///
 /// バインドされているバッファをリセット
 static void resetBufferBind() {
     bindBuffer(BufferType::TYPE_VERTEX, 0);
     bindBuffer(BufferType::TYPE_INDEX, 0);
     bindVertexArrayObject(0);
 }
void SparseShaderIntrinsicsInstanceSampledBase::recordCommands (const VkCommandBuffer		commandBuffer,
																const VkImageCreateInfo&	imageSparseInfo,
																const VkImage				imageSparse,
																const VkImage				imageTexels,
																const VkImage				imageResidency)
{
	const InstanceInterface&		 instance			= m_context.getInstanceInterface();
	const DeviceInterface&			 deviceInterface	= getDeviceInterface();
	const VkPhysicalDevice			 physicalDevice		= m_context.getPhysicalDevice();
	const VkPhysicalDeviceProperties deviceProperties	= getPhysicalDeviceProperties(instance, physicalDevice);

	if (imageSparseInfo.extent.width  > deviceProperties.limits.maxFramebufferWidth  ||
		imageSparseInfo.extent.height > deviceProperties.limits.maxFramebufferHeight ||
		imageSparseInfo.arrayLayers   > deviceProperties.limits.maxFramebufferLayers)
	{
		TCU_THROW(NotSupportedError, "Image size exceeds allowed framebuffer dimensions");
	}

	// Check if device supports image format for sampled images
	if (!checkImageFormatFeatureSupport(instance, physicalDevice, imageSparseInfo.format, VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT))
		TCU_THROW(NotSupportedError, "Device does not support image format for sampled images");

	// Check if device supports image format for color attachment
	if (!checkImageFormatFeatureSupport(instance, physicalDevice, imageSparseInfo.format, VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BIT))
		TCU_THROW(NotSupportedError, "Device does not support image format for color attachment");

	// Make sure device supports VK_FORMAT_R32_UINT format for color attachment
	if (!checkImageFormatFeatureSupport(instance, physicalDevice, mapTextureFormat(m_residencyFormat), VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BIT))
		TCU_THROW(TestError, "Device does not support VK_FORMAT_R32_UINT format for color attachment");

	// Create buffer storing vertex data
	std::vector<tcu::Vec2> vertexData;

	vertexData.push_back(tcu::Vec2(-1.0f,-1.0f));
	vertexData.push_back(tcu::Vec2( 0.0f, 0.0f));

	vertexData.push_back(tcu::Vec2(-1.0f, 1.0f));
	vertexData.push_back(tcu::Vec2( 0.0f, 1.0f));

	vertexData.push_back(tcu::Vec2( 1.0f,-1.0f));
	vertexData.push_back(tcu::Vec2( 1.0f, 0.0f));

	vertexData.push_back(tcu::Vec2( 1.0f, 1.0f));
	vertexData.push_back(tcu::Vec2( 1.0f, 1.0f));

	const VkDeviceSize			vertexDataSizeInBytes	= sizeInBytes(vertexData);
	const VkBufferCreateInfo	vertexBufferCreateInfo	= makeBufferCreateInfo(vertexDataSizeInBytes, VK_BUFFER_USAGE_VERTEX_BUFFER_BIT);

	m_vertexBuffer		= createBuffer(deviceInterface, getDevice(), &vertexBufferCreateInfo);
	m_vertexBufferAlloc	= bindBuffer(deviceInterface, getDevice(), getAllocator(), *m_vertexBuffer, MemoryRequirement::HostVisible);

	deMemcpy(m_vertexBufferAlloc->getHostPtr(), &vertexData[0], static_cast<std::size_t>(vertexDataSizeInBytes));
	flushMappedMemoryRange(deviceInterface, getDevice(), m_vertexBufferAlloc->getMemory(), m_vertexBufferAlloc->getOffset(), vertexDataSizeInBytes);

