PB_ASSOC_CLASS_T_DEC void PB_ASSOC_CLASS_C_DEC:: swap(PB_ASSOC_CLASS_C_DEC& r_other) { PB_ASSOC_DBG_ONLY(assert_valid()); PB_ASSOC_DBG_ONLY(r_other.assert_valid()); std::swap(m_a_entries, r_other.m_a_entries); std::swap(m_num_e, r_other.m_num_e); std::swap(m_num_used_e, r_other.m_num_used_e); my_ranged_probe_fn_base::swap(r_other); my_hash_eq_fn_base::swap(r_other); my_resize_base::swap(r_other); PB_ASSOC_DBG_ONLY(my_cntnr_debug_base::swap(r_other)); PB_ASSOC_DBG_ONLY(assert_valid()); PB_ASSOC_DBG_ONLY(r_other.assert_valid()); }
PB_DS_CLASS_T_DEC inline typename PB_DS_CLASS_C_DEC::reverse_iterator PB_DS_CLASS_C_DEC:: erase(reverse_iterator it) { _GLIBCXX_DEBUG_ONLY(assert_valid()); if (it.m_p_nd == base_type::m_p_head) return it; reverse_iterator ret_it = it; ++ret_it; erase_node(it.m_p_nd); _GLIBCXX_DEBUG_ONLY(assert_valid()); return ret_it; }
PB_DS_CLASS_T_DEC void PB_DS_CLASS_C_DEC:: clear() { for (size_type i = 0; i < m_size; ++i) erase_at(m_a_entries, i, s_no_throw_copies_ind); __try { const size_type actual_size = resize_policy::get_new_size_for_arbitrary(0); entry_pointer a_entries = s_entry_allocator.allocate(actual_size); resize_policy::notify_arbitrary(actual_size); s_entry_allocator.deallocate(m_a_entries, m_actual_size); m_actual_size = actual_size; m_a_entries = a_entries; } __catch(...) { } m_size = 0; _GLIBCXX_DEBUG_ONLY(assert_valid();) }
PB_DS_CLASS_C_DEC:: left_child_next_sibling_heap_() : m_p_root(NULL), m_size(0) { _GLIBCXX_DEBUG_ONLY(assert_valid();) }
PB_DS_CLASS_T_DEC PB_DS_CLASS_C_DEC:: PB_DS_CLASS_NAME() : m_p_head(s_head_allocator.allocate(1)), m_size(0) { initialize(); _GLIBCXX_DEBUG_ONLY(assert_valid();) }
typename PB_DS_CLASS_C_DEC::size_type PB_DS_CLASS_C_DEC:: erase_if(Pred pred) { make_binomial_heap(); const size_type ersd = base_type::erase_if(pred); base_type::find_max(); _GLIBCXX_DEBUG_ONLY(assert_valid();) return ersd;
PB_DS_CLASS_T_DEC PB_DS_CLASS_C_DEC:: binary_heap_() : m_size(0), m_actual_size(resize_policy::min_size), m_a_entries(s_entry_allocator.allocate(m_actual_size)) { _GLIBCXX_DEBUG_ONLY(assert_valid();) }
void PB_DS_CLASS_C_DEC:: copy_from_range(It first_it, It last_it) { while (first_it != last_it) push(*(first_it++)); _GLIBCXX_DEBUG_ONLY(assert_valid();) }
PB_DS_CLASS_T_DEC PB_DS_CLASS_C_DEC:: left_child_next_sibling_heap_(const Cmp_Fn& r_cmp_fn) : Cmp_Fn(r_cmp_fn), m_p_root(NULL), m_size(0) { _GLIBCXX_DEBUG_ONLY(assert_valid();) }
void ase_string_buffer::truncate(size_type len) { if (len >= size()) { return; } buf_end = bufalloc + len; assert_valid(); }
PB_DS_CLASS_T_DEC PB_DS_CLASS_C_DEC:: PB_DS_CLASS_NAME(const e_access_traits& r_e_access_traits) : synth_e_access_traits(r_e_access_traits), m_p_head(s_head_allocator.allocate(1)), m_size(0) { initialize(); _GLIBCXX_DEBUG_ONLY(assert_valid();) }
void set_exception(std::exception_ptr ptr) { assert_valid(); std::shared_ptr<void> scope_guard(nullptr, [&](void*){ mImpl.reset(); }); mImpl->mPromise.set_exception(ptr); }
void ase_string_buffer::remove_front(size_type len) { assert(len <= size()); const size_type savesize = size() - len; if (savesize != 0) { ::memmove(bufalloc, bufalloc + len, savesize); } buf_end = bufalloc + savesize; assert_valid(); }
