Beispiel #1
0
static struct inode *f2fs_new_inode(struct inode *dir, umode_t mode)
{
	struct super_block *sb = dir->i_sb;
	struct f2fs_sb_info *sbi = F2FS_SB(sb);
	nid_t ino;
	struct inode *inode;
	bool nid_free = false;
	int err;

	inode = new_inode(sb);
	if (!inode)
		return ERR_PTR(-ENOMEM);

	f2fs_lock_op(sbi);
	if (!alloc_nid(sbi, &ino)) {
		f2fs_unlock_op(sbi);
		err = -ENOSPC;
		goto fail;
	}
	f2fs_unlock_op(sbi);

	inode->i_uid = current_fsuid();

	if (dir->i_mode & S_ISGID) {
		inode->i_gid = dir->i_gid;
		if (S_ISDIR(mode))
			mode |= S_ISGID;
	} else {
		inode->i_gid = current_fsgid();
	}

	inode->i_ino = ino;
	inode->i_mode = mode;
	inode->i_blocks = 0;
	inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
	inode->i_generation = sbi->s_next_generation++;

	err = insert_inode_locked(inode);
	if (err) {
		err = -EINVAL;
		nid_free = true;
		goto out;
	}
	trace_f2fs_new_inode(inode, 0);
	mark_inode_dirty(inode);
	return inode;

out:
	clear_nlink(inode);
	unlock_new_inode(inode);
fail:
	trace_f2fs_new_inode(inode, err);
	make_bad_inode(inode);
	iput(inode);
	if (nid_free)
		alloc_nid_failed(sbi, ino);
	return ERR_PTR(err);
}
Beispiel #2
0
static struct inode *f2fs_new_inode(struct inode *dir, umode_t mode)
{
    struct f2fs_sb_info *sbi = F2FS_I_SB(dir);
    nid_t ino;
    struct inode *inode;
    bool nid_free = false;
    int err;

    inode = new_inode(dir->i_sb);
    if (!inode)
        return ERR_PTR(-ENOMEM);

    f2fs_lock_op(sbi);
    if (!alloc_nid(sbi, &ino)) {
        f2fs_unlock_op(sbi);
        err = -ENOSPC;
        goto fail;
    }
    f2fs_unlock_op(sbi);

    inode_init_owner(inode, dir, mode);

    inode->i_ino = ino;
    inode->i_blocks = 0;
    inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
    inode->i_generation = sbi->s_next_generation++;

    err = insert_inode_locked(inode);
    if (err) {
        err = -EINVAL;
        nid_free = true;
        goto out;
    }

    if (f2fs_may_inline(inode))
        set_inode_flag(F2FS_I(inode), FI_INLINE_DATA);
    if (test_opt(sbi, INLINE_DENTRY) && S_ISDIR(inode->i_mode))
        set_inode_flag(F2FS_I(inode), FI_INLINE_DENTRY);

    trace_f2fs_new_inode(inode, 0);
    mark_inode_dirty(inode);
    return inode;

out:
    clear_nlink(inode);
    unlock_new_inode(inode);
fail:
    trace_f2fs_new_inode(inode, err);
    make_bad_inode(inode);
    iput(inode);
    if (nid_free)
        alloc_nid_failed(sbi, ino);
    return ERR_PTR(err);
}
Beispiel #3
0
static inline int write_all_xattrs(struct inode *inode, __u32 hsize,
				void *txattr_addr, struct page *ipage)
{
	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
	size_t inline_size = 0;
	void *xattr_addr;
	struct page *xpage;
	nid_t new_nid = 0;
	int err;

	inline_size = inline_xattr_size(inode);

	if (hsize > inline_size && !F2FS_I(inode)->i_xattr_nid)
		if (!alloc_nid(sbi, &new_nid))
			return -ENOSPC;

