slong i;

        acb_init(pi);
        acb_init(hcopy);
        f = _acb_vec_init(2);
        s1 = _acb_vec_init(len);
        s2 = _acb_vec_init(len);
        s3 = _acb_vec_init(len);
        s4 = _acb_vec_init(len);
        u = _acb_vec_init(len);
        acb_set(hcopy, h);

        acb_const_pi(pi, prec);

        /* s1 = (2*pi)**s */
        acb_mul_2exp_si(pi, pi, 1);
        _acb_poly_pow_cpx(s1, pi, h, len, prec);
        acb_mul_2exp_si(pi, pi, -1);

        /* s2 = sin(pi*s/2) / pi */
        acb_set(f, h);
        acb_one(f + 1);
        acb_mul_2exp_si(f, f, -1);
        acb_mul_2exp_si(f + 1, f + 1, -1);
        _acb_poly_sin_pi_series(s2, f, 2, len, prec);
        _acb_vec_scalar_div(s2, s2, len, pi, prec);

        /* s3 = gamma(1-s) */
        acb_sub_ui(f, hcopy, 1, prec);
        acb_neg(f, f);
        acb_set_si(f + 1, -1);
        _acb_poly_gamma_series(s3, f, 2, len, prec);

        /* s4 = zeta(1-s) */
        acb_sub_ui(f, hcopy, 1, prec);
        acb_neg(f, f);
        _acb_poly_zeta_cpx_series(s4, f, a, 0, len, prec);
        for (i = 1; i < len; i += 2)
            acb_neg(s4 + i, s4 + i);

        _acb_poly_mullow(u, s1, len, s2, len, len, prec);
        _acb_poly_mullow(s1, s3, len, s4, len, len, prec);
        _acb_poly_mullow(t, u, len, s1, len, len, prec);

        /* add 1/(1-(s+t)) = 1/(1-s) + t/(1-s)^2 + ... */
        if (deflate)
        {
            acb_sub_ui(u, hcopy, 1, prec);
            acb_neg(u, u);
            acb_inv(u, u, prec);
            for (i = 1; i < len; i++)
                acb_mul(u + i, u + i - 1, u, prec);
            _acb_vec_add(t, t, u, len, prec);
        }

        acb_clear(pi);
        acb_clear(hcopy);
        _acb_vec_clear(f, 2);
        _acb_vec_clear(s1, len);
        _acb_vec_clear(s2, len);
        _acb_vec_clear(s3, len);
        _acb_vec_clear(s4, len);
        _acb_vec_clear(u, len);
    }
    else
    {
        _acb_poly_zeta_cpx_series(t, h, a, deflate, len, prec);
    }
}
Beispiel #15
0
int main()
{
    long iter;
    flint_rand_t state;

    printf("det....");
    fflush(stdout);

    flint_randinit(state);

    for (iter = 0; iter < 10000; iter++)
    {
        fmpq_mat_t Q;
        fmpq_t Qdet;
        acb_mat_t A;
        acb_t Adet, imagunit;
        long n, qbits, prec;
        int imaginary;

        n = n_randint(state, 8);
        qbits = 1 + n_randint(state, 100);
        prec = 2 + n_randint(state, 200);
        imaginary = n_randint(state, 2);

        fmpq_mat_init(Q, n, n);
        fmpq_init(Qdet);

        acb_mat_init(A, n, n);
        acb_init(Adet);
        acb_init(imagunit);

        fmpq_mat_randtest(Q, state, qbits);
        fmpq_mat_det(Qdet, Q);

        acb_mat_set_fmpq_mat(A, Q, prec);

        if (imaginary)
        {
            acb_onei(imagunit);
            acb_mat_scalar_mul_acb(A, A, imagunit, prec);
        }

        acb_mat_det(Adet, A, prec);

        if (imaginary)
        {
            acb_onei(imagunit);
            acb_inv(imagunit, imagunit, prec);
            acb_pow_ui(imagunit, imagunit, n, prec);
            acb_mul(Adet, Adet, imagunit, prec);
        }

        if (!acb_contains_fmpq(Adet, Qdet))
        {
            printf("FAIL (containment, iter = %ld)\n", iter);
            printf("n = %ld, prec = %ld\n", n, prec);
            printf("\n");

            printf("Q = \n"); fmpq_mat_print(Q); printf("\n\n");
            printf("Qdet = \n"); fmpq_print(Qdet); printf("\n\n");

            printf("A = \n"); acb_mat_printd(A, 15); printf("\n\n");
            printf("Adet = \n"); acb_printd(Adet, 15); printf("\n\n");
            printf("Adet = \n"); acb_print(Adet); printf("\n\n");

            abort();
        }

        fmpq_mat_clear(Q);
        fmpq_clear(Qdet);
        acb_mat_clear(A);
        acb_clear(Adet);
        acb_clear(imagunit);
    }

    flint_randclear(state);
    flint_cleanup();
    printf("PASS\n");
    return EXIT_SUCCESS;
}
Beispiel #16
0
void
acb_modular_eisenstein(acb_ptr r, const acb_t tau, slong len, slong prec)
{
    psl2z_t g;
    arf_t one_minus_eps;
    acb_t tau_prime, t1, t2, t3, t4, q;
    slong m, n;

    if (len < 1)
        return;

    psl2z_init(g);
    arf_init(one_minus_eps);
    acb_init(tau_prime);
    acb_init(t1);
    acb_init(t2);
    acb_init(t3);
    acb_init(t4);
    acb_init(q);

    arf_set_ui_2exp_si(one_minus_eps, 63, -6);
    acb_modular_fundamental_domain_approx(tau_prime, g, tau,
        one_minus_eps, prec);

    acb_exp_pi_i(q, tau_prime, prec);
    acb_modular_theta_const_sum(t2, t3, t4, q, prec);

    /* fourth powers of the theta functions (a, b, c) */
    acb_mul(t2, t2, t2, prec);
    acb_mul(t2, t2, t2, prec);
    acb_mul(t2, t2, q, prec);

    acb_mul(t3, t3, t3, prec);
    acb_mul(t3, t3, t3, prec);

    acb_mul(t4, t4, t4, prec);
    acb_mul(t4, t4, t4, prec);

    /* c2 = pi^4 * (a^8 + b^8 + c^8) / 30 */
    /* c3 = pi^6 * (b^12 + c^12 - 3a^8 * (b^4+c^4)) / 180 */

    /* r = a^8 */
    acb_mul(r, t2, t2, prec);

    if (len > 1)
    {
        /* r[1] = -3 a^8 * (b^4 + c^4) */
        acb_add(r + 1, t3, t4, prec);
        acb_mul(r + 1, r + 1, r, prec);
        acb_mul_si(r + 1, r + 1, -3, prec);
    }

    /* b^8 */
    acb_mul(t1, t3, t3, prec);
    acb_add(r, r, t1, prec);

    /* b^12 */
    if (len > 1)
        acb_addmul(r + 1, t1, t3, prec);

    /* c^8 */
    acb_mul(t1, t4, t4, prec);
    acb_add(r, r, t1, prec);