PB_DS_CLASS_T_DEC void PB_DS_CLASS_C_DEC:: resize_imp(size_type new_size) { #ifdef PB_DS_REGRESSION typename Allocator::group_throw_prob_adjustor adjust(m_num_e); #endif if (new_size == m_num_e) return; _GLIBCXX_DEBUG_ONLY(assert_valid();)
void PB_DS_CLASS_C_DEC:: copy_from_range(It first_it, It last_it) { while (first_it != last_it) { insert_value(*first_it, s_no_throw_copies_ind); ++first_it; } std::make_heap(m_a_entries, m_a_entries + m_size, static_cast<entry_cmp& >(*this)); _GLIBCXX_DEBUG_ONLY(assert_valid();) }
ase_string_buffer::ase_string_buffer(size_type initial_alloc_size) : bufalloc(0), buf_end(0), bufalloc_end(0) { /* we use malloc/free instead of new/delete in order to make debugging easier */ const size_t bufalloc_len = (initial_alloc_size > alloc_size_min) ? initial_alloc_size : alloc_size_min; bufalloc = static_cast<value_type *>( X_MALLOC(bufalloc_len * sizeof(value_type))); if (!bufalloc) { throw std::bad_alloc(); } buf_end = bufalloc; bufalloc_end = bufalloc + bufalloc_len; assert_valid(); }
void set_value(const T& t) { assert_valid(); std::shared_ptr<void> scope_guard(nullptr, [&](void*){ mImpl.reset(); }); mImpl->mPromise.set_value(t); for (auto& callback : mImpl->mCallbacks) { try { callback(mImpl->mSharedFuture); } catch (...) { } } }
PB_DS_CLASS_T_DEC inline void PB_DS_CLASS_C_DEC:: do_resize_if_needed_no_throw() { if (!resize_base::is_resize_needed()) return; try { resize_imp(resize_base::get_new_size(m_num_e, m_num_used_e)); } catch(...) { } _GLIBCXX_DEBUG_ONLY(assert_valid();) }
void ase_string_buffer::reset(size_type initial_alloc_size) { const size_t len = (initial_alloc_size > alloc_size_min) ? initial_alloc_size : alloc_size_min; if (len != alloc_size()) { value_type *p = static_cast<value_type *>( X_MALLOC(len * sizeof(value_type))); if (!p) { throw std::bad_alloc(); } X_FREE(bufalloc); bufalloc = p; bufalloc_end = bufalloc + len; } buf_end = bufalloc; assert_valid(); }
PB_ASSOC_CLASS_T_DEC inline void PB_ASSOC_CLASS_C_DEC:: do_resize_if_needed_no_throw() { if (!my_resize_base::is_resize_needed()) return; try { do do_resize(my_resize_base::get_new_size(m_num_e_p, m_num_used_e)); while (my_resize_base::is_resize_needed()); } catch(...) { } PB_ASSOC_DBG_ONLY(assert_valid();) }
Structure::Structure() { POMAGMA_INFO("Initializing solver::Structure"); // Initialize vectors for 1-based indexing. term_arity_.resize(1); less_arg_.resize(1); // Initialize atoms. new_term(TermArity::TOP); new_term(TermArity::BOT); new_term(TermArity::I); new_term(TermArity::K); new_term(TermArity::B); new_term(TermArity::C); new_term(TermArity::S); if (POMAGMA_DEBUG_LEVEL) { assert_valid(); } }
ase_string_buffer::value_type * ase_string_buffer::make_space(size_type len) { if (buf_end + len <= bufalloc_end) { /* no need to extend */ return buf_end; } const size_type buf_end_offset = buf_end - bufalloc; const size_type nalloclen = buf_end_offset + len; assert(nalloclen > 0); value_type *const nptr = static_cast<value_type *>( X_REALLOC(bufalloc, nalloclen * sizeof(value_type))); if (!nptr) { throw std::bad_alloc(); } bufalloc = nptr; bufalloc_end = nptr + nalloclen; buf_end = nptr + buf_end_offset; assert_valid(); return buf_end; }
PB_DS_CLASS_C_DEC:: PB_DS_CLASS_NAME(It first_it, It last_it) : m_p_l(0) { copy_from_range(first_it, last_it); _GLIBCXX_DEBUG_ONLY(assert_valid(););
PB_DS_CLASS_C_DEC:: PB_DS_CLASS_NAME() : m_p_l(0) { _GLIBCXX_DEBUG_ONLY(assert_valid();) }
