Beispiel #1
0
GRAPH *create_graph(void){
	GRAPH *temp=malloc(1*sizeof(GRAPH));
	if(temp==NULL){
	perror("MALLOC GRAPH");
	exit(1);
	}
	temp->size=get_size_of_vertex();
	temp->labels=create_points(temp);
	temp->edges=alloc_edges(temp);
	add_edges(temp);
	view_edges(temp);
	return temp;
}
Beispiel #2
0
// -----------------------------------------------------------------------------
//	Draw all segments, ignoring connectivity.
//	A segment is drawn if its segnum != -1.
void draw_mine_all(segment *sp, int automap_flag)
{
	int	s;
	int	i;

	// clear visited list
	for (i=0; i<=Highest_segment_index; i++)
		Been_visited[i] = 0;

	edge_list_size = min(Num_vertices*4,MAX_EDGES);		//make maybe smaller than max

	// clear edge list
	for (i=0; i<edge_list_size; i++) {
		edge_list[i].type = ET_EMPTY;
		edge_list[i].face_count = 0;
		edge_list[i].backface_count = 0;
	}

	n_used = 0;

	for (s=0; s<=Highest_segment_index; s++)
		if (sp[s].segnum != -1) {
			for (i=0; i<MAX_SIDES_PER_SEGMENT; i++)
				if (sp[s].sides[i].wall_num != -1)
					draw_special_wall(&sp[s], i);
			if (Search_mode)
				check_segment(&sp[s]);
			else {
				add_edges(&sp[s]);
				draw_seg_objects(&sp[s]);
			}
		}

	draw_mine_edges(automap_flag);

}
Beispiel #3
0
InteractionGraph get_interaction_graph(ScoringFunctionAdaptor rsi,
                                       const ParticlesTemp& ps) {
  if (ps.empty()) return InteractionGraph();
  InteractionGraph ret(ps.size());
  Restraints rs= IMP::create_decomposition(rsi->create_restraints());
  //Model *m= ps[0]->get_model();
  IMP::base::map<ModelObject*, int> map;
  InteractionGraphVertexName pm= boost::get(boost::vertex_name, ret);
  DependencyGraph dg = get_dependency_graph(ps[0]->get_model());
  DependencyGraphVertexIndex index= IMP::get_vertex_index(dg);
  /*IMP_IF_LOG(VERBOSE) {
    IMP_LOG_VERBOSE( "dependency graph is \n");
    IMP::internal::show_as_graphviz(dg, std::cout);
    }*/
  for (unsigned int i=0; i< ps.size(); ++i) {
    ParticlesTemp t= get_dependent_particles(ps[i],
                                             ParticlesTemp(ps.begin(),
                                                           ps.end()),
                                             dg, index);
    for (unsigned int j=0; j< t.size(); ++j) {
      IMP_USAGE_CHECK(map.find(t[j]) == map.end(),
                      "Currently particles which depend on more "
                      << "than one particle "
                      << "from the input set are not supported."
                      << "  Particle \"" << t[j]->get_name()
                      << "\" depends on \"" << ps[i]->get_name()
                      << "\" and \"" << ps[map.find(t[j])->second]->get_name()
                      << "\"");
      map[t[j]]= i;
    }
    IMP_IF_LOG(VERBOSE) {
      IMP_LOG_VERBOSE( "Particle \"" << ps[i]->get_name() << "\" controls ");
      for (unsigned int i=0; i< t.size(); ++i) {
        IMP_LOG_VERBOSE( "\""<< t[i]->get_name() << "\" ");
      }
      IMP_LOG_VERBOSE( std::endl);
    }
    pm[i]= ps[i];
  }
  IMP::Restraints all_rs= IMP::get_restraints(rs);
  for (Restraints::const_iterator it= all_rs.begin();
       it != all_rs.end(); ++it) {
    ModelObjectsTemp pl= (*it)->get_inputs();
    add_edges(ps, pl, map, *it, ret);
  }
  /* Make sure that composite score states (eg the normalizer for
     rigid body rotations) don't induce interactions among unconnected
     particles.*/
  ScoreStatesTemp ss= get_required_score_states(rs, dg, index);
  for (ScoreStatesTemp::const_iterator it= ss.begin();
       it != ss.end(); ++it) {
    ModelObjectsTemps interactions=(*it)->get_interactions();
    for (unsigned int i=0; i< interactions.size(); ++i) {
      add_edges(ps, interactions[i], map, *it, ret);
    }
  }
  IMP_INTERNAL_CHECK(boost::num_vertices(ret) == ps.size(),
                     "Wrong number of vertices "
                     << boost::num_vertices(ret)
                     << " vs " << ps.size());
  return ret;
}
Beispiel #4
0
int maxcut_haplotyping(char* fragmentfile,char* variantfile,int snps,char* outputfile,int maxiter_hapcut)
{
	// IMP NOTE: all SNPs start from 1 instead of 0 and all offsets are 1+
	fprintf(stderr,"calling MAXCUT based haplotype assembly algorithm\n");
	int fragments=0,iter=0,components=0; int i=0,j=0,k=0,t=0,component;	int* slist;  int flag =0;
	float bestscore_mec = 0,calls=0, miscalls=0,ll = 0;
	char buffer[MAXBUF]; 