    /* c^12 */
    if (len > 1)
        acb_addmul(r + 1, t1, t4, prec);

    acb_const_pi(t1, prec);
    acb_mul(t1, t1, t1, prec);
    acb_mul(t2, t1, t1, prec);
    acb_mul(r, r, t2, prec);
    acb_div_ui(r, r, 30, prec);

    if (len > 1)
    {
        acb_mul(t2, t2, t1, prec);
        acb_mul(r + 1, r + 1, t2, prec);
        acb_div_ui(r + 1, r + 1, 189, prec);
    }

    /* apply modular transformation */
    if (!fmpz_is_zero(&g->c))
    {

        acb_mul_fmpz(t1, tau, &g->c, prec);
        acb_add_fmpz(t1, t1, &g->d, prec);
        acb_inv(t1, t1, prec);
        acb_mul(t1, t1, t1, prec);
        acb_mul(t2, t1, t1, prec);
        acb_mul(r, r, t2, prec);

        if (len > 1)
        {
            acb_mul(t2, t1, t2, prec);
            acb_mul(r + 1, r + 1, t2, prec);
        }
    }

    /* compute more coefficients using recurrence */
    for (n = 4; n < len + 2; n++)
    {
        acb_zero(r + n - 2);

        m = 2;
        for (m = 2; m * 2 < n; m++)
            acb_addmul(r + n - 2, r + m - 2, r + n - m - 2, prec);

        acb_mul_2exp_si(r + n - 2, r + n - 2, 1);

        if (n % 2 == 0)
            acb_addmul(r + n - 2, r + n / 2 - 2, r + n / 2 - 2, prec);

        acb_mul_ui(r + n - 2, r + n - 2, 3, prec);
        acb_div_ui(r + n - 2, r + n - 2, (2 * n + 1) * (n - 3), prec);
    }

    /* convert c's to G's */
    for (n = 0; n < len; n++)
        acb_div_ui(r + n, r + n, 2 * n + 3, prec);

    psl2z_clear(g);
    arf_clear(one_minus_eps);
    acb_clear(tau_prime);
    acb_clear(t1);
    acb_clear(t2);
    acb_clear(t3);
    acb_clear(t4);
    acb_clear(q);
}
Beispiel #17
0
Datei: chi.c Projekt: isuruf/arb
void
acb_hypgeom_chi_asymp(acb_t res, const acb_t z, slong prec)
{
    acb_t t, u, v, one;

    acb_init(t);
    acb_init(u);
    acb_init(v);
    acb_init(one);

    acb_one(one);

    /* u = U(1,1,z) */
    acb_hypgeom_u_asymp(u, one, one, z, -1, prec);
    /* v = e^(-z) */
    acb_neg(v, z);
    acb_exp(v, v, prec);
    acb_mul(t, u, v, prec);

    if (arb_is_zero(acb_realref(z)))
    {
        arb_div(acb_realref(t), acb_imagref(t), acb_imagref(z), prec);
        arb_zero(acb_imagref(t));
        acb_neg(t, t);
    }
    else
    {
        /* u = U(1,1,-z) */
        acb_neg(u, z);
        acb_hypgeom_u_asymp(u, one, one, u, -1, prec);
        acb_inv(v, v, prec);
        acb_submul(t, u, v, prec);

        acb_div(t, t, z, prec);
        acb_mul_2exp_si(t, t, -1);
        acb_neg(t, t);
    }

    if (acb_is_real(z))
    {
        if (arb_is_positive(acb_realref(z)))
        {
            arb_zero(acb_imagref(t));
        }
        else if (arb_is_negative(acb_realref(z)))
        {
            arb_const_pi(acb_imagref(t), prec);
        }
        else
        {
            /* add [-pi,pi]/2 i */
            acb_const_pi(u, prec);
            arb_zero(acb_imagref(t));
            arb_add_error(acb_imagref(t), acb_realref(u));
        }
    }
    else
    {
        /* -pi/2 if positive real or in lower half plane
           pi/2 if negative real or in upper half plane */
        if (arb_is_negative(acb_imagref(z)))
        {
            acb_const_pi(u, prec);
            acb_mul_2exp_si(u, u, -1);
            arb_sub(acb_imagref(t), acb_imagref(t), acb_realref(u), prec);
        }
        else if (arb_is_positive(acb_imagref(z)))
        {
            acb_const_pi(u, prec);
            acb_mul_2exp_si(u, u, -1);
            arb_add(acb_imagref(t), acb_imagref(t), acb_realref(u), prec);
        }
        else
        {
            /* add [-pi,pi]/2 i */
            acb_const_pi(u, prec);
            acb_mul_2exp_si(u, u, -1);
            arb_add_error(acb_imagref(t), acb_realref(u));
        }
    }

    acb_swap(res, t);

    acb_clear(t);
    acb_clear(u);
    acb_clear(v);
    acb_clear(one);
}
Beispiel #18
0
void
acb_gamma_stirling_eval(acb_t s, const acb_t z, long nterms, int digamma, long prec)
{
    acb_t t, logz, zinv, zinv2;
    arb_t b;
    mag_t err;

    long k, term_prec;
    double z_mag, term_mag;

    acb_init(t);
    acb_init(logz);
    acb_init(zinv);
    acb_init(zinv2);
    arb_init(b);

    acb_log(logz, z, prec);
    acb_inv(zinv, z, prec);

    nterms = FLINT_MAX(nterms, 1);

    acb_zero(s);
    if (nterms > 1)
    {
        acb_mul(zinv2, zinv, zinv, prec);

        z_mag = arf_get_d(arb_midref(acb_realref(logz)), ARF_RND_UP) * 1.44269504088896;

        for (k = nterms - 1; k >= 1; k--)
        {
            term_mag = bernoulli_bound_2exp_si(2 * k);
            term_mag -= (2 * k - 1) * z_mag;
            term_prec = prec + term_mag;
            term_prec = FLINT_MIN(term_prec, prec);
            term_prec = FLINT_MAX(term_prec, 10);

            arb_gamma_stirling_coeff(b, k, digamma, term_prec);

            if (prec > 2000)
            {
                acb_set_round(t, zinv2, term_prec);
                acb_mul(s, s, t, term_prec);
            }
            else
                acb_mul(s, s, zinv2, term_prec);

            arb_add(acb_realref(s), acb_realref(s), b, term_prec);
        }

        if (digamma)
            acb_mul(s, s, zinv2, prec);
        else
            acb_mul(s, s, zinv, prec);
    }

