int main() { slong iter; flint_rand_t state; flint_printf("abs_bound_le_2exp_fmpz...."); fflush(stdout); flint_randinit(state); for (iter = 0; iter < 10000 * arb_test_multiplier(); iter++) { arf_t x, y; fmpz_t b; int cmp1, cmp2; arf_init(x); arf_init(y); fmpz_init(b); arf_randtest_not_zero(x, state, 2 + n_randint(state, 1000), 100); arf_abs_bound_le_2exp_fmpz(b, x); arf_one(y); arf_mul_2exp_fmpz(y, y, b); cmp1 = (arf_cmpabs(x, y) <= 0); arf_mul_2exp_si(y, y, -1); cmp2 = (arf_cmpabs(y, x) < 0); arf_mul_2exp_si(y, y, 1); if (!cmp1 || !cmp2) { flint_printf("FAIL\n\n"); flint_printf("x = "); arf_print(x); flint_printf("\n\n"); flint_printf("y = "); arf_print(y); flint_printf("\n\n"); flint_printf("b = "); fmpz_print(b); flint_printf("\n\n"); flint_printf("cmp1 = %d, cmp2 = %d\n\n", cmp1, cmp2); abort(); } arf_clear(x); arf_clear(y); fmpz_clear(b); } flint_randclear(state); flint_cleanup(); flint_printf("PASS\n"); return EXIT_SUCCESS; }
int arf_cmpabs_d(const arf_t x, double y) { arf_t t; arf_init(t); /* no need to free */ arf_set_d(t, y); return arf_cmpabs(x, t); }
void acb_hypgeom_erf(acb_t res, const acb_t z, slong prec) { double x, y, absz2, logz; slong prec2; if (!acb_is_finite(z)) { acb_indeterminate(res); return; } if (acb_is_zero(z)) { acb_zero(res); return; } if ((arf_cmpabs_2exp_si(arb_midref(acb_realref(z)), 0) < 0 && arf_cmpabs_2exp_si(arb_midref(acb_imagref(z)), 0) < 0)) { acb_hypgeom_erf_1f1a(res, z, prec); return; } if ((arf_cmpabs_2exp_si(arb_midref(acb_realref(z)), 64) > 0 || arf_cmpabs_2exp_si(arb_midref(acb_imagref(z)), 64) > 0)) { acb_hypgeom_erf_asymp(res, z, prec, prec); return; } x = arf_get_d(arb_midref(acb_realref(z)), ARF_RND_DOWN); y = arf_get_d(arb_midref(acb_imagref(z)), ARF_RND_DOWN); absz2 = x * x + y * y; logz = 0.5 * log(absz2); if (logz - absz2 < -(prec + 8) * 0.69314718055994530942) { /* If the asymptotic term is small, we can compute with reduced precision */ prec2 = FLINT_MIN(prec + 4 + (y*y - x*x - logz) * 1.4426950408889634074, (double) prec); prec2 = FLINT_MAX(8, prec2); prec2 = FLINT_MIN(prec2, prec); acb_hypgeom_erf_asymp(res, z, prec, prec2); } else if (arf_cmpabs(arb_midref(acb_imagref(z)), arb_midref(acb_realref(z))) > 0) { acb_hypgeom_erf_1f1a(res, z, prec); } else { acb_hypgeom_erf_1f1b(res, z, prec); } }
/* this can be improved */ static int use_recurrence(const acb_t n, const acb_t m, slong prec) { if (!acb_is_int(n) || !arb_is_nonnegative(acb_realref(n))) return 0; if (arf_cmpabs_ui(arb_midref(acb_realref(n)), prec) > 0) return 0; if (arf_cmpabs(arb_midref(acb_realref(n)), arb_midref(acb_realref(m))) >= 0) return 0; return 1; }
