Beispiel #1
0
int
bessel(acb_ptr out, const acb_t inp, void * params, long order, long prec)
{
    acb_ptr t;
    acb_t z;
    ulong n;

    t = _acb_vec_init(order);
    acb_init(z);

    acb_set(t, inp);
    if (order > 1)
        acb_one(t + 1);

    n = 10;
    arb_set_si(acb_realref(z), 20);
    arb_set_si(acb_imagref(z), 10);

    /* z sin(t) */
    _acb_poly_sin_series(out, t, FLINT_MIN(2, order), order, prec);
    _acb_vec_scalar_mul(out, out, order, z, prec);

    /* t n */
    _acb_vec_scalar_mul_ui(t, t, FLINT_MIN(2, order), n, prec);

    _acb_poly_sub(out, t, FLINT_MIN(2, order), out, order, prec);

    _acb_poly_cos_series(out, out, order, order, prec);

    _acb_vec_clear(t, order);
    acb_clear(z);
    return 0;
}
Beispiel #2
0
void
custom_rate_mixture_get_prob(arb_t prob, const custom_rate_mixture_t x,
        slong idx, slong prec)
{
    if (x->mode == RATE_MIXTURE_UNDEFINED)
    {
        flint_fprintf(stderr, "internal error: undefined rate mixture\n");
        abort();
    }
    else if (x->mode == RATE_MIXTURE_NONE)
    {
        arb_one(prob);
    }
    else if (x->mode == RATE_MIXTURE_UNIFORM)
    {
        /*
         * This code branch involves a division that could
         * unnecessarily lose exactness in some situations.
         */
        arb_set_si(prob, x->n);
        arb_inv(prob, prob, prec);
    }
    else if (x->mode == RATE_MIXTURE_CUSTOM)
    {
        arb_set_d(prob, x->prior[idx]);
    }
    else
    {
        flint_fprintf(stderr, "internal error: "
                      "unrecognized rate mixture mode\n");
        abort();
    }
}
Beispiel #3
0
static void
bsplit(arb_poly_t pol, const arb_t sqrtD,
            const slong * qbf, slong a, slong b, slong prec)
{
    if (b - a == 0)
    {
        arb_poly_one(pol);
    }
    else if (b - a == 1)
    {
        acb_t z;
        acb_init(z);

        /* j((-b+sqrt(-D))/(2a)) */
        arb_set_si(acb_realref(z), -FLINT_ABS(qbf[3 * a + 1]));
        arb_set(acb_imagref(z), sqrtD);
        acb_div_si(z, z, 2 * qbf[3 * a], prec);
        acb_modular_j(z, z, prec);

        if (qbf[3 * a + 1] < 0)
        {
            /* (x^2 - 2re(j) x + |j|^2) */
            arb_poly_fit_length(pol, 3);
            arb_mul(pol->coeffs, acb_realref(z), acb_realref(z), prec);
            arb_addmul(pol->coeffs, acb_imagref(z), acb_imagref(z), prec);
            arb_mul_2exp_si(pol->coeffs + 1, acb_realref(z), 1);
            arb_neg(pol->coeffs + 1, pol->coeffs + 1);
            arb_one(pol->coeffs + 2);
            _arb_poly_set_length(pol, 3);
        }
        else
        {
            /* (x-j) */
            arb_poly_fit_length(pol, 2);
            arb_neg(pol->coeffs, acb_realref(z));
            arb_one(pol->coeffs + 1);
            _arb_poly_set_length(pol, 2);
        }

        acb_clear(z);
    }
    else
    {
        arb_poly_t tmp;
        arb_poly_init(tmp);
        bsplit(pol, sqrtD, qbf, a, a + (b - a) / 2, prec);
        bsplit(tmp, sqrtD, qbf, a + (b - a) / 2, b, prec);
        arb_poly_mul(pol, pol, tmp, prec);
        arb_poly_clear(tmp);
    }
}
Beispiel #4
0
void
arb_poly_set_coeff_si(arb_poly_t poly, long n, long x)
{
    arb_poly_fit_length(poly, n + 1);

    if (n + 1 > poly->length)
    {
        _arb_vec_zero(poly->coeffs + poly->length, n - poly->length);
        poly->length = n + 1;
    }