    /* remainder bound */
    mag_init(err);
    acb_gamma_stirling_bound(err, z, digamma ? 1 : 0, 1, nterms);
    mag_add(arb_radref(acb_realref(s)), arb_radref(acb_realref(s)), err);
    mag_add(arb_radref(acb_imagref(s)), arb_radref(acb_imagref(s)), err);
    mag_clear(err);

    if (digamma)
    {
        acb_neg(s, s);
        acb_mul_2exp_si(zinv, zinv, -1);
        acb_sub(s, s, zinv, prec);
        acb_add(s, s, logz, prec);
    }
    else
    {
        /* (z-0.5)*log(z) - z + log(2*pi)/2 */
        arb_one(b);
        arb_mul_2exp_si(b, b, -1);
        arb_set(acb_imagref(t), acb_imagref(z));
        arb_sub(acb_realref(t), acb_realref(z), b, prec);
        acb_mul(t, logz, t, prec);
        acb_add(s, s, t, prec);
        acb_sub(s, s, z, prec);
        arb_const_log_sqrt2pi(b, prec);
        arb_add(acb_realref(s), acb_realref(s), b, prec);
    }

    acb_clear(t);
    acb_clear(logz);
    acb_clear(zinv);
    acb_clear(zinv2);
    arb_clear(b);
}
Beispiel #19
0
slong
_acb_poly_find_roots(acb_ptr roots,
    acb_srcptr poly,
    acb_srcptr initial, slong len, slong maxiter, slong prec)
{
    slong iter, i, deg;
    slong rootmag, max_rootmag, correction, max_correction;

    deg = len - 1;

    if (deg == 0)
    {
        return 0;
    }
    else if (acb_contains_zero(poly + len - 1))
    {
        /* if the leading coefficient contains zero, roots can be anywhere */
        for (i = 0; i < deg; i++)
        {
            arb_zero_pm_inf(acb_realref(roots + i));
            arb_zero_pm_inf(acb_imagref(roots + i));
        }
        return 0;
    }
    else if (deg == 1)
    {
        acb_inv(roots + 0, poly + 1, prec);
        acb_mul(roots + 0, roots + 0, poly + 0, prec);
        acb_neg(roots + 0, roots + 0);
        return 1;
    }

    if (initial == NULL)
        _acb_poly_roots_initial_values(roots, deg, prec);
    else
        _acb_vec_set(roots, initial, deg);

    if (maxiter == 0)
        maxiter = 2 * deg + n_sqrt(prec);

    for (iter = 0; iter < maxiter; iter++)
    {
        max_rootmag = -ARF_PREC_EXACT;
        for (i = 0; i < deg; i++)
        {
            rootmag = _acb_get_mid_mag(roots + i);
            max_rootmag = FLINT_MAX(rootmag, max_rootmag);
        }

        _acb_poly_refine_roots_durand_kerner(roots, poly, len, prec);

        max_correction = -ARF_PREC_EXACT;
        for (i = 0; i < deg; i++)
        {
            correction = _acb_get_rad_mag(roots + i);
            max_correction = FLINT_MAX(correction, max_correction);
        }

        /* estimate the correction relative to the whole set of roots */
        max_correction -= max_rootmag;

        /* flint_printf("ITER %wd MAX CORRECTION: %wd\n", iter, max_correction); */

        if (max_correction < -prec / 2)
            maxiter = FLINT_MIN(maxiter, iter + 2);
        else if (max_correction < -prec / 3)
            maxiter = FLINT_MIN(maxiter, iter + 3);
        else if (max_correction < -prec / 4)
            maxiter = FLINT_MIN(maxiter, iter + 4);
    }

    return _acb_poly_validate_roots(roots, poly, len, prec);
}
Beispiel #20
0
void acb_hypgeom_u_asymp(acb_t res, const acb_t a, const acb_t b,
    const acb_t z, slong n, slong prec)
{
    acb_struct aa[3];
    acb_t s, t, w, winv;
    int R, p, q, is_real, is_terminating;
    slong n_terminating;

    if (!acb_is_finite(a) || !acb_is_finite(b) || !acb_is_finite(z))
    {
        acb_indeterminate(res);
        return;
    }

    acb_init(aa);
    acb_init(aa + 1);
    acb_init(aa + 2);
    acb_init(s);
    acb_init(t);
    acb_init(w);
    acb_init(winv);

    is_terminating = 0;
    n_terminating = WORD_MAX;

    /* special case, for incomplete gamma
      [todo: also when they happen to be exact and with difference 1...] */
    if (a == b)
    {
        acb_set(aa, a);
        p = 1;
        q = 0;
    }
    else
    {
        acb_set(aa, a);
        acb_sub(aa + 1, a, b, prec);
        acb_add_ui(aa + 1, aa + 1, 1, prec);
        acb_one(aa + 2);
        p = 2;
        q = 1;
    }

    if (acb_is_nonpositive_int(aa))
    {
        is_terminating = 1;

        if (arf_cmpabs_ui(arb_midref(acb_realref(aa)), prec) < 0)
            n_terminating = 1 - arf_get_si(arb_midref(acb_realref(aa)), ARF_RND_DOWN);
    }

    if (p == 2 && acb_is_nonpositive_int(aa + 1))
    {
        is_terminating = 1;

        if (arf_cmpabs_ui(arb_midref(acb_realref(aa + 1)), n_terminating) < 0)
            n_terminating = 1 - arf_get_si(arb_midref(acb_realref(aa + 1)), ARF_RND_DOWN);
    }

    acb_neg(w, z);
    acb_inv(w, w, prec);
    acb_neg(winv, z);

    /* low degree polynomial -- no need to try to terminate sooner */
    if (is_terminating && n_terminating < 8)
    {
        acb_hypgeom_pfq_sum_invz(s, t, aa, p, aa + p, q, w, winv,
            n_terminating, prec);
        acb_set(res, s);
    }
    else
    {
        mag_t C1, Cn, alpha, nu, sigma, rho, zinv, tmp, err;

        mag_init(C1);
        mag_init(Cn);
        mag_init(alpha);
        mag_init(nu);
        mag_init(sigma);
        mag_init(rho);
        mag_init(zinv);
        mag_init(tmp);
        mag_init(err);

        acb_hypgeom_u_asymp_bound_factors(&R, alpha, nu,
            sigma, rho, zinv, a, b, z);

        is_real = acb_is_real(a) && acb_is_real(b) && acb_is_real(z) &&
            (is_terminating || arb_is_positive(acb_realref(z)));

        if (R == 0)
        {
            /* if R == 0, the error bound is infinite unless terminating */
            if (is_terminating && n_terminating < prec)
            {
                acb_hypgeom_pfq_sum_invz(s, t, aa, p, aa + p, q, w, winv,
                    n_terminating, prec);
                acb_set(res, s);
            }
            else
            {
                acb_indeterminate(res);
            }
        }
        else
        {
            /* C1 */
            acb_hypgeom_mag_Cn(C1, R, nu, sigma, 1);

            /* err = 2 * alpha * exp(...) */
            mag_mul(tmp, C1, rho);
            mag_mul(tmp, tmp, alpha);
            mag_mul(tmp, tmp, zinv);
            mag_mul_2exp_si(tmp, tmp, 1);
            mag_exp(err, tmp);
            mag_mul(err, err, alpha);
            mag_mul_2exp_si(err, err, 1);

            /* choose n automatically */
            if (n < 0)
            {
                slong moreprec;

                /* take err into account when finding truncation point */
                /* we should take Cn into account as well, but this depends
                   on n which is to be determined; it's easier to look
                   only at exp(...) which should be larger anyway */
                if (mag_cmp_2exp_si(err, 10 * prec) > 0)
                    moreprec = 10 * prec;
                else if (mag_cmp_2exp_si(err, 0) < 0)
                    moreprec = 0;
                else
                    moreprec = MAG_EXP(err);

                n = acb_hypgeom_pfq_choose_n_max(aa, p, aa + p, q, w,
                    prec + moreprec, FLINT_MIN(WORD_MAX / 2, 50 + 10.0 * prec));
            }

            acb_hypgeom_pfq_sum_invz(s, t, aa, p, aa + p, q, w, winv, n, prec);

