Beispiel #1
0
void
_arb_poly_sqrt_series(arb_ptr g,
    arb_srcptr h, long hlen, long len, long prec)
{
    hlen = FLINT_MIN(hlen, len);

    if (hlen == 1)
    {
        arb_sqrt(g, h, prec);
        _arb_vec_zero(g + 1, len - 1);
    }
    else if (len == 2)
    {
        arb_sqrt(g, h, prec);
        arb_div(g + 1, h + 1, h, prec);
        arb_mul(g + 1, g + 1, g, prec);
        arb_mul_2exp_si(g + 1, g + 1, -1);
    }
    else
    {
        arb_ptr t;
        t = _arb_vec_init(len);
        _arb_poly_rsqrt_series(t, h, hlen, len, prec);
        _arb_poly_mullow(g, t, len, h, hlen, len, prec);
        _arb_vec_clear(t, len);
    }
}
Beispiel #2
0
void
arb_root_ui(arb_t res, const arb_t x, ulong k, slong prec)
{
    if (k == 0)
    {
        arb_indeterminate(res);
    }
    else if (k == 1)
    {
        arb_set_round(res, x, prec);
    }
    else if (k == 2)
    {
        arb_sqrt(res, x, prec);
    }
    else if (k == 4)
    {
        arb_sqrt(res, x, prec + 2);
        arb_sqrt(res, res, prec);
    }
    else
    {
        if (k > 50 || prec < (WORD(1) << ((k / 8) + 8)))
            arb_root_ui_exp(res, x, k, prec);
        else
            arb_root_ui_algebraic(res, x, k, prec);
    }
}
Beispiel #3
0
void
acb_hypgeom_fresnel(acb_t res1, acb_t res2, const acb_t z, int normalized, slong prec)
{
    slong wp;
    acb_t w;
    arb_t c;

    if (!acb_is_finite(z))
    {
        if (res1 != NULL) acb_indeterminate(res1);
        if (res2 != NULL) acb_indeterminate(res2);
        return;
    }

    acb_init(w);
    arb_init(c);

    wp = prec + 8;

    if (normalized)
    {
        arb_const_pi(c, wp);
        arb_sqrt(c, c, wp);
        arb_mul_2exp_si(c, c, -1);
        acb_mul_arb(w, z, c, wp);
        acb_hypgeom_fresnel_erf_error(res1, res2, w, wp);
    }
    else
    {
        arb_sqrt_ui(c, 2, wp);
        arb_mul_2exp_si(c, c, -1);
        acb_mul_arb(w, z, c, wp);
        acb_hypgeom_fresnel_erf_error(res1, res2, w, wp);
        arb_const_pi(c, wp);
        arb_mul_2exp_si(c, c, -1);
        arb_sqrt(c, c, wp);

        if (res1 != NULL) acb_mul_arb(res1, res1, c, wp);
        if (res2 != NULL) acb_mul_arb(res2, res2, c, wp);
    }

    if (res1 != NULL)
    {
        acb_mul_2exp_si(res1, res1, -2);
        acb_set_round(res1, res1, prec);
    }

    if (res2 != NULL)
    {
        acb_mul_2exp_si(res2, res2, -2);
        acb_set_round(res2, res2, prec);
    }

    acb_clear(w);
    arb_clear(c);
}
Beispiel #4
0
int main()
{
    slong iter;
    flint_rand_t state;

    flint_printf("sqrt....");
    fflush(stdout);

    flint_randinit(state);

    for (iter = 0; iter < 100000; iter++)
    {
        arb_t a, b, c;
        slong prec = 2 + n_randint(state, 200);

        arb_init(a);
        arb_init(b);
        arb_init(c);

        arb_randtest_special(a, state, 1 + n_randint(state, 200), 100);

        arb_sqrt(b, a, prec);
        arb_mul(c, b, b, prec);

        if (!arb_contains(c, a))
        {
            flint_printf("FAIL: containment\n\n");
            flint_printf("a = "); arb_print(a); flint_printf("\n\n");
            flint_printf("b = "); arb_print(b); flint_printf("\n\n");
            flint_printf("c = "); arb_print(c); flint_printf("\n\n");
            abort();
        }