	/****************************** READ FRAGMENT MATRIX*************************************************/
	struct fragment* Flist; FILE* ff = fopen(fragmentfile,"r"); 
	if (ff == NULL) { fprintf(stderr,"couldn't open fragment file %s\n",fragmentfile); exit(0);}
	fragments =0; while ( fgets(buffer,MAXBUF,ff) != NULL) fragments++; fclose(ff);
	Flist = (struct fragment*)malloc(sizeof(struct fragment)*fragments); 
	flag = read_fragment_matrix(fragmentfile,Flist,fragments);
	if (flag < 0) { fprintf(stderr,"unable to read fragment matrix file %s \n",fragmentfile); return -1; } 

	if (VCFformat ==0) snps = count_variants(variantfile);
	else snps = count_variants_vcf(variantfile);
	if (snps < 0) { fprintf(stderr,"unable to read variant file %s \n",variantfile); return -1; } 
	fprintf(stderr,"processed fragment file and variant file: fragments %d variants %d\n",fragments,snps); 
	/****************************** READ FRAGMENT MATRIX*************************************************/

	struct SNPfrags* snpfrag = (struct SNPfrags*)malloc(sizeof(struct SNPfrags)*snps); 
	update_snpfrags(Flist,fragments,snpfrag,snps,&components);
	double MEM_ALLOC = 0; for (i=0;i<snps;i++) MEM_ALLOC += snpfrag[i].edges*0.002; MEM_ALLOC *= 0.016; 
	fprintf(stderr,"%f MB memory needs to be allocated for graph edges\n",MEM_ALLOC); // size of struct edge is 16/1000 bytes
	if (MEM_ALLOC >= MAX_MEMORY) 
	{
		fprintf(stderr,"\nstoring the HAPCUT graph structure requires more than %d MB of memory:\n 1. increase the maximum memory available using option \"--maxmem 12000\" where the memory is specified in megabytes OR \n 2. run the program with the options \"--longreads 1 \" to reduce the number of edges stored \n\n",MAX_MEMORY); 
		return -1;
	} 
	
	// too much memory allocated here for fosmid based data... 
	for (i=0;i<snps;i++) snpfrag[i].elist = (struct edge*)malloc(sizeof(struct edge)*snpfrag[i].edges);  
	for (i=0;i<snps;i++) snpfrag[i].telist = (struct edge*)malloc(sizeof(struct edge)*snpfrag[i].edges);  

	if (FOSMIDS ==0) add_edges(Flist,fragments,snpfrag,snps,&components);
	else if (FOSMIDS >=1) add_edges_fosmids(Flist,fragments,snpfrag,snps,&components);
	// this considers only components with at least two nodes
	fprintf(stderr,"fragments %d snps %d component(blocks) %d\n",fragments,snps,components); 
	
	struct BLOCK* clist = (struct BLOCK*)malloc(sizeof(struct BLOCK)*components); component =0;
	generate_clist_structure(Flist,fragments,snpfrag,snps,components,clist);

