bool VisualManagerPass::drawScene(VisualParams* vp) { if(!multiPassEnabled) return false; if(renderToScreen.getValue()) { glViewport(0,0,passWidth,passHeight); glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT ); glEnable(GL_DEPTH_BUFFER_BIT); //render opaque meshes vp->pass() = sofa::core::visual::VisualParams::Std; VisualDrawVisitor act ( vp ); act.setTags(this->getTags()); act.execute ( getContext() ); //render transparent meshes vp->pass() = sofa::core::visual::VisualParams::Transparent; VisualDrawVisitor act2 ( vp ); act2.setTags(this->getTags()); act2.execute ( getContext() ); return true; } else return false; }
/*============================================================================== * FUNCTION: RtlTest::testClone * OVERVIEW: Test constructor from list of expressions; cloning of RTLs *============================================================================*/ void RtlTest::testClone () { Assign* a1 = new Assign( Location::regOf(8), new Binary(opPlus, Location::regOf(9), new Const(99))); Assign* a2 = new Assign(new IntegerType(16), new Location(opParam, new Const("x"), NULL), new Location(opParam, new Const("y"), NULL)); std::list<Statement*> ls; ls.push_back(a1); ls.push_back(a2); RTL* r = new RTL(0x1234, &ls); RTL* r2 = r->clone(); std::ostringstream o1, o2; r->print(o1); delete r; // And r2 should still stand! r2->print(o2); delete r2; std::string expected("00001234 0 *v* r8 := r9 + 99\n" " 0 *j16* x := y\n"); std::string act1(o1.str()); std::string act2(o2.str()); CPPUNIT_ASSERT_EQUAL(expected, act1); CPPUNIT_ASSERT_EQUAL(expected, act2); }
void VisualManagerPass::preDrawScene(VisualParams* vp) { if(renderToScreen.getValue() || (!multiPassEnabled)) return; //const VisualParams::Viewport& viewport = vp->viewport(); fbo->setSize(passWidth, passHeight); fbo->start(); glViewport(0,0,passWidth,passHeight); glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT ); glEnable(GL_DEPTH_BUFFER_BIT); //render opaque meshes vp->pass() = sofa::core::visual::VisualParams::Std; VisualDrawVisitor act ( vp ); act.setTags(this->getTags()); act.execute ( getContext() ); //render transparent meshes vp->pass() = sofa::core::visual::VisualParams::Transparent; VisualDrawVisitor act2 ( vp ); act2.setTags(this->getTags()); act2.execute ( getContext() ); fbo->stop(); prerendered=true; }
void BookmarksToolbar::customContextMenuRequested(const QPoint &pos) { Q_UNUSED(pos) QMenu menu; menu.addAction(tr("&Bookmark Current Page"), p_QupZilla, SLOT(bookmarkPage())); menu.addAction(tr("Bookmark &All Tabs"), p_QupZilla, SLOT(bookmarkAllTabs())); menu.addAction(qIconProvider->fromTheme("user-bookmarks"), tr("&Organize Bookmarks"), p_QupZilla, SLOT(showBookmarksManager())); menu.addSeparator(); QAction act(tr("Show Most &Visited"), this); act.setCheckable(true); act.setChecked(m_bookmarksModel->isShowingMostVisited()); connect(&act, SIGNAL(triggered()), this, SLOT(showMostVisited())); menu.addAction(&act); QAction act2(tr("Show Only Icons"), this); act2.setCheckable(true); act2.setChecked(m_bookmarksModel->isShowingOnlyIconsInToolbar()); connect(&act2, SIGNAL(triggered()), this, SLOT(toggleShowOnlyIcons())); menu.addAction(&act2); menu.addSeparator(); menu.addAction(tr("&Hide Toolbar"), this, SLOT(hidePanel())); //Prevent choosing first option with double rightclick QPoint position = mapToGlobal(pos); QPoint p(position.x(), position.y() + 1); menu.exec(p); }
void display() { switch(num) { case 1:act1();break; case 2:act2();break; } }