            /* add error bound, if not terminating */
            if (!(is_terminating && n == n_terminating))
            {
                acb_hypgeom_mag_Cn(Cn, R, nu, sigma, n);
                mag_mul(err, err, Cn);

                /* nth term * factor */
                acb_get_mag(tmp, t);
                mag_mul(err, err, tmp);

                if (is_real)
                    arb_add_error_mag(acb_realref(s), err);
                else
                    acb_add_error_mag(s, err);
            }

            acb_set(res, s);
        }

        mag_clear(C1);
        mag_clear(Cn);
        mag_clear(alpha);
        mag_clear(nu);
        mag_clear(sigma);
        mag_clear(rho);
        mag_clear(zinv);
        mag_clear(tmp);
        mag_clear(err);
    }

    acb_clear(aa);
    acb_clear(aa + 1);
    acb_clear(aa + 2);
    acb_clear(s);
    acb_clear(t);
    acb_clear(w);
    acb_clear(winv);
}
Beispiel #21
0
int main()
{
    slong iter;
    flint_rand_t state;

    flint_printf("airy....");
    fflush(stdout);

    flint_randinit(state);

    for (iter = 0; iter < 10000 * arb_test_multiplier(); iter++)
    {
        acb_t z, t, w;
        acb_t ai1, aip1, bi1, bip1;
        acb_t ai2, aip2, bi2, bip2;
        slong n1, n2, prec1, prec2;
        unsigned int mask;

        acb_init(z); acb_init(t); acb_init(w);
        acb_init(ai1); acb_init(aip1); acb_init(bi1); acb_init(bip1);
        acb_init(ai2); acb_init(aip2); acb_init(bi2); acb_init(bip2);

        prec1 = 2 + n_randint(state, 1000);
        prec2 = 2 + n_randint(state, 1000);

        n1 = n_randint(state, 300);
        n2 = n_randint(state, 300);

        acb_randtest_param(z, state, 1 + n_randint(state, 1000), 1 + n_randint(state, 100));
        acb_randtest_param(t, state, 1 + n_randint(state, 1000), 1 + n_randint(state, 100));
        acb_add(z, z, t, 1000);
        acb_sub(z, z, t, 1000);

        switch (n_randint(state, 3))
        {
            case 0:
                acb_hypgeom_airy_direct(ai1, aip1, bi1, bip1, z, n1, prec1);
                break;
            case 1:
                acb_hypgeom_airy_asymp(ai1, aip1, bi1, bip1, z, n1, prec1);
                break;
            default:
                acb_hypgeom_airy(ai1, aip1, bi1, bip1, z, prec1);
                break;
        }

        switch (n_randint(state, 3))
        {
            case 0:
                acb_hypgeom_airy_direct(ai2, aip2, bi2, bip2, z, n2, prec2);
                break;
            case 1:
                acb_hypgeom_airy_asymp(ai2, aip2, bi2, bip2, z, n2, prec2);
                break;
            default:
                acb_hypgeom_airy(ai2, aip2, bi2, bip2, z, prec2);
                break;
        }

        if (!acb_overlaps(ai1, ai2))
        {
            flint_printf("FAIL: consistency (Ai)\n\n");
            flint_printf("z = "); acb_printd(z, 30); flint_printf("\n\n");
            flint_printf("ai1 = "); acb_printd(ai1, 30); flint_printf("\n\n");
            flint_printf("ai2 = "); acb_printd(ai2, 30); flint_printf("\n\n");
            abort();
        }

        if (!acb_overlaps(aip1, aip2))
        {
            flint_printf("FAIL: consistency (Ai')\n\n");
            flint_printf("z = "); acb_printd(z, 30); flint_printf("\n\n");
            flint_printf("aip1 = "); acb_printd(aip1, 30); flint_printf("\n\n");
            flint_printf("aip2 = "); acb_printd(aip2, 30); flint_printf("\n\n");
            abort();
        }

        if (!acb_overlaps(bi1, bi2))
        {
            flint_printf("FAIL: consistency (Bi)\n\n");
            flint_printf("z = "); acb_printd(z, 30); flint_printf("\n\n");
            flint_printf("bi1 = "); acb_printd(bi1, 30); flint_printf("\n\n");
            flint_printf("bi2 = "); acb_printd(bi2, 30); flint_printf("\n\n");
            abort();
        }

        if (!acb_overlaps(bip1, bip2))
        {
            flint_printf("FAIL: consistency (Bi')\n\n");
            flint_printf("z = "); acb_printd(z, 30); flint_printf("\n\n");
            flint_printf("bip1 = "); acb_printd(bip1, 30); flint_printf("\n\n");
            flint_printf("bip2 = "); acb_printd(bip2, 30); flint_printf("\n\n");
            abort();
        }

        acb_mul(w, ai1, bip1, prec1);
        acb_submul(w, bi1, aip1, prec1);
        acb_const_pi(t, prec1);
        acb_inv(t, t, prec1);

        if (!acb_overlaps(w, t))
        {
            flint_printf("FAIL: wronskian\n\n");
            flint_printf("z = ");  acb_printd(z, 30); flint_printf("\n\n");
            flint_printf("ai1  = "); acb_printd(ai1, 30); flint_printf("\n\n");
            flint_printf("aip1 = "); acb_printd(aip1, 30); flint_printf("\n\n");
            flint_printf("bi1  = "); acb_printd(bi1, 30); flint_printf("\n\n");
            flint_printf("bip1 = "); acb_printd(bip1, 30); flint_printf("\n\n");
            flint_printf("w = ");  acb_printd(w, 30); flint_printf("\n\n");
            abort();
        }

        mask = n_randlimb(state);

        acb_hypgeom_airy((mask & 1) ? ai2 : NULL,
                         (mask & 2) ? aip2 : NULL,
                         (mask & 4) ? bi2 : NULL,
                         (mask & 8) ? bip2 : NULL, z, prec2);

        if (!acb_overlaps(ai1, ai2) || !acb_overlaps(aip1, aip2) ||
            !acb_overlaps(bi1, bi2) || !acb_overlaps(bip1, bip2))
        {
            flint_printf("FAIL: consistency (mask)\n\n");
            flint_printf("mask = %u\n\n", mask);
            flint_printf("z = "); acb_printd(z, 30); flint_printf("\n\n");
            flint_printf("ai1 = "); acb_printd(ai1, 30); flint_printf("\n\n");
            flint_printf("ai2 = "); acb_printd(ai2, 30); flint_printf("\n\n");
            flint_printf("aip1 = "); acb_printd(aip1, 30); flint_printf("\n\n");
            flint_printf("aip2 = "); acb_printd(aip2, 30); flint_printf("\n\n");
            flint_printf("bi1 = "); acb_printd(bi1, 30); flint_printf("\n\n");
            flint_printf("bi2 = "); acb_printd(bi2, 30); flint_printf("\n\n");
            flint_printf("bip1 = "); acb_printd(bip1, 30); flint_printf("\n\n");
            flint_printf("bip2 = "); acb_printd(bip2, 30); flint_printf("\n\n");
            abort();
        }