void acb_lambertw_cleared_cut_fix_small(acb_t res, const acb_t z, const acb_t ez1, const fmpz_t k, int flags, slong prec) { acb_t zz, zmid, zmide1; arf_t eps; acb_init(zz); acb_init(zmid); acb_init(zmide1); arf_init(eps); arf_mul_2exp_si(eps, arb_midref(acb_realref(z)), -prec); acb_set(zz, z); if (arf_sgn(arb_midref(acb_realref(zz))) < 0 && (!fmpz_is_zero(k) || arf_sgn(arb_midref(acb_realref(ez1))) < 0) && arf_cmpabs(arb_midref(acb_imagref(zz)), eps) < 0) { /* now the value must be in [0,2eps] */ arf_get_mag(arb_radref(acb_imagref(zz)), eps); arf_set_mag(arb_midref(acb_imagref(zz)), arb_radref(acb_imagref(zz))); if (arf_sgn(arb_midref(acb_imagref(z))) >= 0) { acb_lambertw_cleared_cut(res, zz, k, flags, prec); } else { fmpz_t kk; fmpz_init(kk); fmpz_neg(kk, k); acb_lambertw_cleared_cut(res, zz, kk, flags, prec); acb_conj(res, res); fmpz_clear(kk); } } else { acb_lambertw_cleared_cut(res, zz, k, flags, prec); } acb_clear(zz); acb_clear(zmid); acb_clear(zmide1); arf_clear(eps); }
int main() { slong iter; flint_rand_t state; flint_printf("rel_accuracy_bits...."); fflush(stdout); flint_randinit(state); /* test aliasing of c and a */ for (iter = 0; iter < 10000 * arb_test_multiplier(); iter++) { arb_t x; acb_t z; slong a1, a2; arb_init(x); acb_init(z); arb_randtest_special(x, state, 1 + n_randint(state, 200), 1 + n_randint(state, 200)); acb_set_arb(z, x); a1 = arb_rel_accuracy_bits(x); a2 = acb_rel_accuracy_bits(z); if (a1 != a2) { flint_printf("FAIL: acb != arb\n\n"); flint_printf("x = "); arb_print(x); flint_printf("\n\n"); flint_printf("z = "); acb_print(z); flint_printf("\n\n"); flint_printf("a1 = %wd, a2 = %wd\n\n", a1, a2); abort(); } acb_randtest_special(z, state, 1 + n_randint(state, 200), 1 + n_randint(state, 200)); a1 = acb_rel_accuracy_bits(z); if (n_randint(state, 2)) arf_swap(arb_midref(acb_realref(z)), arb_midref(acb_imagref(z))); if (n_randint(state, 2)) mag_swap(arb_radref(acb_realref(z)), arb_radref(acb_imagref(z))); a2 = acb_rel_accuracy_bits(z); if (a1 != a2) { flint_printf("FAIL: swapping\n\n"); flint_printf("z = "); acb_print(z); flint_printf("\n\n"); flint_printf("a1 = %wd, a2 = %wd\n\n", a1, a2); abort(); } acb_randtest_special(z, state, 1 + n_randint(state, 200), 1 + n_randint(state, 200)); if (arf_cmpabs(arb_midref(acb_realref(z)), arb_midref(acb_imagref(z))) >= 0) arf_set(arb_midref(x), arb_midref(acb_realref(z))); else arf_set(arb_midref(x), arb_midref(acb_imagref(z))); if (mag_cmp(arb_radref(acb_realref(z)), arb_radref(acb_imagref(z))) >= 0) mag_set(arb_radref(x), arb_radref(acb_realref(z))); else mag_set(arb_radref(x), arb_radref(acb_imagref(z))); a1 = acb_rel_accuracy_bits(z); a2 = arb_rel_accuracy_bits(x); if (a1 != a2) { flint_printf("FAIL: acb != arb (2)\n\n"); flint_printf("x = "); arb_print(x); flint_printf("\n\n"); flint_printf("z = "); acb_print(z); flint_printf("\n\n"); flint_printf("a1 = %wd, a2 = %wd\n\n", a1, a2); abort(); } arb_clear(x); acb_clear(z); } flint_randclear(state); flint_cleanup(); flint_printf("PASS\n"); return EXIT_SUCCESS; }