void DefaultVisualManagerLoop::drawStep(sofa::core::visual::VisualParams* vparams) { if ( !gRoot ) return; if (gRoot->visualManager.empty()) { vparams->pass() = sofa::core::visual::VisualParams::Std; VisualDrawVisitor act ( vparams ); act.setTags(this->getTags()); gRoot->execute ( &act ); vparams->pass() = sofa::core::visual::VisualParams::Transparent; VisualDrawVisitor act2 ( vparams ); act2.setTags(this->getTags()); gRoot->execute ( &act2 ); } else { Node::Sequence<core::visual::VisualManager>::iterator begin = gRoot->visualManager.begin(), end = gRoot->visualManager.end(), it; for (it = begin; it != end; ++it) (*it)->preDrawScene(vparams); bool rendered = false; // true if a manager did the rendering for (it = begin; it != end; ++it) if ((*it)->drawScene(vparams)) { rendered = true; break; } if (!rendered) // do the rendering { vparams->pass() = sofa::core::visual::VisualParams::Std; VisualDrawVisitor act ( vparams ); act.setTags(this->getTags()); gRoot->execute ( &act ); vparams->pass() = sofa::core::visual::VisualParams::Transparent; VisualDrawVisitor act2 ( vparams ); act2.setTags(this->getTags()); gRoot->execute ( &act2 ); } Node::Sequence<core::visual::VisualManager>::reverse_iterator rbegin = gRoot->visualManager.rbegin(), rend = gRoot->visualManager.rend(), rit; for (rit = rbegin; rit != rend; ++rit) (*rit)->postDrawScene(vparams); } }
int hpx_main() { { tuple_type t(42, 3.14, "test"); worker1_action act1; act1(hpx::find_here(), t); worker1_ref_action act2; act2(hpx::find_here(), t); } { tuple_base_type t(42, 3.14, "test"); worker2_action act1; act1(hpx::find_here(), t); worker2_ref_action act2; act2(hpx::find_here(), t); } return hpx::finalize(); }
int main( int argc, char** argv ) { boost::cmt::thread* at = boost::cmt::thread::create( "actor_thread" ); boost::reflect::any_ptr<calculator> ap( boost::make_shared<calculator>() ); boost::cmt::actor<calculator> act( boost::make_shared<calculator>(), at ); boost::cmt::actor<calculator> act2(ap, at ); boost::cmt::thread* tt = boost::cmt::thread::create( "test_thread" ); tt->async<void>( boost::bind(test, act) ).wait(); tt->async<void>( boost::bind(test, act2) ).wait(); at->async<void>( boost::bind(test, act2) ).wait(); //test(act); test(act2); tt->quit(); at->quit(); return 0; }
int main( int argc, char** argv ) { mace::cmt::thread* at = mace::cmt::thread::create( "actor_thread" ); mace::stub::ptr<calculator> ap( std::make_shared<calculator>() ); mace::cmt::actor<calculator> act( std::make_shared<calculator>(), at ); mace::cmt::actor<calculator> act2(ap, at ); mace::cmt::thread* tt = mace::cmt::thread::create( "test_thread" ); tt->async( boost::bind(test, act) ).wait(); tt->async( boost::bind(test, act2) ).wait(); at->async( boost::bind(test, act2) ).wait(); //test(act); test(act2); mace::cmt::usleep(100000); tt->quit(); at->quit(); return 0; }
int main (int argc, char **argv) { ImageDataset d; d.loadImagesFromFile("train-images-idx3-ubyte"); d.loadLabelsFromFile("train-labels-idx1-ubyte"); std::shared_ptr<clneural::ActivationFunction> act(new clneural::SigmoidActivationFunction()); std::shared_ptr<clneural::ActivationFunction> act2(new clneural::LinearActivationFunction()); std::vector<std::list<unsigned int>> C1_connections(6, std::list<unsigned int>({0})); clneural::ConvolutionalLayer::Dimension C1_input; clneural::ConvolutionalLayer::Dimension C1_filter; float training_speed = 0.7f; C1_input.width = 32; C1_input.height = 32; C1_filter.width = 5; C1_filter.height = 5; std::shared_ptr<clneural::NeuralNetworkLayer> C1(new clneural::ConvolutionalLayer(C1_input, C1_filter, C1_connections, act, training_speed)); clneural::SubsamplingLayer::Dimension S2_input; clneural::SubsamplingLayer::Dimension S2_filter; S2_input.width = 28; S2_input.height = 28; S2_filter.width = 2; S2_filter.height = 2; std::shared_ptr<clneural::NeuralNetworkLayer> S2(new clneural::SubsamplingLayer(S2_input, S2_filter, 6, act2, training_speed)); std::vector<std::list<unsigned int>> C3_connections(16); C3_connections[0] = std::list<unsigned int>({0,1,2}); C3_connections[1] = std::list<unsigned int>({1,2,3}); C3_connections[2] = std::list<unsigned int>({2,3,4}); C3_connections[3] = std::list<unsigned int>({3,4,5}); C3_connections[4] = std::list<unsigned int>({4,5,0}); C3_connections[5] = std::list<unsigned int>({5,0,1}); C3_connections[6] = std::list<unsigned int>({0,1,2,3}); C3_connections[7] = std::list<unsigned int>({1,2,3,4}); C3_connections[8] = std::list<unsigned int>({2,3,4,5}); C3_connections[9] = std::list<unsigned int>({3,4,5,0}); C3_connections[10] = std::list<unsigned