        arb_sqrt(a, a, prec);

        if (!arb_equal(a, b))
        {
            flint_printf("FAIL: aliasing\n\n");
            abort();
        }

        arb_clear(a);
        arb_clear(b);
        arb_clear(c);
    }

    flint_randclear(state);
    flint_cleanup();
    flint_printf("PASS\n");
    return EXIT_SUCCESS;
}
Beispiel #5
0
void
arb_sqrt1pm1(arb_t r, const arb_t z, slong prec)
{
    slong magz, wp;

    if (arb_is_zero(z))
    {
        arb_zero(r);
        return;
    }

    magz = arf_abs_bound_lt_2exp_si(arb_midref(z));

    if (magz < -prec)
    {
        arb_sqrt1pm1_tiny(r, z, prec);
    }
    else
    {
        if (magz < 0)
            wp = prec + (-magz) + 4;
        else
            wp = prec + 4;

        arb_add_ui(r, z, 1, wp);
        arb_sqrt(r, r, wp);
        arb_sub_ui(r, r, 1, wp);
    }
}
Beispiel #6
0
Datei: pow.c Projekt: isuruf/arb
void
arb_pow(arb_t z, const arb_t x, const arb_t y, slong prec)
{
    if (arb_is_zero(y))
    {
        arb_one(z);
        return;
    }

    if (arb_is_zero(x))
    {
        if (arb_is_positive(y))
            arb_zero(z);
        else
            arb_indeterminate(z);
        return;
    }

    if (arb_is_exact(y) && !arf_is_special(arb_midref(x)))
    {
        const arf_struct * ymid = arb_midref(y);

        /* small half-integer or integer */
        if (arf_cmpabs_2exp_si(ymid, BINEXP_LIMIT) < 0 &&
            arf_is_int_2exp_si(ymid, -1))
        {
            fmpz_t e;
            fmpz_init(e);            

            if (arf_is_int(ymid))
            {
                arf_get_fmpz_fixed_si(e, ymid, 0);
                arb_pow_fmpz_binexp(z, x, e, prec);
            }
            else
            {
                arf_get_fmpz_fixed_si(e, ymid, -1);
                arb_sqrt(z, x, prec + fmpz_bits(e));
                arb_pow_fmpz_binexp(z, z, e, prec);
            }

            fmpz_clear(e);
            return;
        }
        else if (arf_is_int(ymid) && arf_sgn(arb_midref(x)) < 0)
        {
            /* use (-x)^n = (-1)^n * x^n to avoid NaNs
               at least at high enough precision */
            int odd = !arf_is_int_2exp_si(ymid, 1);
            _arb_pow_exp(z, x, 1, y, prec);
            if (odd)
                arb_neg(z, z);
            return;
        }
    }

    _arb_pow_exp(z, x, 0, y, prec);
}
Beispiel #7
0
void arb_twobytwo_diag(arb_t u1, arb_t u2, const arb_t a, const arb_t b, const arb_t d, slong prec) {
    // Compute the orthogonal matrix that diagonalizes
    //
    //    A = [a b]
    //        [b d]
    //
    // This matrix will have the form
    //
    //    U = [cos x , -sin x]
    //        [sin x, cos x]
    //
    // where the diagonal matrix is U^t A U.
    // We set u1 = cos x, u2 = -sin x.