void acb_hypgeom_airy(acb_t ai, acb_t aip, acb_t bi, acb_t bip, const acb_t z, slong prec) { arf_srcptr re, im; double x, y, t, zmag, z15, term_est, airy_est, abstol; slong n, wp; if (!acb_is_finite(z)) { if (ai != NULL) acb_indeterminate(ai); if (aip != NULL) acb_indeterminate(aip); if (bi != NULL) acb_indeterminate(bi); if (bip != NULL) acb_indeterminate(bip); return; } re = arb_midref(acb_realref(z)); im = arb_midref(acb_imagref(z)); wp = prec * 1.03 + 15; /* tiny input -- use direct method and pick n without underflowing */ if (arf_cmpabs_2exp_si(re, -64) < 0 && arf_cmpabs_2exp_si(im, -64) < 0) { if (arf_cmpabs_2exp_si(re, -wp) < 0 && arf_cmpabs_2exp_si(im, -wp) < 0) { n = 1; /* very tiny input */ } else { if (arf_cmpabs(re, im) > 0) zmag = fmpz_get_d(ARF_EXPREF(re)); else zmag = fmpz_get_d(ARF_EXPREF(im)); zmag = (zmag + 1) * (1.0 / LOG2); n = wp / (-zmag) + 1; } acb_hypgeom_airy_direct(ai, aip, bi, bip, z, n, wp); } /* huge input -- use asymptotics and pick n without overflowing */ else if ((arf_cmpabs_2exp_si(re, 64) > 0 || arf_cmpabs_2exp_si(im, 64) > 0)) { if (arf_cmpabs_2exp_si(re, prec) > 0 || arf_cmpabs_2exp_si(im, prec) > 0) { n = 1; /* very huge input */ } else { x = fmpz_get_d(ARF_EXPREF(re)); y = fmpz_get_d(ARF_EXPREF(im)); zmag = (FLINT_MAX(x, y) - 2) * (1.0 / LOG2); n = asymp_pick_terms(wp, zmag); n = FLINT_MAX(n, 1); } acb_hypgeom_airy_asymp(ai, aip, bi, bip, z, n, wp); } else /* moderate input */ { x = arf_get_d(re, ARF_RND_DOWN); y = arf_get_d(im, ARF_RND_DOWN); zmag = sqrt(x * x + y * y); z15 = zmag * sqrt(zmag); if (zmag >= 4.0 && (n = asymp_pick_terms(wp, log(zmag))) != -1) { acb_hypgeom_airy_asymp(ai, aip, bi, bip, z, n, wp); } else if (zmag <= 1.5) { t = 3 * (wp * LOG2) / (2 * z15 * EXP1); t = (wp * LOG2) / (2 * d_lambertw(t)); n = FLINT_MAX(t + 1, 2); acb_hypgeom_airy_direct(ai, aip, bi, bip, z, n, wp); } else { /* estimate largest term: log2(exp(2(z^3/9)^(1/2))) */ term_est = 0.96179669392597560491 * z15; /* estimate the smaller of Ai and Bi */ airy_est = estimate_airy(x, y, (ai != NULL || aip != NULL)); /* estimate absolute tolerance and necessary working precision */ abstol = airy_est - wp; wp = wp + term_est - airy_est; wp = FLINT_MAX(wp, 10); t = 3 * (-abstol * LOG2) / (2 * z15 * EXP1); t = (-abstol * LOG2) / (2 * d_lambertw(t)); n = FLINT_MAX(t + 1, 2); if (acb_is_exact(z)) acb_hypgeom_airy_direct(ai, aip, bi, bip, z, n, wp); else acb_hypgeom_airy_direct_prop(ai, aip, bi, bip, z, n, wp); } } if (ai != NULL) acb_set_round(ai, ai, prec); if (aip != NULL) acb_set_round(aip, aip, prec); if (bi != NULL) acb_set_round(bi, bi, prec); if (bip != NULL) acb_set_round(bip, bip, prec); }
