Beispiel #1
0
/*
  Creates a new R-near neighbor data structure (PRNearNeighborStructT)
  from the parameters <thresholdR> and <successProbability> for the
  data set <dataSet>. <nPoints> is the number of points in the data
  set and <dimension> is the dimension of the points.

  The set <sampleQueries> is a set with query sample points
  (R-NN DS's parameters are optimized for query points from the set
  <sampleQueries>). <sampleQueries> could be a sample of points from the
  actual query set or from the data set. When computing the estimated
  number of collisions of a sample query point <q> with the data set
  points, if there is a point in the data set with the same pointer
  with <q> (that is when <q> is a data set point), then the
  corresponding point (<q>) is not considered in the data set (for the
  purpose of computing the respective #collisions estimation).
*/
PRNearNeighborStructT initSelfTunedRNearNeighborWithDataSet(RealT thresholdR, 
							    RealT successProbability, 
							    Int32T nPoints, 
							    IntT dimension, 
							    PPointT *dataSet, 
							    IntT nSampleQueries, 
							    PPointT *sampleQueries, 
							    MemVarT memoryUpperBound){
  initializeLSHGlobal();

  PRNearNeighborStructT nnStruct = NULL;

  RNNParametersT optParameters = computeOptimalParameters(thresholdR, successProbability, nPoints, dimension, dataSet, nSampleQueries, sampleQueries, memoryUpperBound);

  if (!optParameters.useUfunctions) {
    DPRINTF("Used L=%d\n", optParameters.parameterL);
  }else{
    DPRINTF("Used m = %d\n", optParameters.parameterM);
    DPRINTF("Used L = %d\n", optParameters.parameterL);
  }

  TimeVarT timeInit = 0;
  TIMEV_START(timeInit);

  // Init the R-NN data structure.
  if (optParameters.typeHT != HT_HYBRID_CHAINS){
    nnStruct = initLSH(optParameters, nPoints);
  }else{
    printRNNParameters(DEBUG_OUTPUT, optParameters);
    nnStruct = initLSH_WithDataSet(optParameters, nPoints, dataSet);
  }

  TIMEV_END(timeInit);
  DPRINTF("Time for initializing: %0.6lf\n", timeInit);
  DPRINTF("Allocated memory: %lld\n", totalAllocatedMemory);

  TimeVarT timeAdding = 0;
  if (optParameters.typeHT != HT_HYBRID_CHAINS){
    // Add the points to the LSH buckets.
    TIMEV_START(timeAdding);
    for(IntT i = 0; i < nPoints; i++){
      addNewPointToPRNearNeighborStruct(nnStruct, dataSet[i]);
    }
    TIMEV_END(timeAdding);
    printf("Time for adding points: %0.6lf\n", timeAdding);
    DPRINTF("Allocated memory: %lld\n", totalAllocatedMemory);
  }

  DPRINTF("Time for creating buckets: %0.6lf\n", timeBucketCreation);
  DPRINTF("Time for putting buckets into UH: %0.6lf\n", timeBucketIntoUH);
  DPRINTF("Time for computing GLSH: %0.6lf\n", timeComputeULSH);
  DPRINTF("NGBuckets: %d\n", nGBuckets);

  return nnStruct;
}
Beispiel #2
0
// Determines the run-time coefficients of the different parts of the  //确定查询算法不同部分的运行时间
// query algorithm. Values that are computed and returned are
// <lshPrecomp>, <uhashOver>, <distComp>. <lshPrecomp> is the time for
// pre-computing one function from the LSH family. <uhashOver> is the
// time for getting a bucket from a hash table (of buckets).<distComp>
// is the time to compute one distance between two points. These times
// are computed by constructing a R-NN DS on a sample data set and
// running a sample query set on it.
void determineRTCoefficients(RealT thresholdR, 
			     RealT successProbability, 
			     BooleanT useUfunctions, 
			     IntT typeHT, //建立hash表的类型
			     IntT dimension, 
			     Int32T nPoints, 
			     PPointT *realData, 
			     RealT &lshPrecomp, 
			     RealT &uhashOver, 
			     RealT &distComp){

  // use a subset of the original data set.   使用原始数据集的一个子集
  // there is not much theory behind the formula below.    //减小运算规模
  IntT n = nPoints / 50;    //最多生成n各点,缩小50倍
  if (n < 100) {            //如果生成的点的个数小于100,则使桶的数量与数据集点的数量一样多
    n = nPoints;
  }
  if (n > 10000) {
    n = 10000;
  }