    if(arb_contains_zero(b)) {
        // this is not quite right (doesn't set error intervals)
        arb_set_ui(u1, 1);
        arb_set_ui(u2, 0);
        return;
    }
    arb_t x; arb_init(x);

    arb_mul(u1, b, b, prec);            // u1 = b^2
    arb_sub(u2, a, d, prec);            // u2 = a - d
    arb_mul_2exp_si(u2, u2, -1);        // u2 = (a - d)/2
    arb_mul(u2, u2, u2, prec);          // u2 = ( (a - d)/2 )^2
    arb_add(u1, u1, u2, prec);          // u1 = b^2 + ( (a-d)/2 )^2
    arb_sqrt(u1, u1, prec);             // u1 = sqrt(above)

    arb_mul_2exp_si(u1, u1, 1);         // u1 = 2 (sqrt (above) )
    arb_add(u1, u1, d, prec);           // u1 += d
    arb_sub(u1, u1, a, prec);           // u1 -= a
    arb_mul_2exp_si(u1, u1, -1);        // u1 = (d - a)/2 + sqrt(b^2 + ( (a-d)/2 )^2)

    arb_mul(x, u1, u1, prec);
    arb_addmul(x, b, b, prec);          // x = u1^2 + b^2
    arb_sqrt(x, x, prec);               // x = sqrt(u1^2 + b^2)
    arb_div(u2, u1, x, prec);
    arb_div(u1, b, x, prec);
    arb_neg(u1, u1);

    arb_clear(x);
}
Beispiel #8
0
void
arb_agm(arb_t z, const arb_t x, const arb_t y, long prec)
{
    arb_t t, u, v, w;

    if (arb_contains_negative(x) || arb_contains_negative(y))
    {
        arb_indeterminate(z);
        return;
    }

    if (arb_is_zero(x) || arb_is_zero(y))
    {
        arb_zero(z);
        return;
    }

    arb_init(t);
    arb_init(u);
    arb_init(v);
    arb_init(w);

    arb_set(t, x);
    arb_set(u, y);

    while (!arb_overlaps(t, u) &&
            !arb_contains_nonpositive(t) &&
            !arb_contains_nonpositive(u))
    {
        arb_add(v, t, u, prec);
        arb_mul_2exp_si(v, v, -1);

        arb_mul(w, t, u, prec);
        arb_sqrt(w, w, prec);

        arb_swap(v, t);
        arb_swap(w, u);
    }

    if (!arb_is_finite(t) || !arb_is_finite(u))
    {
        arb_indeterminate(z);
    }
    else
    {
        arb_union(z, t, u, prec);
    }

    arb_clear(t);
    arb_clear(u);
    arb_clear(v);
    arb_clear(w);
}
Beispiel #9
0
/*
Bound for scaled Bessel function: 2/(2 pi x)^(1/2)
Bound for tail of integral: 2 N (k / (pi N))^(k / 2) / (k - 2).
*/
void
scaled_bessel_tail_bound(arb_t b, ulong k, const arb_t N, slong prec)
{
    arb_const_pi(b, prec);
    arb_mul(b, b, N, prec);
    arb_ui_div(b, k, b, prec);
    arb_sqrt(b, b, prec);
    arb_pow_ui(b, b, k, prec);
    arb_mul(b, b, N, prec);
    arb_mul_ui(b, b, 2, prec);
    arb_div_ui(b, b, k - 2, prec);
}
Beispiel #10
0
void
_arb_poly_sqrt_series(arb_ptr g,
    arb_srcptr h, slong hlen, slong len, slong prec)
{
    hlen = FLINT_MIN(hlen, len);

    while (hlen > 0 && arb_is_zero(h + hlen - 1))
        hlen--;