int main() { slong iter; flint_rand_t state; flint_printf("cmpabs...."); fflush(stdout); flint_randinit(state); /* compare with fmpz */ { arf_t x, y; fmpz_t X, Y; arf_init(x); arf_init(y); fmpz_init(X); fmpz_init(Y); for (iter = 0; iter < 100000 * arb_test_multiplier(); iter++) { int cmp1, cmp2; fmpz_randtest(X, state, 1 + n_randint(state, 1000)); switch (n_randint(state, 8)) { case 0: fmpz_neg(Y, X); break; case 1: fmpz_set(Y, X); break; default: fmpz_randtest(Y, state, 1 + n_randint(state, 1000)); } arf_set_fmpz(x, X); arf_set_fmpz(y, Y); cmp1 = arf_cmpabs(x, y); cmp2 = fmpz_cmpabs(X, Y); cmp2 = (cmp2 > 0) - (cmp2 < 0); if (cmp1 != cmp2) { flint_printf("FAIL\n\n"); flint_printf("x = "); arf_debug(x); flint_printf("\n\n"); flint_printf("y = "); arf_debug(y); flint_printf("\n\n"); flint_printf("X = "); fmpz_print(X); flint_printf("\n\n"); flint_printf("Y = "); fmpz_print(Y); flint_printf("\n\n"); flint_printf("cmp1 = %d, cmp2 = %d\n\n", cmp1, cmp2); abort(); } } arf_clear(x); arf_clear(y); fmpz_clear(X); fmpz_clear(Y); } /* compare with mpfr */ for (iter = 0; iter < 100000 * arb_test_multiplier(); iter++) { slong bits; arf_t x, y; mpfr_t X, Y; int cmp1, cmp2; bits = 2 + n_randint(state, 200); arf_init(x); arf_init(y); mpfr_init2(X, bits); mpfr_init2(Y, bits); arf_randtest_special(x, state, bits, 10); arf_randtest_special(y, state, bits, 10); arf_get_mpfr(X, x, MPFR_RNDN); arf_get_mpfr(Y, y, MPFR_RNDN); mpfr_abs(X, X, MPFR_RNDN); mpfr_abs(Y, Y, MPFR_RNDN); cmp1 = arf_cmpabs(x, y); cmp2 = mpfr_cmp(X, Y); if (cmp1 != cmp2) { flint_printf("FAIL\n\n"); flint_printf("x = "); arf_print(x); flint_printf("\n\n"); flint_printf("y = "); arf_print(y); flint_printf("\n\n"); flint_printf("cmp1 = %d, cmp2 = %d\n\n", cmp1, cmp2); abort(); } arf_clear(x); arf_clear(y); mpfr_clear(X); mpfr_clear(Y); } flint_randclear(state); flint_cleanup(); flint_printf("PASS\n"); return EXIT_SUCCESS; }
void acb_hypgeom_erf(acb_t res, const acb_t z, slong prec) { double x, y, abs_z2, log_z, log_erf_z_asymp; slong prec2, wp; int more_imaginary; if (!acb_is_finite(z)) { acb_indeterminate(res); return; } if (acb_is_zero(z)) { acb_zero(res); return; } if ((arf_cmpabs_2exp_si(arb_midref(acb_realref(z)), -64) < 0 && arf_cmpabs_2exp_si(arb_midref(acb_imagref(z)), -64) < 0)) { acb_hypgeom_erf_1f1(res, z, prec, prec, 1); return; } if ((arf_cmpabs_2exp_si(arb_midref(acb_realref(z)), 64) > 0 || arf_cmpabs_2exp_si(arb_midref(acb_imagref(z)), 64) > 0)) { acb_hypgeom_erf_asymp(res, z, 0, prec, prec); return; } x = arf_get_d(arb_midref(acb_realref(z)), ARF_RND_DOWN); y = arf_get_d(arb_midref(acb_imagref(z)), ARF_RND_DOWN); abs_z2 = x * x + y * y; log_z = 0.5 * log(abs_z2); /* estimate of log(erf(z)), disregarding csgn term */ log_erf_z_asymp = y*y - x*x - log_z; if (log_z - abs_z2 < -(prec + 8) * 0.69314718055994530942) { /* If the asymptotic term is small, we can compute with reduced precision. */ prec2 = FLINT_MIN(prec + 4 + log_erf_z_asymp * 1.4426950408889634074, (double) prec); prec2 = FLINT_MAX(8, prec2); prec2 = FLINT_MIN(prec2, prec); acb_hypgeom_erf_asymp(res, z, 0, prec, prec2); } else { more_imaginary = arf_cmpabs(arb_midref(acb_imagref(z)), arb_midref(acb_realref(z))) > 0; /* Worst case: exp(|x|^2), computed: exp(x^2). (x^2+y^2) - (x^2-y^2) = 2y^2, etc. */ if (more_imaginary) wp = prec + FLINT_MAX(2 * x * x, 0.0) * 1.4426950408889634074 + 5; else wp = prec + FLINT_MAX(2 * y * y, 0.0) * 1.4426950408889634074 + 5; acb_hypgeom_erf_1f1(res, z, prec, wp, more_imaginary); } }