	/*****************************************************************************************************/

	char* HAP1 = (char*)malloc(snps+1); char* besthap_mec = (char*)malloc(snps+1);
	char* HAP2 = (char*)malloc(snps+1);
	struct tm  *ts1;   char       buf[80];	time_t     now;		
	slist = (int*)malloc(sizeof(int)*snps); char fn[1000];  

	if (VCFformat ==0) read_variantfile(variantfile,snpfrag,snps); else read_vcffile(variantfile,snpfrag,snps);

	/*****************************************************************************************************/
	if (RANDOM_START ==1)
	{				
		fprintf(stdout,"starting from a completely random solution SOLUTION \n");
		for (i=0;i<snps;i++) 
		{ 
			if (snpfrag[i].frags ==0) { HAP1[i] = '-'; HAP2[i] = '-'; } 
			else 
			{
				if (drand48() < 0.5) { HAP1[i] = '0'; HAP2[i] = '1'; }  else  {HAP1[i] = '1'; HAP2[i] = '0'; }
			}
		} 
	}
	for (i=0;i<snps;i++) { besthap_mec[i] = HAP1[i]; } 

	// for each block, we maintain best haplotype solution under MFR criterion 
	// compute the component-wise score for 'initHAP' haplotype 
	miscalls=0;bestscore_mec=0; 
	for (k=0;k<components;k++)
	{
		clist[k].MEC =0; clist[k].bestMEC =0; clist[k].calls =0;	clist[k].LL = 0; 
		for (i=0;i<clist[k].frags;i++) 
		{
			update_fragscore(Flist,clist[k].flist[i],HAP1); clist[k].MEC += Flist[clist[k].flist[i]].currscore;
			clist[k].LL += Flist[clist[k].flist[i]].ll; clist[k].calls += Flist[clist[k].flist[i]].calls;

		} 
		clist[k].bestMEC = clist[k].MEC; bestscore_mec += clist[k].bestMEC; miscalls += clist[k].MEC;	 clist[k].bestLL = clist[k].LL; 
	}
	
	//	annealing_haplotyping(Flist,fragments,snpfrag,snps,maxiter,HAP1,HAP2,clist,components,slist); return 1;
	//	annealing_haplotyping_full(Flist,fragments,snpfrag,snps,maxiter,HAP1,HAP2,0); return 1;
	

	/************************** RUN THE MAX_CUT ALGORITHM ITERATIVELY TO IMPROVE MEC SCORE*********************************/
	for (iter=0;iter<maxiter_hapcut;iter++)
	{
		mecscore(Flist,fragments,HAP1,&ll,&calls,&miscalls);
		time(&now); ts1 = localtime(&now); strftime(buf, sizeof(buf), "%a %Y-%m-%d %H:%M:%S %Z", ts1); 
		fprintf(stdout,"iter %d current haplotype MEC %f calls %d LL %f %s \n",iter,miscalls,(int)calls,ll,buf);  
		fprintf(stderr,"iter %d current haplotype MEC %f calls %d LL %f %s \n",iter,miscalls,(int)calls,ll,buf);  
		if ((iter%10==0 && iter > 0)) 
		{
			// new code added april 7 2012
			for (k=0;k<components;k++) find_bestvariant_segment(Flist,fragments,snpfrag,clist,k,HAP1,HAP2);

			sprintf(fn,"%s",outputfile);   // newfile for every update to score....
			//sprintf(fn,"%s.%f",outputfile,miscalls);   // newfile for every update to score....
			fprintf(stdout,"OUTPUTTING HAPLOTYPE ASSEMBLY TO FILE %s\n",fn); 	fprintf(stderr,"OUTPUTTING HAPLOTYPE ASSEMBLY TO FILE %s\n",fn); 
			//if (VCFformat ==1) print_haplotypes_vcf(clist,components,HAP1,Flist,fragments,snpfrag,snps,fn);
			print_hapfile(clist,components,HAP1,Flist,fragments,snpfrag,variantfile,miscalls,fn);   
			