  // Initialize the data set to use.
  PPointT *dataSet;
  FAILIF(NULL == (dataSet = (PPointT*)MALLOC(n * sizeof(PPointT))));
  for(IntT i = 0; i < n; i++){           //从真实数据集中随机取n个点 (最多10000个)
    dataSet[i] = realData[genRandomInt(0, nPoints - 1)];
  }

  IntT hashTableSize = n;                //哈希表大小也初始化为n,是指hashTableSize放的点的个数,还是放的桶的个数?
  RNNParametersT algParameters;
  algParameters.parameterR = thresholdR;   //半径
  algParameters.successProbability = successProbability;
  algParameters.dimension = dimension;
#ifdef USE_L1_DISTANCE
  algParameters.parameterR2 = thresholdR;       //使用L1距离,R2=R
#else  
  algParameters.parameterR2 = SQR(thresholdR);   //使用L2  R2=R^2
#endif
  algParameters.useUfunctions = useUfunctions;
  algParameters.parameterK = 16;       //k 设定为16,只是测试,估算运算时间,可能是先随机设置一个时间,之后再在代码中改成16,因为16是bestK.
  algParameters.parameterW = PARAMETER_W_DEFAULT;    //W=4,manuel中说经过多次测试,4是最好的值
  algParameters.parameterT = n;                     //点的个数
  algParameters.typeHT = typeHT;                      //桶的类型HT_HYBRID_CHAINS,在line405里面定义的。

  if (algParameters.useUfunctions){
    algParameters.parameterM = computeMForULSH(algParameters.parameterK, algParameters.successProbability);     //经过改进的L和M
    algParameters.parameterL = algParameters.parameterM * (algParameters.parameterM - 1) / 2;
  }else{
    algParameters.parameterM = computeLfromKP(algParameters.parameterK, algParameters.successProbability);          //论文里面的M=L 
    algParameters.parameterL = algParameters.parameterM;
  }

//   FAILIF(NULL == (dataSet = (PPointT*)MALLOC(n * sizeof(PPointT))));
//   for(IntT i = 0; i < n; i++){
//     FAILIF(NULL == (dataSet[i] = (PPointT)MALLOC(sizeof(PointT))));
//     FAILIF(NULL == (dataSet[i]->coordinates = (RealT*)MALLOC(dimension * sizeof(RealT))));

//     dataSet[i]->index = i;
//     sqrLength = 0;
//     for(IntT d = 0; d < dimension; d++){
//       if (i == 0) {
// 	dataSet[i]->coordinates[d] = genUniformRandom(-100, 100);
//       }else{
// 	dataSet[i]->coordinates[d] = dataSet[0]->coordinates[d];
//       }
//       sqrLength += SQR(dataSet[i]->coordinates[d]);
//     }
//     dataSet[i]->sqrLength = sqrLength;
//   }

  // switch on timing
  BooleanT tempTimingOn = timingOn;    //初始化为True
  timingOn = TRUE;

  // initialize result arrays
  PPointT *result = NULL;             //结果集以及其初始化
  IntT resultSize = 0;
  IntT nNNs;
  IntT nSucReps;

  do{
    // create the test structure
    PRNearNeighborStructT nnStruct;
    switch(algParameters.typeHT){
    case HT_LINKED_LIST:
      nnStruct = initLSH(algParameters, n);
      // add points to the test structure
      for(IntT i = 0; i < n; i++){
	addNewPointToPRNearNeighborStruct(nnStruct, realData[i]);
      }
      break;
    case HT_HYBRID_CHAINS:
      nnStruct = initLSH_WithDataSet(algParameters, n, dataSet);   //初始化数据结构,参数集,点的个数,数据集,对点进行映射转换,桶进行映射转换,点存入桶中
      break;
    default:
      ASSERT(FALSE);
    }

    // query point
    PPointT queryPoint;
//     FAILIF(NULL == (queryPoint = (PPointT)MALLOC(sizeof(PointT))));
//     FAILIF(NULL == (queryPoint->coordinates = (RealT*)MALLOC(dimension * sizeof(RealT))));
//     RealT sqrLength = 0;
//     for(IntT i = 0; i < dimension; i++){
//       queryPoint->coordinates[i] = dataSet[0]->coordinates[i];
//       //queryPoint->coordinates[i] = 0.1;
//       sqrLength += SQR(queryPoint->coordinates[i]);
//     }
    //queryPoint->coordinates[0] = dataPoint->coordinates[0] + 0.0001;
    //queryPoint->sqrLength = sqrLength;