int arf_cmpabs_ui(const arf_t x, ulong y) { arf_t t; arf_init_set_ui(t, y); /* no need to free */ return arf_cmpabs(x, t); }
void acb_inv(acb_t res, const acb_t z, slong prec) { mag_t am, bm; slong hprec; #define a arb_midref(acb_realref(z)) #define b arb_midref(acb_imagref(z)) #define x arb_radref(acb_realref(z)) #define y arb_radref(acb_imagref(z)) /* choose precision for the floating-point approximation of a^2+b^2 so that the double rounding result in less than 2 ulp error; also use at least MAG_BITS bits since the value will be recycled for error bounds */ hprec = FLINT_MAX(prec + 3, MAG_BITS); if (arb_is_zero(acb_imagref(z))) { arb_inv(acb_realref(res), acb_realref(z), prec); arb_zero(acb_imagref(res)); return; } if (arb_is_zero(acb_realref(z))) { arb_inv(acb_imagref(res), acb_imagref(z), prec); arb_neg(acb_imagref(res), acb_imagref(res)); arb_zero(acb_realref(res)); return; } if (!acb_is_finite(z)) { acb_indeterminate(res); return; } if (mag_is_zero(x) && mag_is_zero(y)) { int inexact; arf_t a2b2; arf_init(a2b2); inexact = arf_sosq(a2b2, a, b, hprec, ARF_RND_DOWN); if (arf_is_special(a2b2)) { acb_indeterminate(res); } else { _arb_arf_div_rounded_den(acb_realref(res), a, a2b2, inexact, prec); _arb_arf_div_rounded_den(acb_imagref(res), b, a2b2, inexact, prec); arf_neg(arb_midref(acb_imagref(res)), arb_midref(acb_imagref(res))); } arf_clear(a2b2); return; } mag_init(am); mag_init(bm); /* first bound |a|-x, |b|-y */ arb_get_mag_lower(am, acb_realref(z)); arb_get_mag_lower(bm, acb_imagref(z)); if ((mag_is_zero(am) && mag_is_zero(bm))) { acb_indeterminate(res); } else { /* The propagated error in the real part is given exactly by (a+x')/((a+x')^2+(b+y'))^2 - a/(a^2+b^2) = P / Q, P = [(b^2-a^2) x' - a (x'^2+y'^2 + 2y'b)] Q = [(a^2+b^2)((a+x')^2+(b+y')^2)] where |x'| <= x and |y'| <= y, and analogously for the imaginary part. */ mag_t t, u, v, w; arf_t a2b2; int inexact; mag_init(t); mag_init(u); mag_init(v); mag_init(w); arf_init(a2b2); inexact = arf_sosq(a2b2, a, b, hprec, ARF_RND_DOWN); /* compute denominator */ /* t = (|a|-x)^2 + (|b|-x)^2 (lower bound) */ mag_mul_lower(t, am, am); mag_mul_lower(u, bm, bm); mag_add_lower(t, t, u); /* u = a^2 + b^2 (lower bound) */ arf_get_mag_lower(u, a2b2); /* t = ((|a|-x)^2 + (|b|-x)^2)(a^2 + b^2) (lower bound) */ mag_mul_lower(t, t, u); /* compute numerator */ /* real: |a^2-b^2| x + |a| ((x^2 + y^2) + 2 |b| y)) */ /* imag: |a^2-b^2| y + |b| ((x^2 + y^2) + 2 |a| x)) */ /* am, bm = upper bounds for a, b */ arf_get_mag(am, a); arf_get_mag(bm, b); /* v = x^2 + y^2 */ mag_mul(v, x, x); mag_addmul(v, y, y); /* u = |a| ((x^2 + y^2) + 2 |b| y) */ mag_mul_2exp_si(u, bm, 1); mag_mul(u, u, y); mag_add(u, u, v); mag_mul(u, u, am); /* v = |b| ((x^2 + y^2) + 