int main(int argc, char *argv[]) { /* 1 Some correct UTF-8 text */ assert_valid("You should see the Greek word 'kosme': \"κόσμε\""); /* 2 Boundary condition test cases */ /* 2.1 First possible sequence of a certain length */ assert_valid_len("2.1.1 1 byte (U-00000000): \"\0\"", 39); assert_valid("2.1.2 2 bytes (U-00000080): \"\""); assert_valid("2.1.3 3 bytes (U-00000800): \"ࠀ\""); assert_valid("2.1.4 4 bytes (U-00010000): \"𐀀\""); /* 2.2 Last possible sequence of a certain length */ assert_valid("2.2.1 1 byte (U-0000007F): \"\""); assert_valid("2.2.2 2 bytes (U-000007FF): \"߿\""); assert_valid("2.2.3 3 bytes (U-0000FFFF): \"\""); // FIXME assert_valid("2.2.4 4 bytes (U-001FFFFF): \"����\""); /* 2.3 Other boundary conditions */ assert_valid("2.3.1 U-0000D7FF = ed 9f bf = \"\""); assert_valid("2.3.2 U-0000E000 = ee 80 80 = \"\""); assert_valid("2.3.3 U-0000FFFD = ef bf bd = \"�\""); assert_valid("2.3.4 U-0010FFFF = f4 8f bf bf = \"\""); /* This used to be valid in pre-2003 utf-8 */ assert_invalid("2.3.5 U-00110000 = f4 90 80 80 = \"����\""); /* 3 Malformed sequences */ /* 3.1 Unexpected continuation bytes */ assert_invalid("3.1.1 First continuation byte 0x80: \"�\""); assert_invalid("3.1.2 Last continuation byte 0xbf: \"�\""); assert_invalid("3.1.3 2 continuation bytes: \"��\""); assert_invalid("3.1.4 3 continuation bytes: \"���\""); assert_invalid("3.1.5 4 continuation bytes: \"����\""); assert_invalid("3.1.6 5 continuation bytes: \"�����\""); assert_invalid("3.1.7 6 continuation bytes: \"������\""); assert_invalid("3.1.8 7 continuation bytes: \"�������\""); /* 3.1.9 Sequence of all 64 possible continuation bytes (0x80-0xbf): */ assert_invalid("����������������"); assert_invalid("����������������"); assert_invalid("����������������"); assert_invalid("����������������\""); /* 3.2 Lonely start characters */ /* 3.2.1 All 32 first bytes of 2-byte sequences (0xc0-0xdf), each followed by a space character: */ assert_invalid("\"� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � \""); /* 3.2.2 All 16 first bytes of 3-byte sequences (0xe0-0xef), each followed by a space character: */ assert_invalid("\"� � � � � � � � � � � � � � � � \""); /* 3.2.3 All 8 first bytes of 4-byte sequences (0xf0-0xf7), each followed by a space character: */ assert_invalid("\"� � � � � � � � \""); /* 3.2.4 All 4 first bytes of 5-byte sequences (0xf8-0xfb), each followed by a space character: */ assert_invalid("\"� � � � \""); /* 3.2.5 All 2 first bytes of 6-byte sequences (0xfc-0xfd), each followed by a space character: */ assert_invalid("\"� � \""); /* 3.3 Sequences with last continuation byte missing All bytes of an incomplete sequence should be signalled as a single malformed sequence, i.e., you should see only a single replacement character in each of the next 10 tests. (Characters as in section 2) */ assert_invalid("3.3.1 2-byte sequence with last byte missing (U+0000): \"�\""); assert_invalid("3.3.2 3-byte sequence with last byte missing (U+0000): \"��\""); assert_invalid("3.3.3 4-byte sequence with last byte missing (U+0000): \"���\""); assert_invalid("3.3.4 5-byte sequence with last byte missing (U+0000): \"����\""); assert_invalid("3.3.5 6-byte sequence with last byte missing (U+0000): \"�����\""); assert_invalid("3.3.6 2-byte sequence with last byte