void NodeList::append(Node* val){

  Elem* bef(0);
  Elem* af( d_first );
  while( af ){
    bef = af;
    af = af->d_next;
  }
  if( bef ){
    bef->d_next = new NodeList::Elem( val );
  }
  else {
    d_first = new Elem( val );
    d_current = d_first;
  }
  d_size++;
}
Node* NodeList::remove(){
  Node* val = d_current->d_val;
  
  d_size--;

  Elem* bef(0);
  Elem* af( d_first );
  while( af != d_current){  
    bef = af;
    af = af->d_next;
  }
  if( !bef ){
    d_first = d_current->d_next;
  }
  else {
    bef->d_next = d_current->d_next;
  }
  d_current = d_current->d_next;
  af->d_next = 0;
  delete af;// the old current - remove only it
  if( !d_current ) d_current = d_first;
  return val;
}
Beispiel #3
0
void gx3_packet_read_message(void) {
  ahrs_impl.gx3_accel.x     = bef(&ahrs_impl.gx3_packet.msg_buf[1]);
  ahrs_impl.gx3_accel.y     = bef(&ahrs_impl.gx3_packet.msg_buf[5]);
  ahrs_impl.gx3_accel.z     = bef(&ahrs_impl.gx3_packet.msg_buf[9]);
  ahrs_impl.gx3_rate.p      = bef(&ahrs_impl.gx3_packet.msg_buf[13]);
  ahrs_impl.gx3_rate.q      = bef(&ahrs_impl.gx3_packet.msg_buf[17]);
  ahrs_impl.gx3_rate.r      = bef(&ahrs_impl.gx3_packet.msg_buf[21]);
  ahrs_impl.gx3_rmat.m[0]   = bef(&ahrs_impl.gx3_packet.msg_buf[25]);
  ahrs_impl.gx3_rmat.m[1]   = bef(&ahrs_impl.gx3_packet.msg_buf[29]);
  ahrs_impl.gx3_rmat.m[2]   = bef(&ahrs_impl.gx3_packet.msg_buf[33]);
  ahrs_impl.gx3_rmat.m[3]   = bef(&ahrs_impl.gx3_packet.msg_buf[37]);
  ahrs_impl.gx3_rmat.m[4]   = bef(&ahrs_impl.gx3_packet.msg_buf[41]);
  ahrs_impl.gx3_rmat.m[5]   = bef(&ahrs_impl.gx3_packet.msg_buf[45]);
  ahrs_impl.gx3_rmat.m[6]   = bef(&ahrs_impl.gx3_packet.msg_buf[49]);
  ahrs_impl.gx3_rmat.m[7]   = bef(&ahrs_impl.gx3_packet.msg_buf[53]);
  ahrs_impl.gx3_rmat.m[8]   = bef(&ahrs_impl.gx3_packet.msg_buf[57]);
  ahrs_impl.gx3_time    = (uint32_t)(ahrs_impl.gx3_packet.msg_buf[61] << 24 |
                                     ahrs_impl.gx3_packet.msg_buf[62] << 16 | ahrs_impl.gx3_packet.msg_buf[63] << 8 | ahrs_impl.gx3_packet.msg_buf[64]);
  ahrs_impl.gx3_chksm   = GX3_CHKSM(ahrs_impl.gx3_packet.msg_buf);

  ahrs_impl.gx3_freq = 62500.0 / (float)(ahrs_impl.gx3_time - ahrs_impl.gx3_ltime);
  ahrs_impl.gx3_ltime = ahrs_impl.gx3_time;

  // Acceleration
  VECT3_SMUL(ahrs_impl.gx3_accel, ahrs_impl.gx3_accel, 9.80665); // Convert g into m/s2
  ACCELS_BFP_OF_REAL(imu.accel, ahrs_impl.gx3_accel); // for backwards compatibility with fixed point interface
  imuf.accel = ahrs_impl.gx3_accel;

  // Rates
  struct FloatRates body_rate;
  imuf.gyro = ahrs_impl.gx3_rate;
  /* compute body rates */
  struct FloatRMat *body_to_imu_rmat = orientationGetRMat_f(&imuf.body_to_imu);
  FLOAT_RMAT_TRANSP_RATEMULT(body_rate, *body_to_imu_rmat, imuf.gyro);
  /* Set state */
  stateSetBodyRates_f(&body_rate);

  // Attitude
  struct FloatRMat ltp_to_body_rmat;
  FLOAT_RMAT_COMP(ltp_to_body_rmat, ahrs_impl.gx3_rmat, *body_to_imu_rmat);

#if AHRS_USE_GPS_HEADING && USE_GPS
  struct FloatEulers ltp_to_body_eulers;
  float_eulers_of_rmat(&ltp_to_body_eulers, &ltp_to_body_rmat);
  float course_f = (float)DegOfRad(gps.course / 1e7);
  if (course_f > 180.0) {
    course_f -= 360.0;
  }
  ltp_to_body_eulers.psi = (float)RadOfDeg(course_f);
  stateSetNedToBodyEulers_f(&ltp_to_body_eulers);
#else // !AHRS_USE_GPS_HEADING
#ifdef IMU_MAG_OFFSET
  struct FloatEulers ltp_to_body_eulers;
  float_eulers_of_rmat(&ltp_to_body_eulers, &ltp_to_body_rmat);
  ltp_to_body_eulers.psi -= ahrs_impl.mag_offset;
  stateSetNedToBodyEulers_f(&ltp_to_body_eulers);
#else
  stateSetNedToBodyRMat_f(&ltp_to_body_rmat);
#endif // IMU_MAG_OFFSET
#endif // !AHRS_USE_GPS_HEADING
}