2 |a| x) */ mag_mul_2exp_si(w, am, 1); mag_addmul(v, w, x); mag_mul(v, v, bm); /* w = |b^2 - a^2| (upper bound) */ if (arf_cmpabs(a, b) >= 0) mag_mul(w, am, am); else mag_mul(w, bm, bm); mag_addmul(u, w, x); mag_addmul(v, w, y); mag_div(arb_radref(acb_realref(res)), u, t); mag_div(arb_radref(acb_imagref(res)), v, t); _arb_arf_div_rounded_den_add_err(acb_realref(res), a, a2b2, inexact, prec); _arb_arf_div_rounded_den_add_err(acb_imagref(res), b, a2b2, inexact, prec); arf_neg(arb_midref(acb_imagref(res)), arb_midref(acb_imagref(res))); mag_clear(t); mag_clear(u); mag_clear(v); mag_clear(w); arf_clear(a2b2); } mag_clear(am); mag_clear(bm); #undef a #undef b #undef x #undef y }
void _acb_lambertw(acb_t res, const acb_t z, const acb_t ez1, const fmpz_t k, int flags, slong prec) { slong goal, ebits, ebits2, ls, lt; const fmpz * expo; /* Estimated accuracy goal. */ /* todo: account for exponent bits and bits in k. */ goal = acb_rel_accuracy_bits(z); goal = FLINT_MAX(goal, 10); goal = FLINT_MIN(goal, prec); /* Handle tiny z directly. For k >= 2, |c_k| <= 4^k / 16. */ if (fmpz_is_zero(k) && arf_cmpabs_2exp_si(arb_midref(acb_realref(z)), -goal / 2) < 0 && arf_cmpabs_2exp_si(arb_midref(acb_imagref(z)), -goal / 2) < 0) { mag_t err; mag_init(err); acb_get_mag(err, z); mag_mul_2exp_si(err, err, 2); acb_set(res, z); acb_submul(res, res, res, prec); mag_geom_series(err, err, 3); mag_mul_2exp_si(err, err, -4); acb_add_error_mag(res, err); mag_clear(err); return; } if (arf_cmpabs(arb_midref(acb_realref(z)), arb_midref(acb_imagref(z))) >= 0) expo = ARF_EXPREF(arb_midref(acb_realref(z))); else expo = ARF_EXPREF(arb_midref(acb_imagref(z))); ebits = fmpz_bits(expo); /* ebits ~= log2(|log(z) + 2 pi i k|) */ /* ebits2 ~= log2(log(log(z))) */ ebits = FLINT_MAX(ebits, fmpz_bits(k)); ebits = FLINT_MAX(ebits, 1) - 1; ebits2 = FLINT_BIT_COUNT(ebits); ebits2 = FLINT_MAX(ebits2, 1) - 1; /* We gain accuracy from the exponent when W ~ log - log log */ if (fmpz_sgn(expo) > 0 || (fmpz_sgn(expo) < 0 && !fmpz_is_zero(k))) { goal += ebits - ebits2; goal = FLINT_MAX(goal, 10); goal = FLINT_MIN(goal, prec); /* The asymptotic series with truncation L, M gives us about t - max(2+lt+L*(2+ls), M*(2+lt)) bits of accuracy where ls = -ebits, lt = ebits2 - ebits. */ ls = 2 - ebits; lt = 2 + ebits2 - ebits; if (ebits - FLINT_MAX(lt + 1*ls, 1*lt) > goal) { acb_lambertw_asymp(res, z, k, 1, 1, goal); acb_set_round(res, res, prec); return; } else if (ebits - FLINT_MAX(lt + 3*ls, 5*lt) > goal) { acb_lambertw_asymp(res, z, k, 3, 5, goal); acb_set_round(res, res, prec); return; } } /* Extremely close to the branch point at -1/e, use the series expansion directly. */ if (acb_lambertw_try_near_branch_point(res, z, ez1, k, flags, goal)) { acb_set_round(res, res, prec); return; } /* compute union of both sides */ if (acb_lambertw_branch_crossing(z, ez1, k)) { acb_t za, zb, eza1, ezb1; fmpz_t