    arb_set_si(poly->coeffs + n, x);
    _arb_poly_normalise(poly);
}
Beispiel #5
0
static __inline__ void
zeta_coeff_k(zeta_bsplit_t S, slong k, slong n, slong s)
{
    arb_set_si(S->D, 2 * (n + k));
    arb_mul_si(S->D, S->D, n - k, ARF_PREC_EXACT);
    arb_set_si(S->Q1, k + 1);
    arb_mul_si(S->Q1, S->Q1, 2*k + 1, ARF_PREC_EXACT);

    if (k == 0)
    {
        arb_zero(S->A);
        arb_one(S->Q2);
    }
    else
    {
        arb_set_si(S->A, k % 2 ? 1 : -1);
        arb_mul(S->A, S->A, S->Q1, ARF_PREC_EXACT);
        arb_ui_pow_ui(S->Q2, k, s, ARF_PREC_EXACT);
    }

    arb_mul(S->Q3, S->Q1, S->Q2, ARF_PREC_EXACT);
    arb_zero(S->B);
    arb_set(S->C, S->Q1);
}
Beispiel #6
0
void
arb_zeta_ui_borwein_bsplit(arb_t x, ulong s, slong prec)
{
    zeta_bsplit_t sum;
    mag_t err;
    slong wp, n;

    /* zeta(0) = -1/2 */
    if (s == 0)
    {
        arb_set_si(x, -1);
        arb_mul_2exp_si(x, x, -1);
        return;
    }

    if (s == 1)
    {
        flint_printf("zeta_ui_borwein_bsplit: zeta(1)");
        abort();
    }

    n = prec / ERROR_B + 2;
    wp = prec + 30;

    zeta_bsplit_init(sum);
    zeta_bsplit(sum, 0, n + 1, n, s, 0, wp);

    /*  A/Q3 - B/Q3 / (C/Q1) = (A*C - B*Q1) / (Q3*C)    */
    arb_mul(sum->A, sum->A, sum->C, wp);
    arb_mul(sum->B, sum->B, sum->Q1, wp);
    arb_sub(sum->A, sum->A, sum->B, wp);
    arb_mul(sum->Q3, sum->Q3, sum->C, wp);
    arb_div(sum->C, sum->A, sum->Q3, wp);

    mag_init(err);
    mag_borwein_error(err, n);
    mag_add(arb_radref(sum->C), arb_radref(sum->C), err);
    mag_clear(err);

    /* convert from eta(s) to zeta(s) */
    arb_div_2expm1_ui(x, sum->C, s - 1, wp);
    arb_mul_2exp_si(x, x, s - 1);

    zeta_bsplit_clear(sum);
}
Beispiel #7
0
int
_acb_modular_hilbert_class_poly(fmpz_poly_t res, slong D,
        const slong * qbf, slong qbf_len, slong prec)
{
    arb_t sqrtD;
    arb_poly_t pol;
    int success;

    arb_init(sqrtD);
    arb_poly_init(pol);

    arb_set_si(sqrtD, -D);
    arb_sqrt(sqrtD, sqrtD, prec);
    bsplit(pol, sqrtD, qbf, 0, qbf_len, prec);
    success = arb_poly_get_unique_fmpz_poly(res, pol);

    arb_clear(sqrtD);
    arb_poly_clear(pol);

    return success;
}
int main()
{
    slong iter;
    flint_rand_t state;

    flint_printf("taylor_shift_convolution....");
    fflush(stdout);

    flint_randinit(state);

    for (iter = 0; iter < 2000 * arb_test_multiplier(); iter++)
    {
        slong prec1, prec2;
        arb_poly_t f, g;
        arb_t c, d, e;

        prec1 = 2 + n_randint(state, 500);
        prec2 = 2 + n_randint(state, 500);

        arb_poly_init(f);
        arb_poly_init(g);

        arb_init(c);
        arb_init(d);
        arb_init(e);

        arb_poly_randtest(f, state, 1 + n_randint(state, 40), 1 + n_randint(state, 500), 10);
        arb_poly_randtest(g, state, 1 + n_randint(state, 20), 1 + n_randint(state, 500), 10);

        if (n_randint(state, 2))
            arb_set_si(c, n_randint(state, 5) - 2);
        else
            arb_randtest(c, state, 1 + n_randint(state, 500), 1 + n_randint(state, 100));

        if (n_randint(state, 2))
            arb_set_si(d, n_randint(state, 5) - 2);
        else
            arb_randtest(d, state, 1 + n_randint(state, 500), 1 + n_randint(state, 100));

        arb_add(e, c, d, prec1);