        acb_clear(z); acb_clear(t); acb_clear(w);
        acb_clear(ai1); acb_clear(aip1); acb_clear(bi1); acb_clear(bip1);
        acb_clear(ai2); acb_clear(aip2); acb_clear(bi2); acb_clear(bip2);
    }

    flint_randclear(state);
    flint_cleanup();
    flint_printf("PASS\n");
    return EXIT_SUCCESS;
}
Beispiel #22
0
void
acb_hypgeom_2f1_transform_nolimit(acb_t res, const acb_t a, const acb_t b,
    const acb_t c, const acb_t z, int regularized, int which, slong prec)
{
    acb_t ba, ca, cb, cab, ac1, bc1, ab1, ba1, w, t, u, v, s;

    if (acb_contains_zero(z) || !acb_is_finite(z))
    {
        acb_indeterminate(res);
        return;
    }

    if (arb_contains_si(acb_realref(z), 1) && arb_contains_zero(acb_imagref(z)))
    {
        acb_indeterminate(res);
        return;
    }

    if (!regularized)
    {
        acb_init(t);
        acb_gamma(t, c, prec);
        acb_hypgeom_2f1_transform_nolimit(res, a, b, c, z, 1, which, prec);
        acb_mul(res, res, t, prec);
        acb_clear(t);
        return;
    }

    acb_init(ba);
    acb_init(ca); acb_init(cb); acb_init(cab);
    acb_init(ac1); acb_init(bc1);
    acb_init(ab1); acb_init(ba1);
    acb_init(w); acb_init(t);
    acb_init(u); acb_init(v);
    acb_init(s);

    acb_add_si(s, z, -1, prec);   /* s = 1 - z */
    acb_neg(s, s);

    acb_sub(ba, b, a, prec);      /* ba = b - a */
    acb_sub(ca, c, a, prec);      /* ca = c - a */
    acb_sub(cb, c, b, prec);      /* cb = c - b */
    acb_sub(cab, ca, b, prec);    /* cab = c - a - b */

    acb_add_si(ac1, ca, -1, prec); acb_neg(ac1, ac1); /* ac1 = a - c + 1 */
    acb_add_si(bc1, cb, -1, prec); acb_neg(bc1, bc1); /* bc1 = b - c + 1 */
    acb_add_si(ab1, ba, -1, prec); acb_neg(ab1, ab1); /* ab1 = a - b + 1 */
    acb_add_si(ba1, ba, 1, prec);                     /* ba1 = b - a + 1 */

    /* t = left term, u = right term (DLMF 15.8.1 - 15.8.5) */
    if (which == 2)
    {
        acb_inv(w, z, prec);  /* w = 1/z */
        acb_hypgeom_2f1_direct(t, a, ac1, ab1, w, 1, prec);
        acb_hypgeom_2f1_direct(u, b, bc1, ba1, w, 1, prec);
    }
    else if (which == 3)
    {
        acb_inv(w, s, prec);  /* w = 1/(1-z) */
        acb_hypgeom_2f1_direct(t, a, cb, ab1, w, 1, prec);
        acb_hypgeom_2f1_direct(u, b, ca, ba1, w, 1, prec);
    }
    else if (which == 4)
    {
        acb_set(w, s);                  /* w = 1-z */
        acb_add(v, ac1, b, prec);       /* v = a+b-c+1 */
        acb_hypgeom_2f1_direct(t, a, b, v, w, 1, prec);
        acb_add_si(v, cab, 1, prec);    /* v = c-a-b+1 */
        acb_hypgeom_2f1_direct(u, ca, cb, v, w, 1, prec);
    }
    else if (which == 5)
    {
        acb_inv(w, z, prec);  /* w = 1-1/z */
        acb_neg(w, w);
        acb_add_si(w, w, 1, prec);
        acb_add(v, ac1, b, prec);       /* v = a+b-c+1 */
        acb_hypgeom_2f1_direct(t, a, ac1, v, w, 1, prec);
        acb_add_si(v, cab, 1, prec);    /* v = c-a-b+1 */
        acb_add_si(u, a, -1, prec);     /* u = 1-a */
        acb_neg(u, u);
        acb_hypgeom_2f1_direct(u, ca, u, v, w, 1, prec);
    }
    else
    {
        flint_printf("invalid transformation!\n");
        flint_abort();
    }

    /* gamma factors */
    acb_rgamma(v, a, prec);
    acb_mul(u, u, v, prec);
    acb_rgamma(v, ca, prec);
    acb_mul(t, t, v, prec);

    acb_rgamma(v, b, prec);
    if (which == 2 || which == 3)
        acb_mul(t, t, v, prec);
    else
        acb_mul(u, u, v, prec);

    acb_rgamma(v, cb, prec);
    if (which == 2 || which == 3)
        acb_mul(u, u, v, prec);
    else
        acb_mul(t, t, v, prec);

    if (which == 2 || which == 3)
    {
        if (which == 2)
            acb_neg(s, z);  /* -z, otherwise 1-z since before */

        acb_neg(v, a);
        acb_pow(v, s, v, prec);
        acb_mul(t, t, v, prec);

        acb_neg(v, b);
        acb_pow(v, s, v, prec);
        acb_mul(u, u, v, prec);
    }
    else
    {
        acb_pow(v, s, cab, prec);
        acb_mul(u, u, v, prec);

        if (which == 5)
        {
            acb_neg(v, a);
            acb_pow(v, z, v, prec);
            acb_mul(t, t, v, prec);

            acb_neg(v, ca);
            acb_pow(v, z, v, prec);
            acb_mul(u, u, v, prec);
        }
    }

    acb_sub(t, t, u, prec);

    if (which == 2 || which == 3)
        acb_sin_pi(v, ba, prec);
    else
        acb_sin_pi(v, cab, prec);

    acb_div(t, t, v, prec);
    acb_const_pi(v, prec);
    acb_mul(t, t, v, prec);
    acb_set(res, t);

    acb_clear(ba);
    acb_clear(ca); acb_clear(cb); acb_clear(cab);
    acb_clear(ac1); acb_clear(bc1);
    acb_clear(ab1); acb_clear(ba1);
    acb_clear(w); acb_clear(t);
    acb_clear(u); acb_clear(v);
    acb_clear(s);
}
Beispiel #23
0
int main()
{
    slong iter;
    flint_rand_t state;

    flint_printf("airy_series....");
    fflush(stdout);

    flint_randinit(state);

    for (iter = 0; iter < 1000 * arb_test_multiplier(); iter++)
    {
        acb_poly_t ai, aip, bi, bip, ai2, aip2, bi2, bip2, z, w, t;
        acb_t c;
        slong n1, n2, prec1, prec2;
        unsigned int mask;