	// Create render pass
	const VkAttachmentDescription texelsAttachmentDescription =
	{
		(VkAttachmentDescriptionFlags)0,					// VkAttachmentDescriptionFlags		flags;
		imageSparseInfo.format,								// VkFormat							format;
		VK_SAMPLE_COUNT_1_BIT,								// VkSampleCountFlagBits			samples;
		VK_ATTACHMENT_LOAD_OP_CLEAR,						// VkAttachmentLoadOp				loadOp;
		VK_ATTACHMENT_STORE_OP_STORE,						// VkAttachmentStoreOp				storeOp;
		VK_ATTACHMENT_LOAD_OP_DONT_CARE,					// VkAttachmentLoadOp				stencilLoadOp;
		VK_ATTACHMENT_STORE_OP_DONT_CARE,					// VkAttachmentStoreOp				stencilStoreOp;
		VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL,			// VkImageLayout					initialLayout;
		VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL			// VkImageLayout					finalLayout;
	};

	const VkAttachmentDescription residencyAttachmentDescription =
	{
		(VkAttachmentDescriptionFlags)0,					// VkAttachmentDescriptionFlags		flags;
		mapTextureFormat(m_residencyFormat),				// VkFormat							format;
		VK_SAMPLE_COUNT_1_BIT,								// VkSampleCountFlagBits			samples;
		VK_ATTACHMENT_LOAD_OP_CLEAR,						// VkAttachmentLoadOp				loadOp;
		VK_ATTACHMENT_STORE_OP_STORE,						// VkAttachmentStoreOp				storeOp;
		VK_ATTACHMENT_LOAD_OP_DONT_CARE,					// VkAttachmentLoadOp				stencilLoadOp;
		VK_ATTACHMENT_STORE_OP_DONT_CARE,					// VkAttachmentStoreOp				stencilStoreOp;
		VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL,			// VkImageLayout					initialLayout;
		VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL			// VkImageLayout					finalLayout;
	};

	const VkAttachmentDescription colorAttachmentsDescription[] = { texelsAttachmentDescription, residencyAttachmentDescription };

	const VkAttachmentReference texelsAttachmentReference =
	{
		0u,													// deUint32			attachment;
		VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL			// VkImageLayout	layout;
	};

	const VkAttachmentReference residencyAttachmentReference =
	{
		1u,													// deUint32			attachment;
		VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL			// VkImageLayout	layout;
	};

	const VkAttachmentReference colorAttachmentsReference[] = { texelsAttachmentReference, residencyAttachmentReference };

	const VkAttachmentReference depthAttachmentReference =
	{
		VK_ATTACHMENT_UNUSED,								// deUint32			attachment;
		VK_IMAGE_LAYOUT_UNDEFINED							// VkImageLayout	layout;
	};

	const VkSubpassDescription subpassDescription =
	{
		(VkSubpassDescriptionFlags)0,						// VkSubpassDescriptionFlags		flags;
		VK_PIPELINE_BIND_POINT_GRAPHICS,					// VkPipelineBindPoint				pipelineBindPoint;
		0u,													// deUint32							inputAttachmentCount;
		DE_NULL,											// const VkAttachmentReference*		pInputAttachments;
		2u,													// deUint32							colorAttachmentCount;
		colorAttachmentsReference,							// const VkAttachmentReference*		pColorAttachments;
		DE_NULL,											// const VkAttachmentReference*		pResolveAttachments;
		&depthAttachmentReference,							// const VkAttachmentReference*		pDepthStencilAttachment;
		0u,													// deUint32							preserveAttachmentCount;
		DE_NULL												// const deUint32*					pPreserveAttachments;
	};

	const VkRenderPassCreateInfo renderPassInfo =
	{
		VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO,			// VkStructureType					sType;
		DE_NULL,											// const void*						pNext;
		(VkRenderPassCreateFlags)0,							// VkRenderPassCreateFlags			flags;
		2u,													// deUint32							attachmentCount;
		colorAttachmentsDescription,						// const VkAttachmentDescription*	pAttachments;
		1u,													// deUint32							subpassCount;
		&subpassDescription,								// const VkSubpassDescription*		pSubpasses;
		0u,													// deUint32							dependencyCount;
		DE_NULL												// const VkSubpassDependency*		pDependencies;
	};

	m_renderPass = createRenderPass(deviceInterface, getDevice(), &renderPassInfo);

	// Create descriptor set layout
	DescriptorSetLayoutBuilder descriptorLayerBuilder;

	descriptorLayerBuilder.addSingleBinding(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_SHADER_STAGE_FRAGMENT_BIT);

	const Unique<VkDescriptorSetLayout> descriptorSetLayout(descriptorLayerBuilder.build(deviceInterface, getDevice()));

	// Create descriptor pool
	DescriptorPoolBuilder descriptorPoolBuilder;

	descriptorPoolBuilder.addType(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, imageSparseInfo.mipLevels);

	descriptorPool = descriptorPoolBuilder.build(deviceInterface, getDevice(), VK_DESCRIPTOR_POOL_CREATE_FREE_DESCRIPTOR_SET_BIT, imageSparseInfo.mipLevels);