        /* check f(x+c)(x+d) = f(x+c+d) */
        arb_poly_taylor_shift_convolution(g, f, e, prec2);
        arb_poly_taylor_shift_convolution(f, f, c, prec1);
        arb_poly_taylor_shift_convolution(f, f, d, prec1);

        if (!arb_poly_overlaps(f, g))
        {
            flint_printf("FAIL\n\n");

            flint_printf("c = ");
            arb_printd(c, 15);
            flint_printf("\n\n");
            flint_printf("d = ");
            arb_printd(d, 15);
            flint_printf("\n\n");

            flint_printf("f = ");
            arb_poly_printd(f, 15);
            flint_printf("\n\n");
            flint_printf("g = ");
            arb_poly_printd(g, 15);
            flint_printf("\n\n");

            abort();
        }

        arb_poly_clear(f);
        arb_poly_clear(g);

        arb_clear(c);
        arb_clear(d);
        arb_clear(e);
    }

    flint_randclear(state);
    flint_cleanup();
    flint_printf("PASS\n");
    return EXIT_SUCCESS;
}
Beispiel #9
0
int main()
{
    slong iter;
    flint_rand_t state;

    flint_printf("sub_si....");
    fflush(stdout);

    flint_randinit(state);

    for (iter = 0; iter < 10000; iter++)
    {
        arb_t a, b, c, d;
        slong x;
        slong prec;

        arb_init(a);
        arb_init(b);
        arb_init(c);
        arb_init(d);

        arb_randtest_special(a, state, 1 + n_randint(state, 2000), 100);
        arb_randtest_special(b, state, 1 + n_randint(state, 2000), 100);
        arb_randtest_special(c, state, 1 + n_randint(state, 2000), 100);
        x = z_randtest(state);

        prec = 2 + n_randint(state, 2000);

        arb_set_si(b, x);
        arb_sub_si(c, a, x, prec);
        arb_sub(d, a, b, prec);

        if (!arb_equal(c, d))
        {
            flint_printf("FAIL\n\n");
            flint_printf("a = "); arb_print(a); flint_printf("\n\n");
            flint_printf("b = "); arb_print(b); flint_printf("\n\n");
            flint_printf("c = "); arb_print(c); flint_printf("\n\n");
            flint_printf("d = "); arb_print(d); flint_printf("\n\n");
            abort();
        }

        arb_clear(a);
        arb_clear(b);
        arb_clear(c);
        arb_clear(d);
    }

    /* aliasing */
    for (iter = 0; iter < 10000; iter++)
    {
        arb_t a, b, c;
        slong x;
        slong prec;

        arb_init(a);
        arb_init(b);
        arb_init(c);

        arb_randtest_special(a, state, 1 + n_randint(state, 2000), 100);
        arb_randtest_special(b, state, 1 + n_randint(state, 2000), 100);
        arb_randtest_special(c, state, 1 + n_randint(state, 2000), 100);
        x = z_randtest(state);

        prec = 2 + n_randint(state, 2000);

        arb_set_si(b, x);
        arb_sub_si(c, a, x, prec);
        arb_sub_si(a, a, x, prec);

        if (!arb_equal(a, c))
        {
            flint_printf("FAIL (aliasing)\n\n");
            flint_printf("a = "); arb_print(a); flint_printf("\n\n");
            flint_printf("b = "); arb_print(b); flint_printf("\n\n");
            flint_printf("c = "); arb_print(c); flint_printf("\n\n");
            abort();
        }

        arb_clear(a);
        arb_clear(b);
        arb_clear(c);
    }

    flint_randclear(state);
    flint_cleanup();
    flint_printf("PASS\n");
    return EXIT_SUCCESS;
}
Beispiel #10
0
int main()
{
    slong iter;
    flint_rand_t state;

    flint_printf("power_sum_vec....");
    fflush(stdout);

    flint_randinit(state);

    for (iter = 0; iter < 1000 * arb_test_multiplier(); iter++)
    {
        arb_t a, b, s, t;
        arb_ptr res;
        slong aa, bb, k, n, len;
        slong prec;

        len = n_randint(state, 30);
        prec = 2 + n_randint(state, 500);
        aa = n_randint(state, 50) - 50;
        bb = aa + n_randint(state, 50);