    if (hlen <= 1)
    {
        arb_sqrt(g, h, prec);
        _arb_vec_zero(g + 1, len - 1);
    }
    else if (len == 2)
    {
        arb_sqrt(g, h, prec);
        arb_div(g + 1, h + 1, h, prec);
        arb_mul(g + 1, g + 1, g, prec);
        arb_mul_2exp_si(g + 1, g + 1, -1);
    }
    else if (_arb_vec_is_zero(h + 1, hlen - 2))
    {
        arb_t t;
        arb_init(t);
        arf_set_si_2exp_si(arb_midref(t), 1, -1);
        _arb_poly_binomial_pow_arb_series(g, h, hlen, t, len, prec);
        arb_clear(t);
    }
    else
    {
        arb_ptr t;
        t = _arb_vec_init(len);
        _arb_poly_rsqrt_series(t, h, hlen, len, prec);
        _arb_poly_mullow(g, t, len, h, hlen, len, prec);
        _arb_vec_clear(t, len);
    }
}
Beispiel #11
0
void arb_mat_cholesky(arb_mat_t out, const arb_mat_t in, slong prec) {
    int nrows = arb_mat_nrows(in);
    for(int j = 0; j < nrows; j++) {
        for(int i = j; i < nrows; i++) {
            arb_set(arb_mat_entry(out, i, j), arb_mat_entry(in, i, j));
            for(int k = 0; k < j; k++) {
                arb_submul(arb_mat_entry(out, i, j), arb_mat_entry(out, i, k), arb_mat_entry(out, j, k), prec);
            }
            if(i == j) {
                arb_sqrt(arb_mat_entry(out, i, j), arb_mat_entry(out, i, j), prec);
            }
            else {
                arb_div(arb_mat_entry(out, i, j), arb_mat_entry(out, i, j), arb_mat_entry(out, j, j), prec);
            }
        }
    }
}
Beispiel #12
0
void
acb_dirichlet_vec_mellin_arb(acb_ptr res, const dirichlet_group_t G, const dirichlet_char_t chi, slong len, const arb_t t, slong n, slong prec)
{
    slong k;
    arb_t tk, xt, stk, st;
    acb_ptr a;
    mag_t e;
    a = _acb_vec_init(len);
    acb_dirichlet_chi_vec(a, G, chi, len, prec);
    if (dirichlet_parity_char(G, chi))
    {
        for (k = 2; k < len; k++)
            acb_mul_si(a + k, a + k, k, prec);
    }
    arb_init(tk);
    arb_init(xt);
    arb_init(st);
    arb_init(stk);
    mag_init(e);

    arb_sqrt(st, t, prec);
    arb_one(tk);
    arb_one(stk);
    for (k = 0; k < n; k++)
    {
        _acb_dirichlet_theta_argument_at_arb(xt, G->q, tk, prec);
        mag_tail_kexpk2_arb(e, xt, len);
        arb_neg(xt, xt);
        arb_exp(xt, xt, prec);
        /* TODO: reduce len */
        acb_dirichlet_qseries_arb(res + k, a, xt, len, prec);
        acb_add_error_mag(res + k, e);
        acb_mul_arb(res + k, res + k, stk, prec);
        arb_mul(tk, tk, t, prec);
        arb_mul(stk, stk, st, prec);
    }
    mag_clear(e);
    arb_clear(xt);
    arb_clear(tk);
    arb_clear(stk);
    arb_clear(st);
    _acb_vec_clear(a, len);
}
Beispiel #13
0
void
arb_acosh(arb_t z, const arb_t x, slong prec)
{
    if (arb_is_one(x))
    {
        arb_zero(z);
    }
    else
    {
        arb_t t;
        arb_init(t);

        arb_mul(t, x, x, prec + 4);
        arb_sub_ui(t, t, 1, prec + 4);
        arb_sqrt(t, t, prec + 4);
        arb_add(t, t, x, prec + 4);
        arb_log(z, t, prec);

        arb_clear(t);
    }
}
Beispiel #14
0
int
_acb_modular_hilbert_class_poly(fmpz_poly_t res, slong D,
        const slong * qbf, slong qbf_len, slong prec)
{
    arb_t sqrtD;
    arb_poly_t pol;
    int success;

    arb_init(sqrtD);
    arb_poly_init(pol);

    arb_set_si(sqrtD, -D);
    arb_sqrt(sqrtD, sqrtD, prec);
    bsplit(pol, sqrtD, qbf, 0, qbf_len, prec);
    success = arb_poly_get_unique_fmpz_poly(res, pol);

    arb_clear(sqrtD);
    arb_poly_clear(pol);

    return success;
}
Beispiel #15
0
void
arb_sqrtpos(arb_t z, const arb_t x, long prec)
{
    if (!arb_is_finite(x))
    {
        if (mag_is_zero(arb_radref(x)) && arf_is_pos_inf(arb_midref(x)))
            arb_pos_inf(z);
        else
            arb_zero_pm_inf(z);
    }
    else if (arb_contains_nonpositive(x))
    {
        arf_t t;