    // reset the R parameter so that there are no NN neighbors.
    setResultReporting(nnStruct, FALSE);
    //DPRINTF1("X\n");

    lshPrecomp = 0;
    uhashOver = 0;
    distComp = 0;
    IntT nReps = 20;
    nSucReps = 0;
    for(IntT rep = 0; rep < nReps; rep++){
      queryPoint = realData[genRandomInt(0, nPoints - 1)];   //查询点为数据集中随机抽取出来的一个点
      timeComputeULSH = 0;
      timeGetBucket = 0;
      timeCycleBucket = 0;
      nOfDistComps = 0;                //点与点比较的次数
	  //返回查找到的近邻点数,并将查询到的近邻点存入result中。
      nNNs = getNearNeighborsFromPRNearNeighborStruct(nnStruct, queryPoint, result, resultSize);   
      //DPRINTF("Time to compute LSH: %0.6lf\n", timeComputeULSH);
      //DPRINTF("Time to get bucket: %0.6lf\n", timeGetBucket);
      //DPRINTF("Time to cycle through buckets: %0.9lf\n", timeCycleBucket);
      //DPRINTF("N of dist comp: %d\n", nOfDistComps);

      ASSERT(nNNs == 0);    //若一个点都没有找到,将发生中断。
      if (nOfDistComps >= MIN(n / 10, 100)){    //与足够的点比较过,才将时间计入
	nSucReps++;
	lshPrecomp += timeComputeULSH / algParameters.parameterK / algParameters.parameterM;  //一个点对一个哈希函数的处理时间。共有k*L个哈希函数
	uhashOver += timeGetBucket / algParameters.parameterL;     //找到一个链表中桶的时间
	distComp += timeCycleBucket / nOfDistComps;   //遍历链表中桶,并与桶里面的点比较的时间
      }
    }

    if (nSucReps >= 5){
      lshPrecomp /= nSucReps;
      uhashOver /= nSucReps;
      distComp /= nSucReps;
      DPRINTF1("RT coeffs computed.\n");
    }else{
      algParameters.parameterR *= 2; // double the radius and repeat  //比较的点数不够,将半径扩大,重复比较
      DPRINTF1("Could not determine the RT coeffs. Repeating.\n");
    }

    freePRNearNeighborStruct(nnStruct);

  }while(nSucReps < 5);       //做一个有效值的判断,要获得5次有效值

  FREE(dataSet);
  FREE(result);

  timingOn = tempTimingOn;
}
Beispiel #3
0
// Determines the run-time coefficients of the different parts of the
// query algorithm. Values that are computed and returned are
// <lshPrecomp>, <uhashOver>, <distComp>. <lshPrecomp> is the time for
// pre-computing one function from the LSH family. <uhashOver> is the
// time for getting a bucket from a hash table (of buckets).<distComp>
// is the time to compute one distance between two points. These times
// are computed by constructing a R-NN DS on a sample data set and
// running a sample query set on it.
void determineRTCoefficients(RealT thresholdR, 
			     RealT successProbability, 
			     BooleanT useUfunctions, 
			     IntT typeHT, 
			     IntT dimension, 
			     Int32T nPoints, 
			     PPointT *realData, 
			     RealT &lshPrecomp, 
			     RealT &uhashOver, 
			     RealT &distComp){

  // use a subset of the original data set.
  // there is not much theory behind the formula below.
  IntT n = nPoints / 50;
  if (n < 100) {
    n = nPoints;
  }
  if (n > 10000) {
    n = 10000;
  }

  // Initialize the data set to use.
  PPointT *dataSet;
  FAILIF(NULL == (dataSet = (PPointT*)MALLOC(n * sizeof(PPointT))));
  for(IntT i = 0; i < n; i++){
    dataSet[i] = realData[genRandomInt(0, nPoints - 1)];
  }

  IntT hashTableSize = n;
  RNNParametersT algParameters;
  algParameters.parameterR = thresholdR;
  algParameters.successProbability = successProbability;
  algParameters.dimension = dimension;
#ifdef USE_L1_DISTANCE
  algParameters.parameterR2 = thresholdR;
#else  
  algParameters.parameterR2 = SQR(thresholdR);
#endif
  algParameters.useUfunctions = useUfunctions;
  algParameters.parameterK = 16;
  algParameters.parameterW = PARAMETER_W_DEFAULT;
  algParameters.parameterT = n;
  algParameters.typeHT = typeHT;

  if (algParameters.useUfunctions){
    algParameters.parameterM = computeMForULSH(algParameters.parameterK, algParameters.successProbability);
    algParameters.parameterL = algParameters.parameterM * (algParameters.parameterM - 1) / 2;
  }else{
    algParameters.parameterM = computeLfromKP(algParameters.parameterK, algParameters.successProbability);
    algParameters.parameterL = algParameters.parameterM;
  }