        arb_init(a);
        arb_init(b);
        arb_init(s);
        arb_init(t);
        res = _arb_vec_init(len);

        arb_set_si(a, aa);
        arb_set_si(b, bb);
        arb_power_sum_vec(res, a, b, len, prec);

        for (n = 0; n < len; n++)
        {
            arb_zero(s);
            for (k = aa; k < bb; k++)
            {
                arb_set_si(t, k);
                arb_pow_ui(t, t, n, prec);
                arb_add(s, s, t, prec);
            }

            if (!arb_overlaps(res + n, s))
            {
                flint_printf("FAIL: overlap\n\n");
                flint_printf("a = %wd, b = %wd, n = %wd\n\n", aa, bb, n);
                flint_printf("res = "); arb_printd(res + n, 30); flint_printf("\n\n");
                flint_printf("s = "); arb_printd(s, 30); flint_printf("\n\n");
                abort();
            }
        }

        arb_clear(a);
        arb_clear(b);
        arb_clear(s);
        arb_clear(t);
        _arb_vec_clear(res, len);
    }

    flint_randclear(state);
    flint_cleanup();
    flint_printf("PASS\n");
    return EXIT_SUCCESS;
}
Beispiel #11
0
void
keiper_li_series(arb_ptr z, slong len, slong prec)
{
    arb_ptr t, u, v;

    t = _arb_vec_init(len);
    u = _arb_vec_init(len);
    v = _arb_vec_init(len);

    /* -zeta(s) */
    flint_printf("zeta: ");
    TIMEIT_ONCE_START
    arb_zero(t + 0);
    arb_one(t + 1);
    arb_one(u);
    _arb_poly_zeta_series(v, t, 2, u, 0, len, prec);
    _arb_vec_neg(v, v, len);
    TIMEIT_ONCE_STOP

    SHOW_MEMORY_USAGE

    /* logarithm */
    flint_printf("log: ");
    TIMEIT_ONCE_START
    _arb_poly_log_series(t, v, len, len, prec);
    TIMEIT_ONCE_STOP

    /* add log(gamma(1+s/2)) */
    flint_printf("gamma: ");
    TIMEIT_ONCE_START
    arb_one(u);
    arb_one(u + 1);
    arb_mul_2exp_si(u + 1, u + 1, -1);
    _arb_poly_lgamma_series(v, u, 2, len, prec);
    _arb_vec_add(t, t, v, len, prec);
    TIMEIT_ONCE_STOP

    /* subtract 0.5 s log(pi) */
    arb_const_pi(u, prec);
    arb_log(u, u, prec);
    arb_mul_2exp_si(u, u, -1);
    arb_sub(t + 1, t + 1, u, prec);

    /* add log(1-s) */
    arb_one(u);
    arb_set_si(u + 1, -1);
    _arb_poly_log_series(v, u, 2, len, prec);
    _arb_vec_add(t, t, v, len, prec);

    /* binomial transform */
    flint_printf("binomial transform: ");
    TIMEIT_ONCE_START
    arb_set(z, t);
    _arb_vec_neg(t + 1, t + 1, len - 1);
    _arb_poly_binomial_transform(z + 1, t + 1, len - 1, len - 1, prec);
    TIMEIT_ONCE_STOP

    _arb_vec_clear(t, len);
    _arb_vec_clear(u, len);
    _arb_vec_clear(v, len);
}
Beispiel #12
0
void
_arb_poly_rgamma_series(arb_ptr res, arb_srcptr h, long hlen, long len, long prec)
{
    int reflect;
    long i, rflen, r, n, wp;
    arb_ptr t, u, v;
    arb_struct f[2];

    hlen = FLINT_MIN(hlen, len);
    wp = prec + FLINT_BIT_COUNT(prec);

    t = _arb_vec_init(len);
    u = _arb_vec_init(len);
    v = _arb_vec_init(len);
    arb_init(f);
    arb_init(f + 1);

    /* use zeta values at small integers */
    if (arb_is_int(h) && (arf_cmpabs_ui(arb_midref(h), prec / 2) < 0))
    {
        r = arf_get_si(arb_midref(h), ARF_RND_DOWN);

        _arb_poly_lgamma_series_at_one(u, len, wp);