        arf_init(t);

        arf_set_mag(t, arb_radref(x));
        arf_add(t, arb_midref(x), t, MAG_BITS, ARF_RND_CEIL);

        if (arf_sgn(t) <= 0)
        {
            arb_zero(z);
        }
        else
        {
            arf_sqrt(t, t, MAG_BITS, ARF_RND_CEIL);
            arf_mul_2exp_si(t, t, -1);
            arf_set(arb_midref(z), t);
            arf_get_mag(arb_radref(z), t);
        }

        arf_clear(t);
    }
    else
    {
        arb_sqrt(z, x, prec);
    }

    arb_nonnegative_part(z, z, prec);
}
Beispiel #16
0
int main()
{
    slong iter;
    flint_rand_t state;

    flint_printf("sqrt1pm1....");
    fflush(stdout);

    flint_randinit(state);

    for (iter = 0; iter < 20000; iter++)
    {
        arb_t a, b, c, d;
        slong prec0, prec1, prec2;

        if (iter % 10 == 0)
            prec0 = 10000;
        else
            prec0 = 1000;

        prec1 = 2 + n_randint(state, prec0);
        prec2 = 2 + n_randint(state, prec0);

        arb_init(a);
        arb_init(b);
        arb_init(c);
        arb_init(d);

        arb_randtest_special(a, state, 1 + n_randint(state, prec0), 100);
        arb_randtest_special(b, state, 1 + n_randint(state, prec0), 100);
        arb_randtest_special(c, state, 1 + n_randint(state, prec0), 100);

        arb_sqrt1pm1(b, a, prec1);
        arb_sqrt1pm1(c, a, prec2);

        if (!arb_overlaps(b, c))
        {
            flint_printf("FAIL: overlap\n\n");
            flint_printf("a = "); arb_print(a); flint_printf("\n\n");
            flint_printf("b = "); arb_print(b); flint_printf("\n\n");
            flint_printf("c = "); arb_print(c); flint_printf("\n\n");
            abort();
        }

        /* compare with sqrt */
        arb_add_ui(d, a, 1, prec2);
        arb_sqrt(d, d, prec2);
        arb_sub_ui(d, d, 1, prec2);

        if (!arb_overlaps(c, d))
        {
            flint_printf("FAIL: comparison with log\n\n");
            flint_printf("a = "); arb_print(a); flint_printf("\n\n");
            flint_printf("b = "); arb_print(b); flint_printf("\n\n");
            flint_printf("c = "); arb_print(c); flint_printf("\n\n");
            flint_printf("d = "); arb_print(d); flint_printf("\n\n");
            abort();
        }

        arb_sqrt1pm1(a, a, prec1);

        if (!arb_overlaps(a, b))
        {
            flint_printf("FAIL: aliasing\n\n");
            flint_printf("a = "); arb_print(a); flint_printf("\n\n");
            flint_printf("b = "); arb_print(b); flint_printf("\n\n");
            abort();
        }

        arb_clear(a);
        arb_clear(b);
        arb_clear(c);
        arb_clear(d);
    }

    flint_randclear(state);
    flint_cleanup();
    flint_printf("PASS\n");
    return EXIT_SUCCESS;
}
Beispiel #17
0
void
acb_sqrt(acb_t y, const acb_t x, slong prec)
{
    arb_t r, t, u;
    slong wp;