	/* write to inline xattr */
	if (inline_size) {
		struct page *page = NULL;
		void *inline_addr;

		if (ipage) {
			inline_addr = inline_xattr_addr(ipage);
			f2fs_wait_on_page_writeback(ipage, NODE, true);
			set_page_dirty(ipage);
		} else {
			page = get_node_page(sbi, inode->i_ino);
			if (IS_ERR(page)) {
				alloc_nid_failed(sbi, new_nid);
				return PTR_ERR(page);
			}
			inline_addr = inline_xattr_addr(page);
			f2fs_wait_on_page_writeback(page, NODE, true);
		}
		memcpy(inline_addr, txattr_addr, inline_size);
		f2fs_put_page(page, 1);

		/* no need to use xattr node block */
		if (hsize <= inline_size) {
			err = truncate_xattr_node(inode, ipage);
			alloc_nid_failed(sbi, new_nid);
			return err;
		}
	}

	/* write to xattr node block */
	if (F2FS_I(inode)->i_xattr_nid) {
		xpage = get_node_page(sbi, F2FS_I(inode)->i_xattr_nid);
		if (IS_ERR(xpage)) {
			alloc_nid_failed(sbi, new_nid);
			return PTR_ERR(xpage);
		}
		f2fs_bug_on(sbi, new_nid);
		f2fs_wait_on_page_writeback(xpage, NODE, true);
	} else {
		struct dnode_of_data dn;
		set_new_dnode(&dn, inode, NULL, NULL, new_nid);
		xpage = new_node_page(&dn, XATTR_NODE_OFFSET, ipage);
		if (IS_ERR(xpage)) {
			alloc_nid_failed(sbi, new_nid);
			return PTR_ERR(xpage);
		}
		alloc_nid_done(sbi, new_nid);
	}

	xattr_addr = page_address(xpage);
	memcpy(xattr_addr, txattr_addr + inline_size, PAGE_SIZE -
						sizeof(struct node_footer));
	set_page_dirty(xpage);
	f2fs_put_page(xpage, 1);

	/* need to checkpoint during fsync */
	F2FS_I(inode)->xattr_ver = cur_cp_version(F2FS_CKPT(sbi));
	return 0;
}
Beispiel #4
0
static struct inode *f2fs_new_inode(struct inode *dir, umode_t mode)
{
	struct f2fs_sb_info *sbi = F2FS_I_SB(dir);
	nid_t ino;
	struct inode *inode;
	bool nid_free = false;
	int err;

	inode = new_inode(dir->i_sb);
	if (!inode)
		return ERR_PTR(-ENOMEM);

	f2fs_lock_op(sbi);
	if (!alloc_nid(sbi, &ino)) {
		f2fs_unlock_op(sbi);
		err = -ENOSPC;
		goto fail;
	}
	f2fs_unlock_op(sbi);

	inode_init_owner(inode, dir, mode);

	inode->i_ino = ino;
	inode->i_blocks = 0;
	inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
	inode->i_generation = sbi->s_next_generation++;

	err = insert_inode_locked(inode);
	if (err) {
		err = -EINVAL;
		nid_free = true;
		goto out;
	}

	/* If the directory encrypted, then we should encrypt the inode. */
	if (f2fs_encrypted_inode(dir) && f2fs_may_encrypt(inode))
		f2fs_set_encrypted_inode(inode);

	if (f2fs_may_inline_data(inode))
		set_inode_flag(F2FS_I(inode), FI_INLINE_DATA);
	if (f2fs_may_inline_dentry(inode))
		set_inode_flag(F2FS_I(inode), FI_INLINE_DENTRY);

	f2fs_init_extent_tree(inode, NULL);

	stat_inc_inline_xattr(inode);
	stat_inc_inline_inode(inode);
	stat_inc_inline_dir(inode);

	trace_f2fs_new_inode(inode, 0);
	mark_inode_dirty(inode);
	return inode;

out:
	clear_nlink(inode);
	unlock_new_inode(inode);
fail:
	trace_f2fs_new_inode(inode, err);
	make_bad_inode(inode);
	if (nid_free)
		set_inode_flag(F2FS_I(inode), FI_FREE_NID);
	iput(inode);
	return ERR_PTR(err);
}
Beispiel #5
0
static inline int write_all_xattrs(struct inode *inode, __u32 hsize,
				void *txattr_addr, struct page *ipage)
{
	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
	size_t inline_size = inline_xattr_size(inode);
	struct page *in_page = NULL;
	void *xattr_addr;
	void *inline_addr = NULL;
	struct page *xpage;
	nid_t new_nid = 0;
	int err = 0;

	if (hsize > inline_size && !F2FS_I(inode)->i_xattr_nid)
		if (!alloc_nid(sbi, &new_nid))
			return -ENOSPC;