int>({4,5,0,1}); C3_connections[11] = std::list<unsigned int>({5,0,1,2}); C3_connections[12] = std::list<unsigned int>({0,1,3,4}); C3_connections[13] = std::list<unsigned int>({1,2,4,5}); C3_connections[14] = std::list<unsigned int>({0,2,3,5}); C3_connections[15] = std::list<unsigned int>({0,1,2,3,4,5}); clneural::ConvolutionalLayer::Dimension C3_input; clneural::ConvolutionalLayer::Dimension C3_filter; C3_input.width = 14; C3_input.height = 14; C3_filter.width = 5; C3_filter.height = 5; std::shared_ptr<clneural::NeuralNetworkLayer> C3(new clneural::ConvolutionalLayer(C3_input, C3_filter, C3_connections, act, training_speed)); clneural::SubsamplingLayer::Dimension S4_input; clneural::SubsamplingLayer::Dimension S4_filter; S4_input.width = 10; S4_input.height = 10; S4_filter.width = 2; S4_filter.height = 2; std::shared_ptr<clneural::NeuralNetworkLayer> S4(new clneural::SubsamplingLayer(S4_input, S4_filter, 16, act2, training_speed)); std::shared_ptr<clneural::NeuralNetworkLayer> N1(new clneural::FullFeedforwardLayer(400, 84, act, training_speed)); std::shared_ptr<clneural::NeuralNetworkLayer> N2(new clneural::FullFeedforwardLayer(84, 10, act, training_speed)); clneural::NeuralNetwork n; n.addLayer(C1); n.addLayer(S2); n.addLayer(C3); n.addLayer(S4); n.addLayer(N1); n.addLayer(N2); std::shared_ptr<OpenCLInterface> ocl = OpenCLInterface::getInstance(); ocl->initialize(CL_DEVICE_TYPE_CPU); float dist = 0.0f; for (unsigned int i = 0; i < 60000; i++) { std::pair<std::vector<float>, uint8_t> trainelem = d.popRandomElementWithLabel(); std::vector<float> desired(10, 0.0f); desired[trainelem.second] = 1.0f; dist += n.trainNetwork(trainelem.first, desired); std::vector<float> nout = n.getLastOutput(); if ((i % 1000) == 0) { std::cout << "TIME: " << ((float) clock())/CLOCKS_PER_SEC << ", STEP:" << (i + 1) << ", MDIST: " << dist/1000.0f << ", OUT: (" << nout[0]; for (unsigned int j = 1; j < nout.size(); j++) std::cout << "," << nout[j]; std::cout << "), DESIRED: (" << desired[0]; for (unsigned int j = 1; j < desired.size(); j++) std::cout << "," << desired[j]; std::cout << ")" << std::endl; dist = 0.0f; } } n.saveToFile("conv_images1.net"); verifyNetwork(n); return 0; }
void do_scan(CHAR_DATA *ch, char *argument) { extern char *const dir_name[]; char arg1[MAX_INPUT_LENGTH], buf[MAX_INPUT_LENGTH]; ROOM_INDEX_DATA *scan_room; EXIT_DATA *pExit; sh_int door, depth, outlet; argument = one_argument(argument, arg1); if (IS_AFFECTED(ch,AFF_BLIND)) { send_to_char("Maybe it would help if you could see?\n\r",ch); return; } if (arg1[0] == '\0') { act2("$n looks all around.", ch, NULL, NULL, TO_ROOM, ACTION_MUST_SEE); send_to_char("Looking around you see:\n\r", ch); scan_list(ch->in_room, ch, 0, -1); for (door=0;door<6;door++) { outlet = door; if ( ( ch->alignment < 0 ) && (pExit = ch ->in_room->exit[door+6]) != NULL) outlet += 6; if ((pExit = ch ->in_room->exit[outlet]) != NULL) scan_list(pExit->u1.to_room, ch, 1, outlet); } return; } else if (!str_cmp(arg1, "n") || !str_cmp(arg1, "north")) door = 0; else if (!str_cmp(arg1, "e") || !str_cmp(arg1, "east")) door = 1; else if (!str_cmp(arg1, "s") || !str_cmp(arg1, "south")) door = 2; else if (!str_cmp(arg1, "w") || !str_cmp(arg1, "west")) door = 3; else if (!str_cmp(arg1, "u") || !str_cmp(arg1, "up" )) door = 4; else if (!str_cmp(arg1, "d") || !str_cmp(arg1, "down")) door = 5; else { send_to_char("Which way do you want to scan?\n\r", ch); return; } act("You peer intently $T.", ch, NULL, dir_name[door], TO_CHAR); act("$n peers intently $T.", ch, NULL, dir_name[door], TO_ROOM); sprintf(buf, "Looking %s you see:\n\r", dir_name[door]); scan_room = ch->in_room; for (depth = 1; depth < 4; depth++) { outlet = door; if (scan_room == NULL) return; if ( ( ch->alignment < 0 ) && ((pExit = scan_room->exit[outlet+6]) != NULL)) { scan_room = pExit->u1.to_room; scan_list(pExit->u1.to_room, ch, depth, outlet+6); } else if ((pExit = scan_room->exit[outlet]) != NULL) { scan_room = pExit->u1.to_room; scan_list(pExit->u1.to_room, ch, depth, outlet); } } return; }