Beispiel #1
0
void
runtime_entersyscall(void)
{
    uint32 v;

    if(m->profilehz > 0)
        runtime_setprof(false);

    // Leave SP around for gc and traceback.
#ifdef USING_SPLIT_STACK
    g->gcstack = __splitstack_find(nil, nil, &g->gcstack_size,
                                   &g->gcnext_segment, &g->gcnext_sp,
                                   &g->gcinitial_sp);
#else
    g->gcnext_sp = (byte *) &v;
#endif

    // Save the registers in the g structure so that any pointers
    // held in registers will be seen by the garbage collector.
    // We could use getcontext here, but setjmp is more efficient
    // because it doesn't need to save the signal mask.
    setjmp(g->gcregs);

    g->status = Gsyscall;

    // Fast path.
    // The slow path inside the schedlock/schedunlock will get
    // through without stopping if it does:
    //	mcpu--
    //	gwait not true
    //	waitstop && mcpu <= mcpumax not true
    // If we can do the same with a single atomic add,
    // then we can skip the locks.
    v = runtime_xadd(&runtime_sched.atomic, -1<<mcpuShift);
    if(!atomic_gwaiting(v) && (!atomic_waitstop(v) || atomic_mcpu(v) > atomic_mcpumax(v)))
        return;

    schedlock();
    v = runtime_atomicload(&runtime_sched.atomic);
    if(atomic_gwaiting(v)) {
        matchmg();
        v = runtime_atomicload(&runtime_sched.atomic);
    }
    if(atomic_waitstop(v) && atomic_mcpu(v) <= atomic_mcpumax(v)) {
        runtime_xadd(&runtime_sched.atomic, -1<<waitstopShift);
        runtime_notewakeup(&runtime_sched.stopped);
    }

    schedunlock();
}
Beispiel #2
0
void
runtime·entersyscall(void)
{
	uint32 v;

	if(m->profilehz > 0)
		runtime·setprof(false);

	// Leave SP around for gc and traceback.
	runtime·gosave(&g->sched);
	g->gcsp = g->sched.sp;
	g->gcstack = g->stackbase;
	g->gcguard = g->stackguard;
	g->status = Gsyscall;
	if(g->gcsp < g->gcguard-StackGuard || g->gcstack < g->gcsp) {
		// runtime·printf("entersyscall inconsistent %p [%p,%p]\n",
		//	g->gcsp, g->gcguard-StackGuard, g->gcstack);
		runtime·throw("entersyscall");
	}

	// Fast path.
	// The slow path inside the schedlock/schedunlock will get
	// through without stopping if it does:
	//	mcpu--
	//	gwait not true
	//	waitstop && mcpu <= mcpumax not true
	// If we can do the same with a single atomic add,
	// then we can skip the locks.
	v = runtime·xadd(&runtime·sched.atomic, -1<<mcpuShift);
	if(!atomic_gwaiting(v) && (!atomic_waitstop(v) || atomic_mcpu(v) > atomic_mcpumax(v)))
		return;

	schedlock();
	v = runtime·atomicload(&runtime·sched.atomic);
	if(atomic_gwaiting(v)) {
		matchmg();
		v = runtime·atomicload(&runtime·sched.atomic);
	}
	if(atomic_waitstop(v) && atomic_mcpu(v) <= atomic_mcpumax(v)) {
		runtime·xadd(&runtime·sched.atomic, -1<<waitstopShift);
		runtime·notewakeup(&runtime·sched.stopped);
	}

	// Re-save sched in case one of the calls
	// (notewakeup, matchmg) triggered something using it.
	runtime·gosave(&g->sched);

	schedunlock();
}