	// Create sampler object
	const tcu::Sampler			samplerObject(tcu::Sampler::REPEAT_GL, tcu::Sampler::REPEAT_GL, tcu::Sampler::REPEAT_GL, tcu::Sampler::NEAREST_MIPMAP_NEAREST, tcu::Sampler::NEAREST);
	const VkSamplerCreateInfo	samplerCreateInfo = mapSampler(samplerObject, m_format);
	m_sampler = createSampler(deviceInterface, getDevice(), &samplerCreateInfo);

	struct PushConstants
	{
		deUint32	lod;
		deUint32	padding;			// padding needed to satisfy std430 rules
		float		lodWidth;
		float		lodHeight;
	};

	// Create pipeline layout
	const VkPushConstantRange lodConstantRange =
	{
		VK_SHADER_STAGE_FRAGMENT_BIT,	// VkShaderStageFlags	stageFlags;
		0u,								// deUint32			offset;
		sizeof(PushConstants),			// deUint32			size;
	};

	const VkPipelineLayoutCreateInfo pipelineLayoutParams =
	{
		VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO,		// VkStructureType					sType;
		DE_NULL,											// const void*						pNext;
		0u,													// VkPipelineLayoutCreateFlags		flags;
		1u,													// deUint32							setLayoutCount;
		&descriptorSetLayout.get(),							// const VkDescriptorSetLayout*		pSetLayouts;
		1u,													// deUint32							pushConstantRangeCount;
		&lodConstantRange,									// const VkPushConstantRange*		pPushConstantRanges;
	};

	const Unique<VkPipelineLayout> pipelineLayout(createPipelineLayout(deviceInterface, getDevice(), &pipelineLayoutParams));

	// Create graphics pipeline
	{
		Move<VkShaderModule> vertexModule	= createShaderModule(deviceInterface, getDevice(), m_context.getBinaryCollection().get("vertex_shader"), (VkShaderModuleCreateFlags)0);
		Move<VkShaderModule> fragmentModule	= createShaderModule(deviceInterface, getDevice(), m_context.getBinaryCollection().get("fragment_shader"), (VkShaderModuleCreateFlags)0);
		Move<VkShaderModule> geometryModule;

		if (imageSparseInfo.arrayLayers > 1u)
		{
			requireFeatures(instance, physicalDevice, FEATURE_GEOMETRY_SHADER);
			geometryModule = createShaderModule(deviceInterface, getDevice(), m_context.getBinaryCollection().get("geometry_shader"), (VkShaderModuleCreateFlags)0);
		}

		pipelines.push_back(makeVkSharedPtr(makeGraphicsPipeline(
			deviceInterface, getDevice(), *pipelineLayout, *m_renderPass, *vertexModule, *fragmentModule, *geometryModule)));
	}

	const VkPipeline graphicsPipeline = **pipelines[0];

	{
		const VkImageSubresourceRange fullImageSubresourceRange = makeImageSubresourceRange(VK_IMAGE_ASPECT_COLOR_BIT, 0u, imageSparseInfo.mipLevels, 0u, imageSparseInfo.arrayLayers);

		VkImageMemoryBarrier imageShaderAccessBarriers[3];

		imageShaderAccessBarriers[0] = makeImageMemoryBarrier
		(
			VK_ACCESS_TRANSFER_WRITE_BIT,
			VK_ACCESS_SHADER_READ_BIT,
			VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
			VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL,
			imageSparse,
			fullImageSubresourceRange
		);

		imageShaderAccessBarriers[1] = makeImageMemoryBarrier
		(
			0u,
			VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT,
			VK_IMAGE_LAYOUT_UNDEFINED,
			VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL,
			imageTexels,
			fullImageSubresourceRange
		);

		imageShaderAccessBarriers[2] = makeImageMemoryBarrier
		(
			0u,
			VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT,
			VK_IMAGE_LAYOUT_UNDEFINED,
			VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL,
			imageResidency,
			fullImageSubresourceRange
		);

		deviceInterface.cmdPipelineBarrier(commandBuffer, VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT, 0u, 0u, DE_NULL, 0u, DE_NULL, 3u, imageShaderAccessBarriers);
	}

	imageSparseViews.resize(imageSparseInfo.mipLevels);
	imageTexelsViews.resize(imageSparseInfo.mipLevels);
	imageResidencyViews.resize(imageSparseInfo.mipLevels);
	m_framebuffers.resize(imageSparseInfo.mipLevels);
	descriptorSets.resize(imageSparseInfo.mipLevels);