#define a acb_realref(x)
#define b acb_imagref(x)
#define c acb_realref(y)
#define d acb_imagref(y)

    if (arb_is_zero(b))
    {
        if (arb_is_nonnegative(a))
        {
            arb_sqrt(c, a, prec);
            arb_zero(d);
            return;
        }
        else if (arb_is_nonpositive(a))
        {
            arb_neg(d, a);
            arb_sqrt(d, d, prec);
            arb_zero(c);
            return;
        }
    }

    if (arb_is_zero(a))
    {
        if (arb_is_nonnegative(b))
        {
            arb_mul_2exp_si(c, b, -1);
            arb_sqrt(c, c, prec);
            arb_set(d, c);
            return;
        }
        else if (arb_is_nonpositive(b))
        {
            arb_mul_2exp_si(c, b, -1);
            arb_neg(c, c);
            arb_sqrt(c, c, prec);
            arb_neg(d, c);
            return;
        }
    }

    wp = prec + 4;

    arb_init(r);
    arb_init(t);
    arb_init(u);

    acb_abs(r, x, wp);
    arb_add(t, r, a, wp);

    if (arb_rel_accuracy_bits(t) > 8)
    {
        /* sqrt(a+bi) = sqrt((r+a)/2) + b/sqrt(2*(r+a))*i, r = |a+bi| */

        arb_mul_2exp_si(u, t, 1);
        arb_sqrt(u, u, wp);
        arb_div(d, b, u, prec);

        arb_set_round(c, u, prec);
        arb_mul_2exp_si(c, c, -1);
    }
    else
    {
        /*
            sqrt(a+bi) = sqrt((r+a)/2) + (b/|b|)*sqrt((r-a)/2)*i
                                         (sign)
        */

        arb_mul_2exp_si(t, t, -1);

        arb_sub(u, r, a, wp);
        arb_mul_2exp_si(u, u, -1);

        arb_sqrtpos(c, t, prec);

        if (arb_is_nonnegative(b))
        {
            arb_sqrtpos(d, u, prec);
        }
        else if (arb_is_nonpositive(b))
        {
            arb_sqrtpos(d, u, prec);
            arb_neg(d, d);
        }
        else
        {
            arb_sqrtpos(t, u, wp);
            arb_neg(u, t);
            arb_union(d, t, u, prec);
        }
    }

    arb_clear(r);
    arb_clear(t);
    arb_clear(u);

#undef a
#undef b
#undef c
#undef d
}
Beispiel #18
0
int main()
{
    slong iter;
    flint_rand_t state;

    flint_printf("frobenius_norm....");
    fflush(stdout);

    flint_randinit(state);

    /* compare to the exact rational norm */
    for (iter = 0; iter < 10000 * arb_test_multiplier(); iter++)
    {
        fmpq_mat_t Q;
        fmpq_t q;
        arb_mat_t A;
        slong n, qbits, prec;

        n = n_randint(state, 8);
        qbits = 1 + n_randint(state, 100);
        prec = 2 + n_randint(state, 200);

        fmpq_mat_init(Q, n, n);
        fmpq_init(q);

        arb_mat_init(A, n, n);

        fmpq_mat_randtest(Q, state, qbits);
        _fmpq_mat_sum_of_squares(q, Q);

        arb_mat_set_fmpq_mat(A, Q, prec);

        /* check that the arb interval contains the exact value */
        {
            arb_t a;
            arb_init(a);

            arb_mat_frobenius_norm(a, A, prec);
            arb_mul(a, a, a, prec);

            if (!arb_contains_fmpq(a, q))
            {
                flint_printf("FAIL (containment, iter = %wd)\n", iter);
                flint_printf("n = %wd, prec = %wd\n", n, prec);
                flint_printf("\n");

                flint_printf("Q = \n");
                fmpq_mat_print(Q);
                flint_printf("\n\n");
                flint_printf("frobenius_norm(Q)^2 = \n");
                fmpq_print(q);
                flint_printf("\n\n");

                flint_printf("A = \n");
                arb_mat_printd(A, 15);
                flint_printf("\n\n");
                flint_printf("frobenius_norm(A)^2 = \n");
                arb_printd(a, 15);
                flint_printf("\n\n");
                flint_printf("frobenius_norm(A)^2 = \n");
                arb_print(a);
                flint_printf("\n\n");

                abort();
            }

            arb_clear(a);
        }

        /* check that the upper bound is not less than the exact value */
        {
            mag_t b;
            fmpq_t y;