			// do this only if some option is specified 
			if (PRINT_FRAGMENT_SCORES ==1) 
			{
				print_fragmentmatrix_MEC(Flist,fragments,HAP1,outputfile);
				//print_matrix(clist,components,HAP1,Flist,outputfile);
			}
		
		}

		for (k=0;k<components;k++) // COMPUTATION OF TREE FOR EACH COMPONENT 
		{
			//if ((k*50)%components ==0) fprintf(stderr,"#");
			if (iter ==0) fprintf(stdout,"\n component %d length %d phased %d %d...%d \n",k,clist[k].length,clist[k].phased,clist[k].offset,clist[k].lastvar); 
			// call function for each component only if MEC > 0 april 17 2012
			if (clist[k].MEC > 0) evaluate_cut_component(Flist,snpfrag,clist,k,slist,HAP1,iter);
		}
		for (i=0;i<snps;i++)
		{
			// commented out on april 6 4pm 2012
			//if (HAP1[i] == '0') HAP2[i] = '1'; else if (HAP1[i] == '1') HAP2[i] = '0'; else HAP2[i] = HAP1[i]; 
		}
	}
	/************************** RUN THE MAX_CUT ALGORITHM ITERATIVELY TO IMPROVE MEC SCORE*********************************/
	//	annealing_haplotyping_full(Flist,fragments,snpfrag,snps,maxiter+100,HAP1,HAP2,0); return 1;
	return 1;
}
Beispiel #5
0
 void edges(std::initializer_list<std::initializer_list<int>> pairs) {
     clear();
     add_edges(pairs);
 }
Beispiel #6
0
 adjacency_matrix(std::initializer_list<std::initializer_list<int>> pairs, std::size_t nodes_count, bool directed = false) :
     adjacency_matrix{nodes_count, directed}
 {
     add_edges(pairs);
 }
Beispiel #7
0
int maxcut_haplotyping(char* fragmentfile, char* variantfile, char* outputfile) {
    // IMP NOTE: all SNPs start from 1 instead of 0 and all offsets are 1+
    fprintf_time(stderr, "Calling Max-Likelihood-Cut based haplotype assembly algorithm\n");

    int snps = 0;
    int fragments = 0, iter = 0, components = 0;
    int i = 0, k = 0;
    int* slist;
    int flag = 0;
    float bestscore = 0, miscalls = 0;
    int hic_iter=0;
    struct SNPfrags* snpfrag = NULL;
    struct BLOCK* clist;
    char* HAP1;
    float HIC_LL_SCORE = -80;
    float OLD_HIC_LL_SCORE = -80;
    int converged_count=0, split_count, new_components, component;

    int new_fragments = 0;
    struct fragment* new_Flist;

    // READ FRAGMENT MATRIX
    fragments = get_num_fragments(fragmentfile); 
    struct fragment* Flist;
    Flist     = (struct fragment*) malloc(sizeof (struct fragment)* fragments);
    flag = read_fragment_matrix(fragmentfile, Flist, fragments);

    if (MAX_IS != -1){
        // we are going to filter out some insert sizes
        new_fragments = 0;
        new_Flist = (struct fragment*) malloc(sizeof (struct fragment)* fragments);
        for(i = 0; i < fragments; i++){
            if (Flist[i].isize < MAX_IS) new_Flist[new_fragments++] = Flist[i];
        }
        Flist = new_Flist;
        fragments = new_fragments;
    }

    if (flag < 0) {
        fprintf_time(stderr, "unable to read fragment matrix file %s \n", fragmentfile);
        return -1;
    }

    //ADD EDGES BETWEEN SNPS
    snps = count_variants_vcf(variantfile);
    if (snps < 0) {
        fprintf_time(stderr, "unable to read variant file %s \n", variantfile);
        return -1;
    }

    snpfrag = (struct SNPfrags*) malloc(sizeof (struct SNPfrags)*snps);
    update_snpfrags(Flist, fragments, snpfrag, snps, &components);
    
    detect_long_reads(Flist,fragments);