	/* write to inline xattr */
	if (inline_size) {
		if (ipage) {
			inline_addr = inline_xattr_addr(inode, ipage);
		} else {
			in_page = get_node_page(sbi, inode->i_ino);
			if (IS_ERR(in_page)) {
				alloc_nid_failed(sbi, new_nid);
				return PTR_ERR(in_page);
			}
			inline_addr = inline_xattr_addr(inode, in_page);
		}

		f2fs_wait_on_page_writeback(ipage ? ipage : in_page,
							NODE, true);
		/* no need to use xattr node block */
		if (hsize <= inline_size) {
			err = truncate_xattr_node(inode);
			alloc_nid_failed(sbi, new_nid);
			if (err) {
				f2fs_put_page(in_page, 1);
				return err;
			}
			memcpy(inline_addr, txattr_addr, inline_size);
			set_page_dirty(ipage ? ipage : in_page);
			goto in_page_out;
		}
	}

	/* write to xattr node block */
	if (F2FS_I(inode)->i_xattr_nid) {
		xpage = get_node_page(sbi, F2FS_I(inode)->i_xattr_nid);
		if (IS_ERR(xpage)) {
			alloc_nid_failed(sbi, new_nid);
			goto in_page_out;
		}
		f2fs_bug_on(sbi, new_nid);
		f2fs_wait_on_page_writeback(xpage, NODE, true);
	} else {
		struct dnode_of_data dn;
		set_new_dnode(&dn, inode, NULL, NULL, new_nid);
		xpage = new_node_page(&dn, XATTR_NODE_OFFSET);
		if (IS_ERR(xpage)) {
			alloc_nid_failed(sbi, new_nid);
			goto in_page_out;
		}
		alloc_nid_done(sbi, new_nid);
	}
	xattr_addr = page_address(xpage);

	if (inline_size)
		memcpy(inline_addr, txattr_addr, inline_size);
	memcpy(xattr_addr, txattr_addr + inline_size, VALID_XATTR_BLOCK_SIZE);

	if (inline_size)
		set_page_dirty(ipage ? ipage : in_page);
	set_page_dirty(xpage);

	f2fs_put_page(xpage, 1);
in_page_out:
	f2fs_put_page(in_page, 1);
	return err;
}
int f2fs_setxattr(struct inode *inode, int name_index, const char *name,
			const void *value, size_t value_len, struct page *ipage)
{
	struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
	struct f2fs_inode_info *fi = F2FS_I(inode);
	struct f2fs_xattr_header *header = NULL;
	struct f2fs_xattr_entry *here, *last;
	struct page *page;
	void *base_addr;
	int error, found, free, newsize;
	size_t name_len;
	char *pval;
	int ilock;

	if (name == NULL)
		return -EINVAL;

	if (value == NULL)
		value_len = 0;

	name_len = strlen(name);

	if (name_len > F2FS_NAME_LEN || value_len > MAX_VALUE_LEN)
		return -ERANGE;

	f2fs_balance_fs(sbi);

	ilock = mutex_lock_op(sbi);

	if (!fi->i_xattr_nid) {
		/* Allocate new attribute block */
		struct dnode_of_data dn;

		if (!alloc_nid(sbi, &fi->i_xattr_nid)) {
			error = -ENOSPC;
			goto exit;
		}
		set_new_dnode(&dn, inode, NULL, NULL, fi->i_xattr_nid);
		mark_inode_dirty(inode);

		page = new_node_page(&dn, XATTR_NODE_OFFSET, ipage);
		if (IS_ERR(page)) {
			alloc_nid_failed(sbi, fi->i_xattr_nid);
			fi->i_xattr_nid = 0;
			error = PTR_ERR(page);
			goto exit;
		}