        acb_poly_init(ai); acb_poly_init(aip);
        acb_poly_init(bi); acb_poly_init(bip);
        acb_poly_init(ai2); acb_poly_init(aip2);
        acb_poly_init(bi2); acb_poly_init(bip2);
        acb_poly_init(z); acb_poly_init(w);
        acb_poly_init(t); acb_init(c);

        prec1 = 2 + n_randint(state, 300);
        prec2 = 2 + n_randint(state, 300);

        n1 = n_randint(state, 6);
        n2 = n_randint(state, 6);

        acb_poly_randtest(ai, state, 10, prec1, 10);
        acb_poly_randtest(aip, state, 10, prec1, 10);
        acb_poly_randtest(bi, state, 10, prec1, 10);
        acb_poly_randtest(bip, state, 10, prec1, 10);
        acb_poly_randtest(z, state, 1 + n_randint(state, 10), prec1, 10);

        acb_hypgeom_airy_series(ai, aip, bi, bip, z, n1, prec1);

        acb_poly_mullow(w, ai, bip, n1, prec1);
        acb_poly_mullow(t, bi, aip, n1, prec1);
        acb_poly_sub(w, w, t, prec1);

        acb_const_pi(c, prec1);
        acb_inv(c, c, prec1);
        acb_poly_set_acb(t, c);
        acb_poly_truncate(t, n1);

        if (!acb_poly_overlaps(w, t))
        {
            flint_printf("FAIL: wronskian\n\n");
            flint_printf("z = "); acb_poly_printd(z, 30); flint_printf("\n\n");
            flint_printf("ai = "); acb_poly_printd(ai, 30); flint_printf("\n\n");
            flint_printf("aip = "); acb_poly_printd(aip, 30); flint_printf("\n\n");
            flint_printf("bi = "); acb_poly_printd(bi, 30); flint_printf("\n\n");
            flint_printf("bip = "); acb_poly_printd(bip, 30); flint_printf("\n\n");
            flint_printf("w = "); acb_poly_printd(w, 30); flint_printf("\n\n");
            abort();
        }

        mask = n_randlimb(state);

        acb_hypgeom_airy_series((mask & 1) ? ai2 : NULL,
                                (mask & 2) ? aip2 : NULL,
                                (mask & 4) ? bi2 : NULL,
                                (mask & 8) ? bip2 : NULL, z, n2, prec2);

        acb_poly_truncate(ai, FLINT_MIN(n1, n2));
        acb_poly_truncate(aip, FLINT_MIN(n1, n2));
        acb_poly_truncate(bi, FLINT_MIN(n1, n2));
        acb_poly_truncate(bip, FLINT_MIN(n1, n2));
        acb_poly_truncate(ai2, FLINT_MIN(n1, n2));
        acb_poly_truncate(aip2, FLINT_MIN(n1, n2));
        acb_poly_truncate(bi2, FLINT_MIN(n1, n2));
        acb_poly_truncate(bip2, FLINT_MIN(n1, n2));

        if (((mask & 1) && (!acb_poly_overlaps(ai, ai2))) ||
            ((mask & 2) && (!acb_poly_overlaps(aip, aip2))) ||
            ((mask & 4) && (!acb_poly_overlaps(bi, bi2))) ||
            ((mask & 8) && (!acb_poly_overlaps(bip, bip2))))
        {
            flint_printf("FAIL: consistency (mask)\n\n");
            flint_printf("mask = %u\n\n", mask);
            flint_printf("len1 = %wd, len2 = %wd\n\n", n1, n2);
            flint_printf("z = "); acb_poly_printd(z, 30); flint_printf("\n\n");
            flint_printf("ai = "); acb_poly_printd(ai, 30); flint_printf("\n\n");
            flint_printf("ai2 = "); acb_poly_printd(ai2, 30); flint_printf("\n\n");
            flint_printf("aip = "); acb_poly_printd(aip, 30); flint_printf("\n\n");
            flint_printf("aip2 = "); acb_poly_printd(aip2, 30); flint_printf("\n\n");
            flint_printf("bi = "); acb_poly_printd(bi, 30); flint_printf("\n\n");
            flint_printf("bi2 = "); acb_poly_printd(bi2, 30); flint_printf("\n\n");
            flint_printf("bip = "); acb_poly_printd(bip, 30); flint_printf("\n\n");
            flint_printf("bip2 = "); acb_poly_printd(bip2, 30); flint_printf("\n\n");
            abort();
        }

        acb_poly_clear(ai); acb_poly_clear(aip);
        acb_poly_clear(bi); acb_poly_clear(bip);
        acb_poly_clear(ai2); acb_poly_clear(aip2);
        acb_poly_clear(bi2); acb_poly_clear(bip2);
        acb_poly_clear(z); acb_poly_clear(w);
        acb_poly_clear(t); acb_clear(c);
    }

    flint_randclear(state);
    flint_cleanup();
    flint_printf("PASS\n");
    return EXIT_SUCCESS;
}
Beispiel #24
0
void
_acb_poly_zeta_em_sum(acb_ptr z, const acb_t s, const acb_t a, int deflate, ulong N, ulong M, slong d, slong prec)
{
    acb_ptr t, u, v, term, sum;
    acb_t Na, one;
    slong i;

    t = _acb_vec_init(d + 1);
    u = _acb_vec_init(d);
    v = _acb_vec_init(d);
    term = _acb_vec_init(d);
    sum = _acb_vec_init(d);
    acb_init(Na);
    acb_init(one);

    prec += 2 * (FLINT_BIT_COUNT(N) + FLINT_BIT_COUNT(d));
    acb_one(one);

    /* sum 1/(k+a)^(s+x) */
    if (acb_is_one(a) && d <= 3)
        _acb_poly_powsum_one_series_sieved(sum, s, N, d, prec);
    else if (N > 50 && flint_get_num_threads() > 1)
        _acb_poly_powsum_series_naive_threaded(sum, s, a, one, N, d, prec);
    else
        _acb_poly_powsum_series_naive(sum, s, a, one, N, d, prec);

    /* t = 1/(N+a)^(s+x); we might need one extra term for deflation */
    acb_add_ui(Na, a, N, prec);
    _acb_poly_acb_invpow_cpx(t, Na, s, d + 1, prec);

    /* sum += (N+a) * 1/((s+x)-1) * t */
    if (!deflate)
    {
        /* u = (N+a)^(1-(s+x)) */
        acb_sub_ui(v, s, 1, prec);
        _acb_poly_acb_invpow_cpx(u, Na, v, d, prec);

        /* divide by 1/((s-1) + x) */
        acb_sub_ui(v, s, 1, prec);
        acb_div(u, u, v, prec);

        for (i = 1; i < d; i++)
        {
            acb_sub(u + i, u + i, u + i - 1, prec);
            acb_div(u + i, u + i, v, prec);
        }

        _acb_vec_add(sum, sum, u, d, prec);
    }
    /* sum += ((N+a)^(1-(s+x)) - 1) / ((s+x) - 1) */
    else
    {
        /* at s = 1, this becomes (N*t - 1)/x, i.e. just remove one coeff  */
        if (acb_is_one(s))
        {
            for (i = 0; i < d; i++)
                acb_mul(u + i, t + i + 1, Na, prec);
            _acb_vec_add(sum, sum, u, d, prec);
        }
        else
        {
            /* TODO: this is numerically unstable for large derivatives,
                and divides by zero if s contains 1. We want a good
                way to evaluate the power series ((N+a)^y - 1) / y where y has
                nonzero constant term, without doing a division.
                How is this best done? */