        _arb_vec_neg(u, u, len);
        _arb_poly_exp_series(t, u, len, len, wp);

        if (r == 1)
        {
            _arb_vec_swap(v, t, len);
        }
        else if (r <= 0)
        {
            arb_set(f, h);
            arb_one(f + 1);
            rflen = FLINT_MIN(len, 2 - r);
            _arb_poly_rising_ui_series(u, f, FLINT_MIN(2, len), 1 - r, rflen, wp);
            _arb_poly_mullow(v, t, len, u, rflen, len, wp);
        }
        else
        {
            arb_one(f);
            arb_one(f + 1);
            rflen = FLINT_MIN(len, r);
            _arb_poly_rising_ui_series(v, f, FLINT_MIN(2, len), r - 1, rflen, wp);

            /* TODO: use div_series? */
            _arb_poly_inv_series(u, v, rflen, len, wp);
            _arb_poly_mullow(v, t, len, u, len, len, wp);
        }
    }
    else
    {
        /* otherwise use Stirling series */
        arb_gamma_stirling_choose_param(&reflect, &r, &n, h, 1, 0, wp);

        /* rgamma(h) = (gamma(1-h+r) sin(pi h)) / (rf(1-h, r) * pi), h = h0 + t*/
        if (reflect)
        {
            /* u = gamma(r+1-h) */
            arb_sub_ui(f, h, r + 1, wp);
            arb_neg(f, f);
            _arb_poly_gamma_stirling_eval(t, f, n, len, wp);
            _arb_poly_exp_series(u, t, len, len, wp);
            for (i = 1; i < len; i += 2)
                arb_neg(u + i, u + i);

            /* v = sin(pi x) */
            arb_const_pi(f + 1, wp);
            arb_mul(f, h, f + 1, wp);
            _arb_poly_sin_series(v, f, 2, len, wp);

            _arb_poly_mullow(t, u, len, v, len, len, wp);

            /* rf(1-h,r) * pi */
            if (r == 0)
            {
                arb_const_pi(u, wp);
                _arb_vec_scalar_div(v, t, len, u, wp);
            }
            else
            {
                arb_sub_ui(f, h, 1, wp);
                arb_neg(f, f);
                arb_set_si(f + 1, -1);
                rflen = FLINT_MIN(len, r + 1);
                _arb_poly_rising_ui_series(v, f, FLINT_MIN(2, len), r, rflen, wp);
                arb_const_pi(u, wp);
                _arb_vec_scalar_mul(v, v, rflen, u, wp);

                /* divide by rising factorial */
                /* TODO: might better to use div_series, when it has a good basecase */
                _arb_poly_inv_series(u, v, rflen, len, wp);
                _arb_poly_mullow(v, t, len, u, len, len, wp);
            }
        }
        else
        {
            /* rgamma(h) = rgamma(h+r) rf(h,r) */
            if (r == 0)
            {
                arb_add_ui(f, h, r, wp);
                _arb_poly_gamma_stirling_eval(t, f, n, len, wp);
                _arb_vec_neg(t, t, len);
                _arb_poly_exp_series(v, t, len, len, wp);
            }
            else
            {
                arb_set(f, h);
                arb_one(f + 1);
                rflen = FLINT_MIN(len, r + 1);
                _arb_poly_rising_ui_series(t, f, FLINT_MIN(2, len), r, rflen, wp);

                arb_add_ui(f, h, r, wp);
                _arb_poly_gamma_stirling_eval(v, f, n, len, wp);
                _arb_vec_neg(v, v, len);
                _arb_poly_exp_series(u, v, len, len, wp);

                _arb_poly_mullow(v, u, len, t, rflen, len, wp);
            }
        }
    }

    /* compose with nonconstant part */
    arb_zero(t);
    _arb_vec_set(t + 1, h + 1, hlen - 1);
    _arb_poly_compose_series(res, v, len, t, hlen, len, prec);

    arb_clear(f);
    arb_clear(f + 1);
    _arb_vec_clear(t, len);
    _arb_vec_clear(u, len);
    _arb_vec_clear(v, len);
}
Beispiel #13
0
int main(int argc, char *argv[])
{
    acb_t r, s, a, b;
    arf_t inr, outr;
    long digits, prec;

    if (argc < 2)
    {
        printf("integrals d\n");
        printf("compute integrals using d decimal digits of precision\n");
        return 1;
    }

    acb_init(r);
    acb_init(s);
    acb_init(a);
    acb_init(b);
    arf_init(inr);
    arf_init(outr);