missing (U-000007FF): \"�\""); assert_invalid("3.3.7 3-byte sequence with last byte missing (U-0000FFFF): \"�\""); assert_invalid("3.3.8 4-byte sequence with last byte missing (U-001FFFFF): \"���\""); assert_invalid("3.3.9 5-byte sequence with last byte missing (U-03FFFFFF): \"����\""); assert_invalid("3.3.10 6-byte sequence with last byte missing (U-7FFFFFFF): \"�����\""); /* 3.4 Concatenation of incomplete sequences All the 10 sequences of 3.3 concatenated, you should see 10 malformed sequences being signalled:*/ assert_invalid("\"�����������������������������\""); /* 3.5 Impossible bytes The following two bytes cannot appear in a correct UTF-8 string */ assert_invalid("3.5.1 fe = \"�\""); assert_invalid("3.5.2 ff = \"�\""); assert_invalid("3.5.3 fe fe ff ff = \"����\""); /* 4 Overlong sequences The following sequences are not malformed according to the letter of the Unicode 2.0 standard. However, they are longer then necessary and a correct UTF-8 encoder is not allowed to produce them. A "safe UTF-8 decoder" should reject them just like malformed sequences for two reasons: (1) It helps to debug applications if overlong sequences are not treated as valid representations of characters, because this helps to spot problems more quickly. (2) Overlong sequences provide alternative representations of characters, that could maliciously be used to bypass filters that check only for ASCII characters. For instance, a 2-byte encoded line feed (LF) would not be caught by a line counter that counts only 0x0a bytes, but it would still be processed as a line feed by an unsafe UTF-8 decoder later in the pipeline. From a security point of view, ASCII compatibility of UTF-8 sequences means also, that ASCII characters are *only* allowed to be represented by ASCII bytes in the range 0x00-0x7f. To ensure this aspect of ASCII compatibility, use only "safe UTF-8 decoders" that reject overlong UTF-8 sequences for which a shorter encoding exists. */ /* 4.1 Examples of an overlong ASCII character With a safe UTF-8 decoder, all of the following five overlong representations of the ASCII character slash ("/") should be rejected like a malformed UTF-8 sequence, for instance by substituting it with a replacement character. If you see a slash below, you do not have a safe UTF-8 decoder! */ assert_invalid("4.1.1 U+002F = c0 af = \"��\""); assert_invalid("4.1.2 U+002F = e0 80 af = \"���\""); assert_invalid("4.1.3 U+002F = f0 80 80 af = \"����\""); assert_invalid("4.1.4 U+002F = f8 80 80 80 af = \"�����\""); assert_invalid("4.1.5 U+002F = fc 80 80 80 80 af = \"������\""); /* 4.2 Maximum overlong sequences Below you see the highest Unicode value that is still resulting in an overlong sequence if represented with the given number of bytes. This is a boundary test for safe UTF-8 decoders. All five characters should be rejected like malformed UTF-8 sequences. */ assert_invalid("4.2.1 U-0000007F = c1 bf = \"��\""); assert_invalid("4.2.2 U-000007FF = e0 9f bf = \"���\""); assert_invalid("4.2.3 U-0000FFFF = f0 8f bf bf = \"����\""); assert_invalid("4.2.4 U-001FFFFF = f8 87 bf bf bf = \"�����\""); assert_invalid("4.2.5 U-03FFFFFF = fc 83 bf bf bf bf = \"������\""); /* 4.3 Overlong representation of the NUL character The following five sequences should also be rejected like malformed UTF-8 