            _acb_vec_scalar_mul(t, t, d, Na, prec);
            acb_sub_ui(t + 0, t + 0, 1, prec);
            acb_sub_ui(u + 0, s, 1, prec);
            acb_inv(u + 0, u + 0, prec);
            for (i = 1; i < d; i++)
                acb_mul(u + i, u + i - 1, u + 0, prec);
            for (i = 1; i < d; i += 2)
                acb_neg(u + i, u + i);
            _acb_poly_mullow(v, u, d, t, d, d, prec);
            _acb_vec_add(sum, sum, v, d, prec);
            _acb_poly_acb_invpow_cpx(t, Na, s, d, prec);
        }
    }

    /* sum += u = 1/2 * t */
    _acb_vec_scalar_mul_2exp_si(u, t, d, -WORD(1));
    _acb_vec_add(sum, sum, u, d, prec);

    /* Euler-Maclaurin formula tail */
    if (d < 5 || d < M / 10)
        _acb_poly_zeta_em_tail_naive(u, s, Na, t, M, d, prec);
    else
        _acb_poly_zeta_em_tail_bsplit(u, s, Na, t, M, d, prec);

    _acb_vec_add(z, sum, u, d, prec);

    _acb_vec_clear(t, d + 1);
    _acb_vec_clear(u, d);
    _acb_vec_clear(v, d);
    _acb_vec_clear(term, d);
    _acb_vec_clear(sum, d);
    acb_clear(Na);
    acb_clear(one);
}
Beispiel #25
0
int main()
{
    slong iter;
    flint_rand_t state;

    flint_printf("digamma....");
    fflush(stdout);

    flint_randinit(state);

    for (iter = 0; iter < 3000 * arb_test_multiplier(); iter++)
    {
        acb_t a, b, c;
        slong prec1, prec2;

        prec1 = 2 + n_randint(state, 1000);
        prec2 = prec1 + 30;

        acb_init(a);
        acb_init(b);
        acb_init(c);

        arb_randtest_precise(acb_realref(a), state, 1 + n_randint(state, 1000), 3);
        arb_randtest_precise(acb_imagref(a), state, 1 + n_randint(state, 1000), 3);

        acb_digamma(b, a, prec1);
        acb_digamma(c, a, prec2);

        if (!acb_overlaps(b, c))
        {
            flint_printf("FAIL: overlap\n\n");
            flint_printf("a = "); acb_print(a); flint_printf("\n\n");
            flint_printf("b = "); acb_print(b); flint_printf("\n\n");
            flint_printf("c = "); acb_print(c); flint_printf("\n\n");
            abort();
        }

        acb_set(c, a);
        acb_digamma(c, c, prec2);
        if (!acb_overlaps(b, c))
        {
            flint_printf("FAIL: aliasing\n\n");
            flint_printf("a = "); acb_print(a); flint_printf("\n\n");
            flint_printf("b = "); acb_print(b); flint_printf("\n\n");
            flint_printf("c = "); acb_print(c); flint_printf("\n\n");
            abort();
        }

        /* check digamma(z+1) = digamma(z) + 1/z */
        acb_inv(c, a, prec1);
        acb_add(b, b, c, prec1);
        acb_add_ui(c, a, 1, prec1);
        acb_digamma(c, c, prec1);

        if (!acb_overlaps(b, c))
        {
            flint_printf("FAIL: functional equation\n\n");
            flint_printf("a = "); acb_print(a); flint_printf("\n\n");
            flint_printf("b = "); acb_print(b); flint_printf("\n\n");
            flint_printf("c = "); acb_print(c); flint_printf("\n\n");
            abort();
        }

        acb_clear(a);
        acb_clear(b);
        acb_clear(c);
    }

    flint_randclear(state);
    flint_cleanup();
    flint_printf("PASS\n");
    return EXIT_SUCCESS;
}
Beispiel #26
0
void
acb_modular_elliptic_k_cpx(acb_ptr w, const acb_t m, slong len, slong prec)
{
    acb_t t, u, msub1m, m2sub1;
    slong k, n;

    if (len < 1)
        return;

    if (len == 1)
    {
        acb_modular_elliptic_k(w, m, prec);
        return;
    }

    if (acb_is_zero(m))
    {
        acb_const_pi(w, prec);
        acb_mul_2exp_si(w, w, -1);

        for (k = 1; k < len; k++)
        {
            acb_mul_ui(w + k, w + k - 1, (2 * k - 1) * (2 * k - 1), prec);
            acb_div_ui(w + k, w + k, 4 * k * k, prec);
        }

        return;
    }

    acb_init(t);
    acb_init(u);
    acb_init(msub1m);
    acb_init(m2sub1);

    acb_sub_ui(msub1m, m, 1, prec);
    acb_neg(t, msub1m);
    acb_sqrt(t, t, prec);
    acb_mul(msub1m, msub1m, m, prec);

    acb_mul_2exp_si(m2sub1, m, 1);
    acb_sub_ui(m2sub1, m2sub1, 1, prec);

    acb_agm1_cpx(w, t, 2, prec);

    /* pi M'(t) / (4 t M(t)^2) */
    acb_mul(u, w, w, prec);
    acb_mul(t, t, u, prec);
    acb_div(w + 1, w + 1, t, prec);

    acb_const_pi(u, prec);
    acb_mul(w + 1, w + 1, u, prec);
    acb_mul_2exp_si(w + 1, w + 1, -2);

    /* pi / (2 M(t)) */
    acb_const_pi(u, prec);
    acb_div(w, u, w, prec);
    acb_mul_2exp_si(w, w, -1);

    acb_inv(t, msub1m, prec);

    for (k = 2; k < len; k++)
    {
        n = k - 2;

        acb_mul_ui(w + k, w + n, (2 * n + 1) * (2 * n + 1), prec);

        acb_mul(u, w + n + 1, m2sub1, prec);
        acb_addmul_ui(w + k, u, (n + 1) * (n + 1) * 4, prec);

        acb_mul(w + k, w + k, t, prec);
        acb_div_ui(w + k, w + k, 4 * (n + 1) * (n + 2), prec);
        acb_neg(w + k, w + k);
    }

    acb_clear(t);
    acb_clear(u);
    acb_clear(msub1m);
    acb_clear(m2sub1);
}
Beispiel #27
0
void
_acb_poly_zeta_em_tail_naive(acb_ptr sum, const acb_t s, const acb_t Na, acb_srcptr Nasx, slong M, slong d, slong prec)
{
    acb_ptr u, term;
    acb_t Na2, splus, rec;
    arb_t x;
    fmpz_t c;
    int aint;
    slong r;

    BERNOULLI_ENSURE_CACHED(2 * M);

    u = _acb_vec_init(d);
    term = _acb_vec_init(d);
    acb_init(splus);
    acb_init(rec);
    acb_init(Na2);
    arb_init(x);
    fmpz_init(c);