	std::vector<VkClearValue> clearValues;
	clearValues.push_back(makeClearValueColor(tcu::Vec4(0.0f, 0.0f, 0.0f, 1.0f)));
	clearValues.push_back(makeClearValueColor(tcu::Vec4(0.0f, 0.0f, 0.0f, 1.0f)));

	for (deUint32 mipLevelNdx = 0u; mipLevelNdx < imageSparseInfo.mipLevels; ++mipLevelNdx)
	{
		const vk::VkExtent3D			mipLevelSize	= mipLevelExtents(imageSparseInfo.extent, mipLevelNdx);
		const vk::VkRect2D				renderArea		= makeRect2D(mipLevelSize);
		const VkViewport				viewport		= makeViewport(mipLevelSize);
		const VkImageSubresourceRange	mipLevelRange	= makeImageSubresourceRange(VK_IMAGE_ASPECT_COLOR_BIT, mipLevelNdx, 1u, 0u, imageSparseInfo.arrayLayers);

		// Create color attachments image views
		imageTexelsViews[mipLevelNdx] = makeVkSharedPtr(makeImageView(deviceInterface, getDevice(), imageTexels, mapImageViewType(m_imageType), imageSparseInfo.format, mipLevelRange));
		imageResidencyViews[mipLevelNdx] = makeVkSharedPtr(makeImageView(deviceInterface, getDevice(), imageResidency, mapImageViewType(m_imageType), mapTextureFormat(m_residencyFormat), mipLevelRange));

		const VkImageView attachmentsViews[] = { **imageTexelsViews[mipLevelNdx], **imageResidencyViews[mipLevelNdx] };

		// Create framebuffer
		const VkFramebufferCreateInfo framebufferInfo =
		{
			VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO,	// VkStructureType                             sType;
			DE_NULL,									// const void*                                 pNext;
			(VkFramebufferCreateFlags)0,				// VkFramebufferCreateFlags                    flags;
			*m_renderPass,								// VkRenderPass                                renderPass;
			2u,											// uint32_t                                    attachmentCount;
			attachmentsViews,							// const VkImageView*                          pAttachments;
			mipLevelSize.width,							// uint32_t                                    width;
			mipLevelSize.height,						// uint32_t                                    height;
			imageSparseInfo.arrayLayers,				// uint32_t                                    layers;
		};

		m_framebuffers[mipLevelNdx] = makeVkSharedPtr(createFramebuffer(deviceInterface, getDevice(), &framebufferInfo));

		// Create descriptor set
		descriptorSets[mipLevelNdx] = makeVkSharedPtr(makeDescriptorSet(deviceInterface, getDevice(), *descriptorPool, *descriptorSetLayout));
		const VkDescriptorSet descriptorSet = **descriptorSets[mipLevelNdx];

		// Update descriptor set
		const VkImageSubresourceRange sparseImageSubresourceRange = sampledImageRangeToBind(imageSparseInfo, mipLevelNdx);

		imageSparseViews[mipLevelNdx] = makeVkSharedPtr(makeImageView(deviceInterface, getDevice(), imageSparse, mapImageViewType(m_imageType), imageSparseInfo.format, sparseImageSubresourceRange));

		const VkDescriptorImageInfo imageSparseDescInfo = makeDescriptorImageInfo(*m_sampler, **imageSparseViews[mipLevelNdx], VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL);

		DescriptorSetUpdateBuilder descriptorUpdateBuilder;

		descriptorUpdateBuilder.writeSingle(descriptorSet, DescriptorSetUpdateBuilder::Location::binding(BINDING_IMAGE_SPARSE), VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, &imageSparseDescInfo);
		descriptorUpdateBuilder.update(deviceInterface, getDevice());

		// Begin render pass
		beginRenderPass(deviceInterface, commandBuffer, *m_renderPass, **m_framebuffers[mipLevelNdx], renderArea, (deUint32)clearValues.size(), &clearValues[0]);

		// Bind graphics pipeline
		deviceInterface.cmdBindPipeline(commandBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, graphicsPipeline);

		// Bind descriptor set
		deviceInterface.cmdBindDescriptorSets(commandBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, *pipelineLayout, 0u, 1u, &descriptorSet, 0u, DE_NULL);

		// Bind vertex buffer
		{
			const VkDeviceSize offset = 0ull;
			deviceInterface.cmdBindVertexBuffers(commandBuffer, 0u, 1u, &m_vertexBuffer.get(), &offset);
		}