    // 10/25/2014, edges are only added between adjacent nodes in each fragment and used for determining connected components...
    for (i = 0; i < snps; i++) snpfrag[i].elist = (struct edge*) malloc(sizeof (struct edge)*(snpfrag[i].edges+1));
    if (LONG_READS ==0){
        add_edges(Flist,fragments,snpfrag,snps,&components);
    }else if (LONG_READS >=1){
        add_edges_fosmids(Flist,fragments,snpfrag,snps,&components);
    }

    for (i = 0; i < snps; i++) snpfrag[i].telist = (struct edge*) malloc(sizeof (struct edge)*(snpfrag[i].edges+1));

    // this considers only components with at least two nodes
    fprintf_time(stderr, "fragments %d snps %d component(blocks) %d\n", fragments, snps, components);

    // BUILD COMPONENT LIST
    clist = (struct BLOCK*) malloc(sizeof (struct BLOCK)*components);
    generate_clist_structure(Flist, fragments, snpfrag, snps, components, clist);

    // READ VCF FILE
    read_vcffile(variantfile, snpfrag, snps);

    // INITIALIZE RANDOM HAPLOTYPES
    HAP1 = (char*) malloc(snps + 1);
    for (i = 0; i < snps; i++) {
        if (snpfrag[i].frags == 0 || (SNVS_BEFORE_INDELS && (strlen(snpfrag[i].allele0) != 1 || strlen(snpfrag[i].allele1) != 1))) {
            HAP1[i] = '-';
        } else if (drand48() < 0.5) {
            HAP1[i] = '0';
        } else {
            HAP1[i] = '1';
        }
    }

    // for each block, we maintain best haplotype solution under MFR criterion
    // compute the component-wise score for 'initHAP' haplotype
    miscalls = 0;
    bestscore = 0;
    for (k = 0; k < components; k++) {
        clist[k].SCORE = 0;
        clist[k].bestSCORE = 0;
        for (i = 0; i < clist[k].frags; i++) {
            update_fragscore(Flist, clist[k].flist[i], HAP1);
            clist[k].SCORE += Flist[clist[k].flist[i]].currscore;
        }
        clist[k].bestSCORE = clist[k].SCORE;
        bestscore += clist[k].bestSCORE;
        miscalls += clist[k].SCORE;
    }

    fprintf_time(stderr, "processed fragment file and variant file: fragments %d variants %d\n", fragments, snps);

    int MAXIS = -1;

    if (HIC){

        // determine the probability of an h-trans interaction for read

        for (i=0; i<fragments;i++){

            Flist[i].htrans_prob = -80;

            if (Flist[i].isize > MAXIS)
                MAXIS = Flist[i].isize;
        }

        HTRANS_MAXBINS = MAXIS/HTRANS_BINSIZE + 1;
    }else{
        HTRANS_MAXBINS = 0;
    }

    // read in file with estimated probabilities of Hi-C h-trans interactions with distance
    if (strcmp(HTRANS_DATA_INFILE, "None") != 0){
        int num_bins        = count_htrans_bins(HTRANS_DATA_INFILE);
        float* htrans_probs = (float*) malloc(sizeof(float) * num_bins);
        read_htrans_file(HTRANS_DATA_INFILE, htrans_probs, num_bins);
        for (i=0; i<fragments;i++){
            Flist[i].htrans_prob = log10(htrans_probs[Flist[i].isize / HTRANS_BINSIZE]);
        }
        free(htrans_probs);
    }

    slist = (int*) malloc(sizeof (int)*snps);

    OLD_HIC_LL_SCORE = bestscore;
    for (hic_iter = 0; hic_iter < MAX_HIC_EM_ITER; hic_iter++){
        if (VERBOSE)
            fprintf_time(stdout, "HIC ITER %d\n", hic_iter);
        for (k = 0; k < components; k++){
            clist[k].iters_since_improvement = 0;
        }
        for (i=0; i<snps; i++){
            snpfrag[i].post_hap = 0;
        }
        // RUN THE MAX_CUT ALGORITHM ITERATIVELY TO IMPROVE LIKELIHOOD
        for (iter = 0; iter < MAXITER; iter++) {
            if (VERBOSE)
                fprintf_time(stdout, "PHASING ITER %d\n", iter);
            converged_count = 0;
            for (k = 0; k < components; k++){
                if(VERBOSE && iter == 0)
                    fprintf_time(stdout, "component %d length %d phased %d %d...%d\n", k, clist[k].length, clist[k].phased, clist[k].offset, clist[k].lastvar);
                if (clist[k].SCORE > 0)
                    converged_count += evaluate_cut_component(Flist, snpfrag, clist, k, slist, HAP1);
                else converged_count++;
            }

            if (converged_count == components) {
                //fprintf(stdout, "Haplotype assembly terminated early because no improvement seen in blocks after %d iterations\n", CONVERGE);
                break;
            }
        }