    arb_calc_verbose = 0;

    digits = atol(argv[1]);
    prec = digits * 3.32193;
    printf("Digits: %ld\n", digits);

    printf("----------------------------------------------------------------\n");
    printf("Integral of sin(t) from 0 to 100.\n");
    arf_set_d(inr, 0.125);
    arf_set_d(outr, 1.0);
    TIMEIT_ONCE_START
    acb_set_si(a, 0);
    acb_set_si(b, 100);
    acb_calc_integrate_taylor(r, sinx, NULL, a, b, inr, outr, prec, 1.1 * prec);
    printf("RESULT:\n");
    acb_printd(r, digits); printf("\n");
    TIMEIT_ONCE_STOP

    printf("----------------------------------------------------------------\n");
    printf("Elliptic integral F(phi, m) = integral of 1/sqrt(1 - m*sin(t)^2)\n");
    printf("from 0 to phi, with phi = 6+6i, m = 1/2. Integration path\n");
    printf("0 -> 6 -> 6+6i.\n");
    arf_set_d(inr, 0.2);
    arf_set_d(outr, 0.5);
    TIMEIT_ONCE_START
    acb_set_si(a, 0);
    acb_set_si(b, 6);
    acb_calc_integrate_taylor(r, elliptic, NULL, a, b, inr, outr, prec, 1.1 * prec);
    acb_set_si(a, 6);
    arb_set_si(acb_realref(b), 6);
    arb_set_si(acb_imagref(b), 6);
    acb_calc_integrate_taylor(s, elliptic, NULL, a, b, inr, outr, prec, 1.1 * prec);
    acb_add(r, r, s, prec);
    printf("RESULT:\n");
    acb_printd(r, digits); printf("\n");
    TIMEIT_ONCE_STOP

    printf("----------------------------------------------------------------\n");
    printf("Bessel function J_n(z) = (1/pi) * integral of cos(t*n - z*sin(t))\n");
    printf("from 0 to pi. With n = 10, z = 20 + 10i.\n");
    arf_set_d(inr, 0.1);
    arf_set_d(outr, 0.5);
    TIMEIT_ONCE_START
    acb_set_si(a, 0);
    acb_const_pi(b, 3 * prec);
    acb_calc_integrate_taylor(r, bessel, NULL, a, b, inr, outr, prec, 3 * prec);
    acb_div(r, r, b, prec);
    printf("RESULT:\n");
    acb_printd(r, digits); printf("\n");
    TIMEIT_ONCE_STOP

    acb_clear(r);
    acb_clear(s);
    acb_clear(a);
    acb_clear(b);
    arf_clear(inr);
    arf_clear(outr);

    flint_cleanup();
    return 0;
}
Beispiel #14
0
int main()
{
    slong iter;

    FLINT_TEST_INIT(state);

    {
        ulong k;

        arb_t a,b;
        arf_t c,d;

        fmpq_poly_t p;

        arb_init(a);
        arb_init(b);
        arf_init(c);
        arf_init(d);

        /* x+1 */
        fmpq_poly_init(p);
        fmpq_poly_set_coeff_si(p, 0, 1);
        fmpq_poly_set_coeff_si(p, 1, 1);
        for (iter = 0; iter < 5000; iter++)
        {
            k = n_randint(state, 10000);
            arb_set_si(a, k);
            fmpq_poly_evaluate_arb(b, p, a, 30 + n_randint(state, 100));
            if (!arb_equal_si(b, k + 1))
            {
                printf("FAIL (fmpq_poly_evaluate_arb):\n");
                printf("a = "); arb_print(a); printf("\n");
                printf("b = "); arb_print(b); printf("\n");
                printf("p = "); fmpq_poly_print(p); printf("\n");
                abort();
            }
            arf_set_si(c, k);
            fmpq_poly_evaluate_arf(d, p, c, 30 + n_randint(state, 100));
            if (!arf_equal_si(d, k + 1))
            {
                printf("FAIL (fmpq_poly_evaluate_arf):\n");
                printf("c = "); arf_print(c); printf("\n");
                printf("d = "); arf_print(d); printf("\n");
                printf("p = "); fmpq_poly_print(p); printf("\n");
                abort();
            }
        }