sequences and should not be treated like the ASCII NUL character. */ assert_invalid("4.3.1 U+0000 = c0 80 = \"��\""); assert_invalid("4.3.2 U+0000 = e0 80 80 = \"���\""); assert_invalid("4.3.3 U+0000 = f0 80 80 80 = \"����\""); assert_invalid("4.3.4 U+0000 = f8 80 80 80 80 = \"�����\""); assert_invalid("4.3.5 U+0000 = fc 80 80 80 80 80 = \"������\""); /* 5 Illegal code positions The following UTF-8 sequences should be rejected like malformed sequences, because they never represent valid ISO 10646 characters and a UTF-8 decoder that accepts them might introduce security problems comparable to overlong UTF-8 sequences. */ /* 5.1 Single UTF-16 surrogates */ assert_invalid("5.1.1 U+D800 = ed a0 80 = \"�\""); assert_invalid("5.1.2 U+DB7F = ed ad bf = \"�\""); assert_invalid("5.1.3 U+DB80 = ed ae 80 = \"�\""); assert_invalid("5.1.4 U+DBFF = ed af bf = \"�\""); assert_invalid("5.1.5 U+DC00 = ed b0 80 = \"�\""); assert_invalid("5.1.6 U+DF80 = ed be 80 = \"�\""); assert_invalid("5.1.7 U+DFFF = ed bf bf = \"�\""); /* 5.2 Paired UTF-16 surrogates */ assert_invalid("5.2.1 U+D800 U+DC00 = ed a0 80 ed b0 80 = \"��\""); assert_invalid("5.2.2 U+D800 U+DFFF = ed a0 80 ed bf bf = \"��\""); assert_invalid("5.2.3 U+DB7F U+DC00 = ed ad bf ed b0 80 = \"��\""); assert_invalid("5.2.4 U+DB7F U+DFFF = ed ad bf ed bf bf = \"��\""); assert_invalid("5.2.5 U+DB80 U+DC00 = ed ae 80 ed b0 80 = \"��\""); assert_invalid("5.2.6 U+DB80 U+DFFF = ed ae 80 ed bf bf = \"��\""); assert_invalid("5.2.7 U+DBFF U+DC00 = ed af bf ed b0 80 = \"��\""); assert_invalid("5.2.8 U+DBFF U+DFFF = ed af bf ed bf bf = \"��\""); /* 5.3 Noncharacter code positions The following "noncharacters" are "reserved for internal use" by applications, and according to older versions of the Unicode Standard "should never be interchanged". Unicode Corrigendum #9 dropped the latter restriction. Nevertheless, their presence in incoming UTF-8 data can remain a potential security risk, depending on what use is made of these codes subsequently. Examples of such internal use: - Some file APIs with 16-bit characters may use the integer value -1 = U+FFFF to signal an end-of-file (EOF) or error condition. - In some UTF-16 receivers, code point U+FFFE might trigger a byte-swap operation (to convert between UTF-16LE and UTF-16BE). With such internal use of noncharacters, it may be desirable and safer to block those code points in UTF-8 decoders, as they should never occur legitimately in incoming UTF-8 data, and could trigger unsafe behaviour in subsequent processing. Particularly problematic noncharacters in 16-bit applications: */ assert_valid("5.3.1 U+FFFE = ef bf be = \"\""); assert_valid("5.3.2 U+FFFF = ef bf bf = \"\""); /* Other noncharacters: */ assert_valid("5.3.3 U+FDD0 .. U+FDEF = \"\""); /* 5.3.4 U+nFFFE U+nFFFF (for n = 1..10) */ assert_valid("\"\""); return 0; }
PB_DS_CLASS_C_DEC:: rc() : m_over_top(0) { _GLIBCXX_DEBUG_ONLY(assert_valid();) }
void add_callback(F&& f) { assert_valid(); mImpl->mCallbacks.push_back(std::forward<F>(f)); }
PB_DS_CLASS_T_DEC PB_DS_CLASS_C_DEC:: rc(const PB_DS_CLASS_C_DEC& other) : m_over_top(0) { _GLIBCXX_DEBUG_ONLY(assert_valid();) }
std::shared_future<T> get_future() { assert_valid(); return mImpl->mSharedFuture; }
Structure::~Structure() { if (POMAGMA_DEBUG_LEVEL) { assert_valid(); } }