kk; acb_init(za); acb_init(zb); acb_init(eza1); acb_init(ezb1); fmpz_init(kk); fmpz_neg(kk, k); acb_set(za, z); acb_conj(zb, z); arb_nonnegative_part(acb_imagref(za), acb_imagref(za)); arb_nonnegative_part(acb_imagref(zb), acb_imagref(zb)); acb_set(eza1, ez1); acb_conj(ezb1, ez1); arb_nonnegative_part(acb_imagref(eza1), acb_imagref(eza1)); arb_nonnegative_part(acb_imagref(ezb1), acb_imagref(ezb1)); /* Check series expansion again, because now there is no crossing. */ if (!acb_lambertw_try_near_branch_point(res, za, eza1, k, flags, goal)) acb_lambertw_cleared_cut_fix_small(za, za, eza1, k, flags, goal); if (!acb_lambertw_try_near_branch_point(res, zb, ezb1, kk, flags, goal)) acb_lambertw_cleared_cut_fix_small(zb, zb, ezb1, kk, flags, goal); acb_conj(zb, zb); acb_union(res, za, zb, prec); acb_clear(za); acb_clear(zb); acb_clear(eza1); acb_clear(ezb1); fmpz_clear(kk); } else { acb_lambertw_cleared_cut_fix_small(res, z, ez1, k, flags, goal); acb_set_round(res, res, prec); } }
int arf_sum(arf_t s, arf_srcptr terms, long len, long prec, arf_rnd_t rnd) { arf_ptr blocks; long i, j, used; int have_merged, res; /* first check if the result is inf or nan */ { int have_pos_inf = 0; int have_neg_inf = 0; for (i = 0; i < len; i++) { if (arf_is_pos_inf(terms + i)) { if (have_neg_inf) { arf_nan(s); return 0; } have_pos_inf = 1; } else if (arf_is_neg_inf(terms + i)) { if (have_pos_inf) { arf_nan(s); return 0; } have_neg_inf = 1; } else if (arf_is_nan(terms + i)) { arf_nan(s); return 0; } } if (have_pos_inf) { arf_pos_inf(s); return 0; } if (have_neg_inf) { arf_neg_inf(s); return 0; } } blocks = flint_malloc(sizeof(arf_struct) * len); for (i = 0; i < len; i++) arf_init(blocks + i); /* put all terms into blocks */ used = 0; for (i = 0; i < len; i++) { if (!arf_is_zero(terms + i)) { arf_set(blocks + used, terms + i); used++; } } /* merge blocks until all are well separated */ have_merged = 1; while (used >= 2 && have_merged) { have_merged = 0; for (i = 0; i < used && !have_merged; i++) { for (j = i + 1; j < used && !have_merged; j++) { if (_arf_are_close(blocks + i, blocks + j, prec)) { arf_add(blocks + i, blocks + i, blocks + j, ARF_PREC_EXACT, ARF_RND_DOWN); /* remove the merged block */ arf_swap(blocks + j, blocks + used - 1); used--; /* remove the updated block if the sum is zero */ if (arf_is_zero(blocks + i)) { arf_swap(blocks + i, blocks + used - 1); used--; } have_merged = 1; } } } } if (used == 0) { arf_zero(s); res = 0; } else if (used == 1) { res = arf_set_round(s, blocks + 0, prec, rnd); } else { /* find the two largest blocks */ for (i = 1; i < used; i++) if (arf_cmpabs(blocks + 0, blocks + i) < 0) arf_swap(blocks + 0, blocks + i); for (i = 2; i < used; i++) if (arf_cmpabs(blocks + 1, blocks + i) < 0) arf_swap(blocks + 1, blocks + i); res = _arf_add_eps(s, blocks + 0, arf_sgn(blocks + 1), prec, rnd); } for (i = 0; i < len; i++) arf_clear(blocks + i); flint_free(blocks); return res; }