        /* x^2 */
        fmpq_poly_zero(p);
        fmpq_poly_set_coeff_si(p, 2, 1);
        for (iter = 0; iter < 1000; iter++)
        {
            k = n_randint(state, 10000);

            arb_set_si(a, k);
            fmpq_poly_evaluate_arb(b, p, a, 30 + n_randint(state, 100));
            if (!arb_equal_si(b, k * k))
            {
                printf("Error (test_fmpq_poly_evaluate_arb):\n");
                printf("a = "); arb_print(a); printf("\n");
                printf("b = "); arb_print(b); printf("\n");
                printf("p = "); fmpq_poly_print(p); printf("\n");
                abort();
            }

            arf_set_si(c, k);
            fmpq_poly_evaluate_arf(d, p, c, 30 + n_randint(state, 100));
            if (!arf_equal_si(d, k * k))
            {
                printf("Error (test_fmpq_poly_evaluate_arf):\n");
                printf("c = "); arf_print(c); printf("\n");
                printf("d = "); arf_print(d); printf("\n");
                printf("p = "); fmpq_poly_print(p); printf("\n");
                abort();
            }
        }

        fmpq_poly_clear(p);
        arb_clear(a);
        arb_clear(b);
        arf_clear(c);
        arf_clear(d);
    }

    /* check evaluate_arb agains exact evaluate_fmpq */
    for (iter = 0; iter < 1000; iter++)
    {
        fmpq_poly_t p;
        fmpq_t x,y;
        arb_t a,b;

        fmpq_poly_init(p);
        fmpq_init(x);
        fmpq_init(y);
        arb_init(a);
        arb_init(b);

        fmpq_poly_randtest(p, state, 1 + n_randint(state,100), 10);
        fmpq_randtest(x, state, 10);
        arb_set_fmpq(a, x, 64);

        fmpq_poly_evaluate_fmpq(y, p, x);
        fmpq_poly_evaluate_arb(b, p, a, 60);

        if (!arb_contains_fmpq(b, y))
        {
            printf("FAIL (y not in b):\n");
            printf("p = "); fmpq_poly_print(p); printf("\n");
            printf("x = "); fmpq_print(x); printf("\n");
            printf("y = "); fmpq_print(y); printf("\n");
            printf("a = "); arb_print(a); printf("\n");
            printf("b = "); arb_print(b); printf("\n");
            abort();
        }

        fmpq_poly_evaluate_arb(a, p, a, 60);
        if (!arb_equal(a,b))
        {
            printf("FAIL (a not equal b):\n");
            printf("p = "); fmpq_poly_print(p); printf("\n");
            printf("x = "); fmpq_print(x); printf("\n");
            printf("y = "); fmpq_print(y); printf("\n");
            printf("a = "); arb_print(a); printf("\n");
            printf("b = "); arb_print(b); printf("\n");
            abort();
        }

        fmpq_poly_clear(p);
        fmpq_clear(x);
        fmpq_clear(y);
        arb_clear(a);
        arb_clear(b);
    }


    /* test aliasing */
    for (iter = 0; iter < 1000; iter++)
    {
        fmpq_poly_t p;

        arb_t a,b;
        arf_t c,d;

        fmpq_poly_init(p);
        arb_init(a);
        arb_init(b);
        arf_init(c);
        arf_init(d);

        fmpq_poly_randtest(p, state, 1 + n_randint(state,100), 10);
        arb_randtest(a, state, 60, 10);
        arb_randtest(b, state, 60, 10);
        arf_randtest(c, state, 60, 10);
        arf_randtest(d, state, 60, 10);

        fmpq_poly_evaluate_arb(b, p, a, 60);
        fmpq_poly_evaluate_arb(a, p, a, 60);

        if (!arb_equal(a, b))
        {
            printf("FAIL (a not equal b):\n");
            printf("p = "); fmpq_poly_print(p); printf("\n");
            printf("a = "); arb_print(a); printf("\n");
            printf("b = "); arb_print(b); printf("\n");
            abort();
        }

        fmpq_poly_evaluate_arf(d, p, c, 60);
        fmpq_poly_evaluate_arf(c, p, c, 60);

        if (!arf_equal(c, d))
        {
            printf("FAIL (c not equal d):\n");
            printf("p = "); fmpq_poly_print(p); printf("\n");
            printf("c = "); arf_print(c); printf("\n");
            printf("d = "); arf_print(d); printf("\n");
        }

        fmpq_poly_clear(p);
        arb_clear(a);
        arb_clear(b);
        arf_clear(c);
        arf_clear(d);
    }