		// Bind Viewport
		deviceInterface.cmdSetViewport(commandBuffer, 0u, 1u, &viewport);

		// Bind Scissor Rectangle
		deviceInterface.cmdSetScissor(commandBuffer, 0u, 1u, &renderArea);

		const PushConstants pushConstants =
		{
			mipLevelNdx,
			0u,											// padding
			static_cast<float>(mipLevelSize.width),
			static_cast<float>(mipLevelSize.height)
		};

		// Update push constants
		deviceInterface.cmdPushConstants(commandBuffer, *pipelineLayout, VK_SHADER_STAGE_FRAGMENT_BIT, 0u, sizeof(PushConstants), &pushConstants);

		// Draw full screen quad
		deviceInterface.cmdDraw(commandBuffer, 4u, 1u, 0u, 0u);

		// End render pass
		endRenderPass(deviceInterface, commandBuffer);
	}

	{
		const VkImageSubresourceRange fullImageSubresourceRange = makeImageSubresourceRange(VK_IMAGE_ASPECT_COLOR_BIT, 0u, imageSparseInfo.mipLevels, 0u, imageSparseInfo.arrayLayers);

		VkImageMemoryBarrier imageOutputTransferSrcBarriers[2];

		imageOutputTransferSrcBarriers[0] = makeImageMemoryBarrier
		(
			VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT,
			VK_ACCESS_TRANSFER_READ_BIT,
			VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL,
			VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,
			imageTexels,
			fullImageSubresourceRange
		);

		imageOutputTransferSrcBarriers[1] = makeImageMemoryBarrier
		(
			VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT,
			VK_ACCESS_TRANSFER_READ_BIT,
			VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL,
			VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,
			imageResidency,
			fullImageSubresourceRange
		);

		deviceInterface.cmdPipelineBarrier(commandBuffer, VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, 0u, 0u, DE_NULL, 0u, DE_NULL, 2u, imageOutputTransferSrcBarriers);
	}
}
 //-----------------------------------------------------------------------------------
 void GL3PlusTexBufferEmulatedPacked::bindBufferCS( uint16 slot, size_t offset, size_t sizeBytes )
 {
     bindBuffer( slot, offset, sizeBytes );
 }
Beispiel #4
0
FrameBuffer::FrameBuffer(GLenum type, int w, int h, int d, 
						 GLuint colorBufType, int numColorBufs, int hasZbuf, 
						 bool enableAutomaticMipmaps, const char *name) :
	m_width(w), m_height(h), m_depth(d), 
	m_automaticMipmapsEnabled(enableAutomaticMipmaps?1:0)
{
	if (type == GL_TEXTURE_1D || type == GL_TEXTURE_3D)
		printf("Warning!  FrameBuffer constructor called with untested texture type!\n");
	
	glGetIntegerv(GL_MAX_COLOR_ATTACHMENTS_EXT, &m_maxColorBuffers);
	m_colorIDs = new GLuint[m_maxColorBuffers];
	m_colorType = new GLenum[m_maxColorBuffers];
	m_depthID = m_stencilID = m_prevFrameBuf = m_includedBuffers = 0;
	for (int i=0; i<m_maxColorBuffers; i++)
	{
		m_colorIDs[i] = 0;
		m_colorType[i] = type;
	}
	m_depthType = m_stencilType = type;
	
	if (!name) sprintf(m_FBOName, "Framebuffer %d", m_ID);
	else strncpy(m_FBOName, name, 79);
	
	glGenFramebuffersEXT(1, &m_ID);
	

	m_numColorAttachments = numColorBufs;
	if (numColorBufs > 0)
	{
		m_includedBuffers |= GL_COLOR_BUFFER_BIT;
		glGenTextures(numColorBufs, m_colorIDs);
		