        // H-TRANS ESTIMATION FOR HIC
        if (MAX_HIC_EM_ITER > 1){

            // Possibly break if we're done improving
            HIC_LL_SCORE = 0;
            for (k = 0; k < components; k++){
                HIC_LL_SCORE += clist[k].bestSCORE;
            }
            if (HIC_LL_SCORE >= OLD_HIC_LL_SCORE){
                break;
            }
            OLD_HIC_LL_SCORE = HIC_LL_SCORE;

            likelihood_pruning(snps, Flist, snpfrag, HAP1, 0); // prune for only very high confidence SNPs
            // estimate the h-trans probabilities for the next round
            estimate_htrans_probs(Flist, fragments, HAP1, snpfrag);
        }
    }

    // BLOCK SPLITTING
    new_components = components;
    if (SPLIT_BLOCKS){
        split_count = 0;
        for (k=0; k<components; k++){
            // attempt to split block
            split_count += split_block(HAP1, clist, k, Flist, snpfrag, &new_components);
        }
        if (split_count > 0){
            // regenerate clist if necessary
            free(clist);
            clist = (struct BLOCK*) malloc(sizeof (struct BLOCK)*new_components);
            generate_clist_structure(Flist, fragments, snpfrag, snps, new_components, clist);
        }
        components = new_components;
    }else if(ERROR_ANALYSIS_MODE && !HIC){
        for (k=0; k<components; k++){
            // run split_block but don't actually split, just get posterior probabilities
            split_block(HAP1, clist, k, Flist, snpfrag, &new_components);
        }
    }

    // PRUNE SNPS
    if (!SKIP_PRUNE){
        discrete_pruning(snps, fragments, Flist, snpfrag, HAP1);
        likelihood_pruning(snps, Flist, snpfrag, HAP1, CALL_HOMOZYGOUS);
    }
    // PRINT OUTPUT FILE
    fprintf_time(stderr, "OUTPUTTING PRUNED HAPLOTYPE ASSEMBLY TO FILE %s\n", outputfile);
    print_hapfile(clist, components, HAP1, Flist, fragments, snpfrag, variantfile, miscalls, outputfile);
    char assignfile[4096];  sprintf(assignfile,"%s.fragments",outputfile);
    if (OUTPUT_RH_ASSIGNMENTS ==1) fragment_assignments(Flist,fragments,snpfrag,HAP1,assignfile); // added 03/10/2018 to output read-haplotype assignments
    char outvcffile[4096];  sprintf(outvcffile,"%s.phased.VCF",outputfile);
    if (OUTPUT_VCF ==1) {
    	fprintf_time(stderr, "OUTPUTTING PHASED VCF TO FILE %s\n", outvcffile);
	output_vcf(variantfile,snpfrag,snps,HAP1,Flist,fragments,outvcffile,0);
    }

    // FREE UP MEMORY
    for (i = 0; i < snps; i++) free(snpfrag[i].elist);
    for (i = 0; i < snps; i++) free(snpfrag[i].telist);
    component = 0;
    for (i = 0; i < snps; i++) {
        free(snpfrag[i].flist);
        free(snpfrag[i].alist);
        free(snpfrag[i].jlist);
        free(snpfrag[i].klist);

        if (snpfrag[i].component == i && snpfrag[i].csize > 1) // root node of component
        {
            free(clist[component].slist);
            component++;
        }
    }

    for (i = 0; i < components; i++) free(clist[i].flist);
    free(snpfrag);
    free(clist);
    free(Flist);

    return 0;
}
Beispiel #8
0
bool
RoutePlanner::solve(const AGeoPoint& origin,
                    const AGeoPoint& destination,
                    const RoutePlannerConfig& config,
                    const short h_ceiling)
{
  on_solve(origin, destination);
  rpolars_route.set_config(config, std::max(destination.altitude, origin.altitude),
                           h_ceiling);
  rpolars_reach.set_config(config, std::max(destination.altitude, origin.altitude),
                           h_ceiling);

  m_reach_polar_mode = config.reach_polar_mode;