    _acb_vec_zero(sum, d);

    /* u = 1/2 * Nasx */
    _acb_vec_scalar_mul_2exp_si(u, Nasx, d, -WORD(1));

    /* term = u * (s+x) / (N+a) */
    _acb_poly_mullow_cpx(u, u, d, s, d, prec);
    _acb_vec_scalar_div(term, u, d, Na, prec);

    /* (N+a)^2 or 1/(N+a)^2 */
    acb_mul(Na2, Na, Na, prec);
    aint = acb_is_int(Na2);

    if (!aint)
        acb_inv(Na2, Na2, prec);

    for (r = 1; r <= M; r++)
    {
        /* flint_printf("sum 2: %wd %wd\n", r, M); */

        /* sum += bernoulli number * term */
        arb_set_round_fmpz(x, fmpq_numref(bernoulli_cache + 2 * r), prec);
        arb_div_fmpz(x, x, fmpq_denref(bernoulli_cache + 2 * r), prec);

        _acb_vec_scalar_mul_arb(u, term, d, x, prec);
        _acb_vec_add(sum, sum, u, d, prec);

        /* multiply term by ((s+x)+2r-1)((s+x)+2r) / ((N+a)^2 * (2*r+1)*(2*r+2)) */
        acb_set(splus, s);
        arb_add_ui(acb_realref(splus), acb_realref(splus), 2*r-1, prec);
        _acb_poly_mullow_cpx(term, term, d, splus, d, prec);
        arb_add_ui(acb_realref(splus), acb_realref(splus), 1, prec);
        _acb_poly_mullow_cpx(term, term, d, splus, d, prec);

        /* TODO: combine with previous multiplication? */
        if (aint)
        {
            arb_mul_ui(x, acb_realref(Na2), 2*r+1, prec);
            arb_mul_ui(x, x, 2*r+2, prec);
            _acb_vec_scalar_div_arb(term, term, d, x, prec);
        }
        else
        {
            fmpz_set_ui(c, 2*r+1);
            fmpz_mul_ui(c, c, 2*r+2);
            acb_div_fmpz(rec, Na2, c, prec);
            _acb_vec_scalar_mul(term, term, d, rec, prec);
        }
    }

    _acb_vec_clear(u, d);
    _acb_vec_clear(term, d);
    acb_clear(splus);
    acb_clear(rec);
    acb_clear(Na2);
    arb_clear(x);
    fmpz_clear(c);
}
Beispiel #28
0
void acb_modular_transform(acb_t w, const psl2z_t g, const acb_t z, slong prec)
{
#define a (&g->a)
#define b (&g->b)
#define c (&g->c)
#define d (&g->d)
#define x acb_realref(z)
#define y acb_imagref(z)

    if (fmpz_is_zero(c))
    {
        /* (az+b)/d, where we must have a = d = 1 */
        acb_add_fmpz(w, z, b, prec);
    }
    else if (fmpz_is_zero(a))
    {
        /* b/(cz+d), where -bc = 1, c = 1 => -1/(z+d) */
        acb_add_fmpz(w, z, d, prec);
        acb_inv(w, w, prec);
        acb_neg(w, w);
    }
    else if (0)
    {
        acb_t t, u;

        acb_init(t);
        acb_init(u);

        acb_set_fmpz(t, b);
        acb_addmul_fmpz(t, z, a, prec);

        acb_set_fmpz(u, d);
        acb_addmul_fmpz(u, z, c, prec);

        acb_div(w, t, u, prec);

        acb_clear(t);
        acb_clear(u);
    }
    else
    {
        /* (az+b)/(cz+d) = (re+im*i)/den where

            re = bd + (bc+ad)x + ac(x^2+y^2)
            im = (ad-bc)y
            den = c^2(x^2+y^2) + 2cdx + d^2
        */

        fmpz_t t;
        arb_t re, im, den;

        arb_init(re);
        arb_init(im);
        arb_init(den);
        fmpz_init(t);

        arb_mul(im, x, x, prec);
        arb_addmul(im, y, y, prec);

        fmpz_mul(t, b, d);
        arb_set_fmpz(re, t);
        fmpz_mul(t, b, c);
        fmpz_addmul(t, a, d);
        arb_addmul_fmpz(re, x, t, prec);
        fmpz_mul(t, a, c);
        arb_addmul_fmpz(re, im, t, prec);

        fmpz_mul(t, d, d);
        arb_set_fmpz(den, t);
        fmpz_mul(t, c, d);
        fmpz_mul_2exp(t, t, 1);
        arb_addmul_fmpz(den, x, t, prec);
        fmpz_mul(t, c, c);
        arb_addmul_fmpz(den, im, t, prec);

        fmpz_mul(t, a, d);
        fmpz_submul(t, b, c);
        arb_mul_fmpz(im, y, t, prec);

        arb_div(acb_realref(w), re, den, prec);
        arb_div(acb_imagref(w), im, den, prec);

        arb_clear(re);
        arb_clear(im);
        arb_clear(den);
        fmpz_clear(t);
    }

#undef a
#undef b
#undef c
#undef d
#undef x
#undef y
}
Beispiel #29
0
void
_acb_poly_inv_series(acb_ptr Qinv,
    acb_srcptr Q, slong Qlen, slong len, slong prec)
{
    Qlen = FLINT_MIN(Qlen, len);

    acb_inv(Qinv, Q, prec);

    if (Qlen == 1)
    {
        _acb_vec_zero(Qinv + 1, len - 1);
    }
    else if (len == 2)
    {
        acb_mul(Qinv + 1, Qinv, Qinv, prec);
        acb_mul(Qinv + 1, Qinv + 1, Q + 1, prec);
        acb_neg(Qinv + 1, Qinv + 1);
    }
    else
    {
        slong i, blen;

        /* The basecase algorithm is faster for much larger Qlen or len than
           this, but unfortunately also much less numerically stable. */
        if (Qlen == 2 || len <= 8)
            blen = len;
        else
            blen = FLINT_MIN(len, 4);

        for (i = 1; i < blen; i++)
        {
            acb_dot(Qinv + i, NULL, 1,
                Q + 1, 1, Qinv + i - 1, -1, FLINT_MIN(i, Qlen - 1), prec);
            if (!acb_is_one(Qinv))
                acb_mul(Qinv + i, Qinv + i, Qinv, prec);
        }

        if (len > blen)
        {
            slong Qnlen, Wlen, W2len;
            acb_ptr W;

            W = _acb_vec_init(len);

            NEWTON_INIT(blen, len)
            NEWTON_LOOP(m, n)

            Qnlen = FLINT_MIN(Qlen, n);
            Wlen = FLINT_MIN(Qnlen + m - 1, n);
            W2len = Wlen - m;
            MULLOW(W, Q, Qnlen, Qinv, m, Wlen, prec);
            MULLOW(Qinv + m, Qinv, m, W + m, W2len, n - m, prec);
            _acb_vec_neg(Qinv + m, Qinv + m, n - m);

            NEWTON_END_LOOP
            NEWTON_END

            _acb_vec_clear(W, len);
        }
    }
}