		alloc_nid_done(sbi, fi->i_xattr_nid);
		base_addr = page_address(page);
		header = XATTR_HDR(base_addr);
		header->h_magic = cpu_to_le32(F2FS_XATTR_MAGIC);
		header->h_refcount = cpu_to_le32(1);
	} else {
		/* The inode already has an extended attribute block. */
		page = get_node_page(sbi, fi->i_xattr_nid);
		if (IS_ERR(page)) {
			error = PTR_ERR(page);
			goto exit;
		}

		base_addr = page_address(page);
		header = XATTR_HDR(base_addr);
	}

	if (le32_to_cpu(header->h_magic) != F2FS_XATTR_MAGIC) {
		error = -EIO;
		goto cleanup;
	}

	/* find entry with wanted name. */
	found = 0;
	list_for_each_xattr(here, base_addr) {
		if (here->e_name_index != name_index)
			continue;
		if (here->e_name_len != name_len)
			continue;
		if (!memcmp(here->e_name, name, name_len)) {
			found = 1;
			break;
		}
	}

	last = here;

	while (!IS_XATTR_LAST_ENTRY(last))
		last = XATTR_NEXT_ENTRY(last);

	newsize = XATTR_ALIGN(sizeof(struct f2fs_xattr_entry) +
			name_len + value_len);

	/* 1. Check space */
	if (value) {
		/* If value is NULL, it is remove operation.
		 * In case of update operation, we caculate free.
		 */
		free = MIN_OFFSET - ((char *)last - (char *)header);
		if (found)
			free = free - ENTRY_SIZE(here);

		if (free < newsize) {
			error = -ENOSPC;
			goto cleanup;
		}
	}

	/* 2. Remove old entry */
	if (found) {
		/* If entry is found, remove old entry.
		 * If not found, remove operation is not needed.
		 */
		struct f2fs_xattr_entry *next = XATTR_NEXT_ENTRY(here);
		int oldsize = ENTRY_SIZE(here);

		memmove(here, next, (char *)last - (char *)next);
		last = (struct f2fs_xattr_entry *)((char *)last - oldsize);
		memset(last, 0, oldsize);
	}

	/* 3. Write new entry */
	if (value) {
		/* Before we come here, old entry is removed.
		 * We just write new entry. */
		memset(last, 0, newsize);
		last->e_name_index = name_index;
		last->e_name_len = name_len;
		memcpy(last->e_name, name, name_len);
		pval = last->e_name + name_len;
		memcpy(pval, value, value_len);
		last->e_value_size = cpu_to_le16(value_len);
	}

	set_page_dirty(page);
	f2fs_put_page(page, 1);

	if (is_inode_flag_set(fi, FI_ACL_MODE)) {
		inode->i_mode = fi->i_acl_mode;
		inode->i_ctime = CURRENT_TIME;
		clear_inode_flag(fi, FI_ACL_MODE);
	}
	if (ipage)
		update_inode(inode, ipage);
	else
		update_inode_page(inode);
	mutex_unlock_op(sbi, ilock);

	return 0;
cleanup:
	f2fs_put_page(page, 1);
exit:
	mutex_unlock_op(sbi, ilock);
	return error;
}
Beispiel #7
0
static struct inode *hmfs_new_inode(struct inode *dir, umode_t mode)
{
	struct super_block *sb = dir->i_sb;
	struct hmfs_sb_info *sbi = HMFS_SB(sb);
	struct hmfs_inode_info *i_info;
	struct inode *inode;
	nid_t ino;
	int err;
	bool nid_free = false;

	inode = new_inode(sb);
	if (!inode)
		return ERR_PTR(-ENOMEM);

	if (!alloc_nid(sbi, &ino)) {
		err = -ENOSPC;
		goto fail;
	}
	inode->i_uid = current_fsuid();

	if (dir->i_mode & S_ISGID) {
		inode->i_gid = dir->i_gid;
		if (S_ISDIR(mode))
			mode |= S_ISGID;
	} else {
		inode->i_gid = current_fsgid();
	}