    FLINT_TEST_CLEANUP(state);

    return 0;
}
void
_arb_poly_zeta_series(arb_ptr res, arb_srcptr h, long hlen, const arb_t a, int deflate, long len, long prec)
{
    long i;
    acb_t cs, ca;
    acb_ptr z;
    arb_ptr t, u;

    if (arb_contains_nonpositive(a))
    {
        _arb_vec_indeterminate(res, len);
        return;
    }

    hlen = FLINT_MIN(hlen, len);

    z = _acb_vec_init(len);
    t = _arb_vec_init(len);
    u = _arb_vec_init(len);
    acb_init(cs);
    acb_init(ca);

    /* use reflection formula */
    if (arf_sgn(arb_midref(h)) < 0 && arb_is_one(a))
    {
        /* zeta(s) = (2*pi)**s * sin(pi*s/2) / pi * gamma(1-s) * zeta(1-s) */
        arb_t pi;
        arb_ptr f, s1, s2, s3, s4;

        arb_init(pi);
        f = _arb_vec_init(2);
        s1 = _arb_vec_init(len);
        s2 = _arb_vec_init(len);
        s3 = _arb_vec_init(len);
        s4 = _arb_vec_init(len);

        arb_const_pi(pi, prec);

        /* s1 = (2*pi)**s */
        arb_mul_2exp_si(pi, pi, 1);
        _arb_poly_pow_cpx(s1, pi, h, len, prec);
        arb_mul_2exp_si(pi, pi, -1);

        /* s2 = sin(pi*s/2) / pi */
        arb_set(f, h);
        arb_one(f + 1);
        arb_mul_2exp_si(f, f, -1);
        arb_mul_2exp_si(f + 1, f + 1, -1);
        _arb_poly_sin_pi_series(s2, f, 2, len, prec);
        _arb_vec_scalar_div(s2, s2, len, pi, prec);

        /* s3 = gamma(1-s) */
        arb_sub_ui(f, h, 1, prec);
        arb_neg(f, f);
        arb_set_si(f + 1, -1);
        _arb_poly_gamma_series(s3, f, 2, len, prec);

        /* s4 = zeta(1-s) */
        arb_sub_ui(f, h, 1, prec);
        arb_neg(f, f);
        acb_set_arb(cs, f);
        acb_one(ca);
        _acb_poly_zeta_cpx_series(z, cs, ca, 0, len, prec);
        for (i = 0; i < len; i++)
            arb_set(s4 + i, acb_realref(z + i));
        for (i = 1; i < len; i += 2)
            arb_neg(s4 + i, s4 + i);

        _arb_poly_mullow(u, s1, len, s2, len, len, prec);
        _arb_poly_mullow(s1, s3, len, s4, len, len, prec);
        _arb_poly_mullow(t, u, len, s1, len, len, prec);

        /* add 1/(1-(s+t)) = 1/(1-s) + t/(1-s)^2 + ... */
        if (deflate)
        {
            arb_sub_ui(u, h, 1, prec);
            arb_neg(u, u);
            arb_inv(u, u, prec);
            for (i = 1; i < len; i++)
                arb_mul(u + i, u + i - 1, u, prec);
            _arb_vec_add(t, t, u, len, prec);
        }

        arb_clear(pi);
        _arb_vec_clear(f, 2);
        _arb_vec_clear(s1, len);
        _arb_vec_clear(s2, len);
        _arb_vec_clear(s3, len);
        _arb_vec_clear(s4, len);
    }
    else
    {
        acb_set_arb(cs, h);
        acb_set_arb(ca, a);
        _acb_poly_zeta_cpx_series(z, cs, ca, deflate, len, prec);
        for (i = 0; i < len; i++)
            arb_set(t + i, acb_realref(z + i));
    }

    /* compose with nonconstant part */
    arb_zero(u);
    _arb_vec_set(u + 1, h + 1, hlen - 1);
    _arb_poly_compose_series(res, t, len, u, hlen, len, prec);

    _acb_vec_clear(z, len);
    _arb_vec_clear(t, len);
    _arb_vec_clear(u, len);
    acb_init(cs);
    acb_init(ca);
}
Beispiel #16
0
void Lib_Arb_Set_Si(ArbPtr x, int32_t a)
{
    arb_set_si( (arb_ptr) x, a);
}