            mag_init(b);
            fmpq_init(y);

            arb_mat_bound_frobenius_norm(b, A);
            mag_mul(b, b, b);
            mag_get_fmpq(y, b);

            if (fmpq_cmp(q, y) > 0)
            {
                flint_printf("FAIL (bound, iter = %wd)\n", iter);
                flint_printf("n = %wd, prec = %wd\n", n, prec);
                flint_printf("\n");

                flint_printf("Q = \n");
                fmpq_mat_print(Q);
                flint_printf("\n\n");
                flint_printf("frobenius_norm(Q)^2 = \n");
                fmpq_print(q);
                flint_printf("\n\n");

                flint_printf("A = \n");
                arb_mat_printd(A, 15);
                flint_printf("\n\n");
                flint_printf("bound_frobenius_norm(A)^2 = \n");
                mag_printd(b, 15);
                flint_printf("\n\n");
                flint_printf("bound_frobenius_norm(A)^2 = \n");
                mag_print(b);
                flint_printf("\n\n");

                abort();
            }

            mag_clear(b);
            fmpq_clear(y);
        }

        fmpq_mat_clear(Q);
        fmpq_clear(q);
        arb_mat_clear(A);
    }

    /* check trace(A^T A) = frobenius_norm(A)^2 */
    for (iter = 0; iter < 10000 * arb_test_multiplier(); iter++)
    {
        slong m, n, prec;
        arb_mat_t A, AT, ATA;
        arb_t t;

        prec = 2 + n_randint(state, 200);

        m = n_randint(state, 10);
        n = n_randint(state, 10);

        arb_mat_init(A, m, n);
        arb_mat_init(AT, n, m);
        arb_mat_init(ATA, n, n);
        arb_init(t);

        arb_mat_randtest(A, state, 2 + n_randint(state, 100), 10);
        arb_mat_transpose(AT, A);
        arb_mat_mul(ATA, AT, A, prec);
        arb_mat_trace(t, ATA, prec);
        arb_sqrt(t, t, prec);

        /* check the norm bound */
        {
            mag_t low, frobenius;

            mag_init(low);
            arb_get_mag_lower(low, t);

            mag_init(frobenius);
            arb_mat_bound_frobenius_norm(frobenius, A);

            if (mag_cmp(low, frobenius) > 0)
            {
                flint_printf("FAIL (bound)\n", iter);
                flint_printf("m = %wd, n = %wd, prec = %wd\n", m, n, prec);
                flint_printf("\n");

                flint_printf("A = \n");
                arb_mat_printd(A, 15);
                flint_printf("\n\n");

                flint_printf("lower(sqrt(trace(A^T A))) = \n");
                mag_printd(low, 15);
                flint_printf("\n\n");

                flint_printf("bound_frobenius_norm(A) = \n");
                mag_printd(frobenius, 15);
                flint_printf("\n\n");

                abort();
            }

            mag_clear(low);
            mag_clear(frobenius);
        }

        /* check the norm interval */
        {
            arb_t frobenius;

            arb_init(frobenius);
            arb_mat_frobenius_norm(frobenius, A, prec);

            if (!arb_overlaps(t, frobenius))
            {
                flint_printf("FAIL (overlap)\n", iter);
                flint_printf("m = %wd, n = %wd, prec = %wd\n", m, n, prec);
                flint_printf("\n");

                flint_printf("A = \n");
                arb_mat_printd(A, 15);
                flint_printf("\n\n");

                flint_printf("sqrt(trace(A^T A)) = \n");
                arb_printd(t, 15);
                flint_printf("\n\n");

                flint_printf("frobenius_norm(A) = \n");
                arb_printd(frobenius, 15);
                flint_printf("\n\n");

                abort();
            }

            arb_clear(frobenius);
        }

        arb_mat_clear(A);
        arb_mat_clear(AT);
        arb_mat_clear(ATA);
        arb_clear(t);
    }

    flint_randclear(state);
    flint_cleanup();
    flint_printf("PASS\n");
    return EXIT_SUCCESS;
}