	inode->i_ino = ino;
	inode->i_mode = mode | HMFS_DEF_FILE_MODE;
	inode->i_blocks = 0;
	inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;

	if (S_ISDIR(mode)) {
		set_inode_flag(HMFS_I(inode), FI_INC_LINK);
		inode->i_size = HMFS_PAGE_SIZE;
	} else if (S_ISLNK(mode)) {
		inode->i_size = HMFS_PAGE_SIZE;
	} else {
		inode->i_size = 0;
	}

	err = insert_inode_locked(inode);
	if (err) {
		err = -EINVAL;
		nid_free = true;
		goto out;
	}
	i_info = HMFS_I(inode);
	i_info->i_pino = dir->i_ino;
	if (hmfs_may_set_inline_data(dir)) {
		set_inode_flag(i_info, FI_INLINE_DATA);
	}

	hmfs_bug_on(sbi, !IS_ERR(get_node(sbi, ino)));
	err = sync_hmfs_inode(inode, false);
	if (!err) {
		inc_valid_inode_count(sbi);
		return inode;
	}
out:
	clear_nlink(inode);
	clear_inode_flag(HMFS_I(inode), FI_INC_LINK);
	unlock_new_inode(inode);
fail:	
	make_bad_inode(inode);
	iput(inode);
	if (nid_free)
		alloc_nid_failed(sbi, ino);
	return ERR_PTR(err);
}
Beispiel #8
0
static struct inode *f2fs_new_inode(struct inode *dir, umode_t mode)
{
	struct f2fs_sb_info *sbi = F2FS_I_SB(dir);
	nid_t ino;
	struct inode *inode;
	bool nid_free = false;
	int err;

	inode = new_inode(dir->i_sb);
	if (!inode)
		return ERR_PTR(-ENOMEM);

	f2fs_lock_op(sbi);
	if (!alloc_nid(sbi, &ino)) {
		f2fs_unlock_op(sbi);
		err = -ENOSPC;
		goto fail;
	}
	f2fs_unlock_op(sbi);

	nid_free = true;

	inode_init_owner(inode, dir, mode);

	inode->i_ino = ino;
	inode->i_blocks = 0;
	inode->i_mtime = inode->i_atime = inode->i_ctime = current_time(inode);
	inode->i_generation = sbi->s_next_generation++;

	err = insert_inode_locked(inode);
	if (err) {
		err = -EINVAL;
		goto fail;
	}

	err = dquot_initialize(inode);
	if (err)
		goto fail_drop;

	err = dquot_alloc_inode(inode);
	if (err)
		goto fail_drop;

	/* If the directory encrypted, then we should encrypt the inode. */
	if (f2fs_encrypted_inode(dir) && f2fs_may_encrypt(inode))
		f2fs_set_encrypted_inode(inode);

	set_inode_flag(inode, FI_NEW_INODE);

	if (test_opt(sbi, INLINE_XATTR))
		set_inode_flag(inode, FI_INLINE_XATTR);
	if (test_opt(sbi, INLINE_DATA) && f2fs_may_inline_data(inode))
		set_inode_flag(inode, FI_INLINE_DATA);
	if (f2fs_may_inline_dentry(inode))
		set_inode_flag(inode, FI_INLINE_DENTRY);

	f2fs_init_extent_tree(inode, NULL);

	stat_inc_inline_xattr(inode);
	stat_inc_inline_inode(inode);
	stat_inc_inline_dir(inode);

	trace_f2fs_new_inode(inode, 0);
	return inode;

fail:
	trace_f2fs_new_inode(inode, err);
	make_bad_inode(inode);
	if (nid_free)
		set_inode_flag(inode, FI_FREE_NID);
	iput(inode);
	return ERR_PTR(err);
fail_drop:
	trace_f2fs_new_inode(inode, err);
	dquot_drop(inode);
	inode->i_flags |= S_NOQUOTA;
	if (nid_free)
		set_inode_flag(inode, FI_FREE_NID);
	clear_nlink(inode);
	unlock_new_inode(inode);
	iput(inode);
	return ERR_PTR(err);
}