  {
    const AFlatGeoPoint s_origin(task_projection.project(origin), origin.altitude);
    const AFlatGeoPoint s_destination(task_projection.project(destination), destination.altitude);

    if (!(s_origin == origin_last) || !(s_destination == destination_last))
      dirty = true;

    if (is_trivial())
      return false;

    dirty = false;
    origin_last = s_origin;
    destination_last = s_destination;

    h_min = std::min(s_origin.altitude, s_destination.altitude);
    h_max = rpolars_route.cruise_altitude;
  }

  solution_route.clear();
  solution_route.push_back(origin);
  solution_route.push_back(destination);

  if (!rpolars_route.terrain_enabled() && !rpolars_route.airspace_enabled())
    return false; // trivial

  m_search_hull.clear();
  m_search_hull.push_back(SearchPoint(origin_last, task_projection));

  RoutePoint start = origin_last;
  m_astar_goal = destination_last;

  RouteLink e_test(start, m_astar_goal, task_projection);
  if (e_test.is_short())
    return false;
  if (!rpolars_route.achievable(e_test))
    return false;

  count_dij=0;
  count_airspace=0;
  count_terrain=0;
  count_supressed=0;

  bool retval = false;
  m_planner.restart(start);

  unsigned best_d = UINT_MAX;

  if (verbose) {
    printf("# goal node (%d,%d,%d)\n",
           m_astar_goal.Longitude, m_astar_goal.Latitude, m_astar_goal.altitude);
    printf("# start node (%d,%d,%d)\n",
           start.Longitude, start.Latitude, start.altitude);
  }

  while (!m_planner.empty()) {
    const RoutePoint node = m_planner.pop();

    if (verbose>1) {
      printf("# processing node (%d,%d,%d)  %d,%d  q size %d\n",
             node.Longitude, node.Latitude, node.altitude,
             m_planner.get_node_value(node).g,
             m_planner.get_node_value(node).h,
             m_planner.queue_size());
    }

    h_min = std::min(h_min, node.altitude);
    h_max = std::max(h_max, node.altitude);

    bool is_final = (node == m_astar_goal);
    if (is_final) {
      if (!retval)
        best_d = UINT_MAX;
      retval = true;
    }

    if (is_final) // @todo: allow fallback if failed
    { // copy improving solutions
      Route this_solution;
      unsigned d = find_solution(node, this_solution);
      if (d< best_d) {
        best_d = d;
        solution_route = this_solution;
      }
    }

    if (retval)
      break; // want top solution only

    // shoot for final
    RouteLink e(node, m_astar_goal, task_projection);
    if (set_unique(e))
      add_edges(e);

    while (!m_links.empty()) {
      add_edges(m_links.front());
      m_links.pop();
    }

  }
  count_unique = m_unique.size();

  if (retval && verbose) {
    printf("# solved with %d intermediate points\n", (int)(solution_route.size()-2));
  }

  if (retval) {
    // correct solution for rounding
    assert(solution_route.size()>=2);
    for (unsigned i=0; i< solution_route.size(); ++i) {
      FlatGeoPoint p(task_projection.project(solution_route[i]));
      if (p== origin_last) {
        solution_route[i] = AGeoPoint(origin, solution_route[i].altitude);
      } else if (p== destination_last) {
        solution_route[i] = AGeoPoint(destination, solution_route[i].altitude);
      }
    }

  } else {
    solution_route.clear();
    solution_route.push_back(origin);
    solution_route.push_back(destination);
  }

  m_planner.clear();
  m_unique.clear();
//  m_search_hull.clear();
  return retval;
}