//   FAILIF(NULL == (dataSet = (PPointT*)MALLOC(n * sizeof(PPointT))));
//   for(IntT i = 0; i < n; i++){
//     FAILIF(NULL == (dataSet[i] = (PPointT)MALLOC(sizeof(PointT))));
//     FAILIF(NULL == (dataSet[i]->coordinates = (RealT*)MALLOC(dimension * sizeof(RealT))));

//     dataSet[i]->index = i;
//     sqrLength = 0;
//     for(IntT d = 0; d < dimension; d++){
//       if (i == 0) {
// 	dataSet[i]->coordinates[d] = genUniformRandom(-100, 100);
//       }else{
// 	dataSet[i]->coordinates[d] = dataSet[0]->coordinates[d];
//       }
//       sqrLength += SQR(dataSet[i]->coordinates[d]);
//     }
//     dataSet[i]->sqrLength = sqrLength;
//   }

  // switch on timing
  BooleanT tempTimingOn = timingOn;
  timingOn = TRUE;

  // initialize result arrays
  PPointT *result = NULL;
  IntT resultSize = 0;
  IntT nNNs;
  IntT nSucReps;

  do{
    // create the test structure
    PRNearNeighborStructT nnStruct;
    switch(algParameters.typeHT){
    case HT_LINKED_LIST:
      nnStruct = initLSH(algParameters, n);
      // add points to the test structure
      for(IntT i = 0; i < n; i++){
	addNewPointToPRNearNeighborStruct(nnStruct, realData[i]);
      }
      break;
    case HT_HYBRID_CHAINS:
      nnStruct = initLSH_WithDataSet(algParameters, n, dataSet);
      break;
    default:
      ASSERT(FALSE);
    }

    // query point
    PPointT queryPoint;
//     FAILIF(NULL == (queryPoint = (PPointT)MALLOC(sizeof(PointT))));
//     FAILIF(NULL == (queryPoint->coordinates = (RealT*)MALLOC(dimension * sizeof(RealT))));
//     RealT sqrLength = 0;
//     for(IntT i = 0; i < dimension; i++){
//       queryPoint->coordinates[i] = dataSet[0]->coordinates[i];
//       //queryPoint->coordinates[i] = 0.1;
//       sqrLength += SQR(queryPoint->coordinates[i]);
//     }
    //queryPoint->coordinates[0] = dataPoint->coordinates[0] + 0.0001;
    //queryPoint->sqrLength = sqrLength;

    // reset the R parameter so that there are no NN neighbors.
    setResultReporting(nnStruct, FALSE);
    //DPRINTF1("X\n");

    lshPrecomp = 0;
    uhashOver = 0;
    distComp = 0;
    IntT nReps = 20;
    nSucReps = 0;
    for(IntT rep = 0; rep < nReps; rep++){
      queryPoint = realData[genRandomInt(0, nPoints - 1)];
      timeComputeULSH = 0;
      timeGetBucket = 0;
      timeCycleBucket = 0;
      nOfDistComps = 0;
      nNNs = getNearNeighborsFromPRNearNeighborStruct(nnStruct, queryPoint, result, resultSize);
      //DPRINTF("Time to compute LSH: %0.6lf\n", timeComputeULSH);
      //DPRINTF("Time to get bucket: %0.6lf\n", timeGetBucket);
      //DPRINTF("Time to cycle through buckets: %0.9lf\n", timeCycleBucket);
      //DPRINTF("N of dist comp: %d\n", nOfDistComps);

      ASSERT(nNNs == 0);
      if (nOfDistComps >= MIN(n / 10, 100)){
	nSucReps++;
	lshPrecomp += timeComputeULSH / algParameters.parameterK / algParameters.parameterM;
	uhashOver += timeGetBucket / algParameters.parameterL;
	distComp += timeCycleBucket / nOfDistComps;
      }
    }

    if (nSucReps >= 5){
      lshPrecomp /= nSucReps;
      uhashOver /= nSucReps;
      distComp /= nSucReps;
      DPRINTF1("RT coeffs computed.\n");
    }else{
      algParameters.parameterR *= 2; // double the radius and repeat
      DPRINTF1("Could not determine the RT coeffs. Repeating.\n");
    }

    freePRNearNeighborStruct(nnStruct);

  }while(nSucReps < 5);

  FREE(dataSet);
  FREE(result);

  timingOn = tempTimingOn;
}