		for (int i=0; i<numColorBufs; i++)
		{
			glBindTexture(type, m_colorIDs[i]);
			glTexParameteri(type, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
			glTexParameteri(type, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
			glTexParameteri(type, GL_GENERATE_MIPMAP, m_automaticMipmapsEnabled > 0 ? GL_TRUE : GL_FALSE);
			if (type == GL_TEXTURE_CUBE_MAP)
			{
				glTexImage2D(GL_TEXTURE_CUBE_MAP_POSITIVE_X, 0, colorBufType, m_width, m_height, 0, GL_RGBA, GL_FLOAT, NULL);
				glTexImage2D(GL_TEXTURE_CUBE_MAP_POSITIVE_Y, 0, colorBufType, m_width, m_height, 0, GL_RGBA, GL_FLOAT, NULL);
				glTexImage2D(GL_TEXTURE_CUBE_MAP_POSITIVE_Z, 0, colorBufType, m_width, m_height, 0, GL_RGBA, GL_FLOAT, NULL);
				glTexImage2D(GL_TEXTURE_CUBE_MAP_NEGATIVE_X, 0, colorBufType, m_width, m_height, 0, GL_RGBA, GL_FLOAT, NULL);
				glTexImage2D(GL_TEXTURE_CUBE_MAP_NEGATIVE_Y, 0, colorBufType, m_width, m_height, 0, GL_RGBA, GL_FLOAT, NULL);
				glTexImage2D(GL_TEXTURE_CUBE_MAP_NEGATIVE_Z, 0, colorBufType, m_width, m_height, 0, GL_RGBA, GL_FLOAT, NULL);
			}
			else if (type == GL_TEXTURE_2D_ARRAY_EXT || type == GL_TEXTURE_3D)
				glTexImage3D(type, 0, colorBufType, m_width, m_height, m_depth, 0, GL_RGBA, GL_FLOAT, NULL);
			else if (type == GL_TEXTURE_2D || type == GL_TEXTURE_1D_ARRAY_EXT)
				glTexImage2D(type, 0, colorBufType, m_width, m_height, 0, GL_RGBA, GL_FLOAT, NULL);
			else if (type == GL_TEXTURE_1D)
				glTexImage1D(type, 0, colorBufType, m_width, 0, GL_RGBA, GL_FLOAT, NULL);
			if (enableAutomaticMipmaps) glGenerateMipmapEXT(type);
			bindBuffer();
			
			glFramebufferTextureEXT(GL_FRAMEBUFFER_EXT, GL_COLOR_ATTACHMENT0_EXT+i, m_colorIDs[i], 0);
			unbindBuffer();
		}
	}
	if (hasZbuf > 0)
	{
		m_includedBuffers |= GL_DEPTH_BUFFER_BIT;
		glGenTextures(1, &m_depthID);
		
		glBindTexture(type, m_depthID);
		glTexParameteri(type, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
		glTexParameteri(type, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
		glTexParameteri(type, GL_DEPTH_TEXTURE_MODE, GL_LUMINANCE);
		if (type == GL_TEXTURE_CUBE_MAP)
		{
			glTexImage2D(GL_TEXTURE_CUBE_MAP_POSITIVE_X, 0, GL_DEPTH_COMPONENT, m_width, m_height, 0, GL_DEPTH_COMPONENT, GL_FLOAT, NULL);
			glTexImage2D(GL_TEXTURE_CUBE_MAP_POSITIVE_Y, 0, GL_DEPTH_COMPONENT, m_width, m_height, 0, GL_DEPTH_COMPONENT, GL_FLOAT, NULL);
			glTexImage2D(GL_TEXTURE_CUBE_MAP_POSITIVE_Z, 0, GL_DEPTH_COMPONENT, m_width, m_height, 0, GL_DEPTH_COMPONENT, GL_FLOAT, NULL);
			glTexImage2D(GL_TEXTURE_CUBE_MAP_NEGATIVE_X, 0, GL_DEPTH_COMPONENT, m_width, m_height, 0, GL_DEPTH_COMPONENT, GL_FLOAT, NULL);
			glTexImage2D(GL_TEXTURE_CUBE_MAP_NEGATIVE_Y, 0, GL_DEPTH_COMPONENT, m_width, m_height, 0, GL_DEPTH_COMPONENT, GL_FLOAT, NULL);
			glTexImage2D(GL_TEXTURE_CUBE_MAP_NEGATIVE_Z, 0, GL_DEPTH_COMPONENT, m_width, m_height, 0, GL_DEPTH_COMPONENT, GL_FLOAT, NULL);
		}
		else if (type == GL_TEXTURE_2D_ARRAY_EXT || type == GL_TEXTURE_3D)
			glTexImage3D(type, 0, GL_DEPTH_COMPONENT, m_width, m_height, m_depth, 0, GL_DEPTH_COMPONENT, GL_FLOAT, NULL);
		else if (type == GL_TEXTURE_2D || type == GL_TEXTURE_1D_ARRAY_EXT)
			glTexImage2D(type, 0, GL_DEPTH_COMPONENT, m_width, m_height, 0, GL_DEPTH_COMPONENT, GL_FLOAT, NULL);
		else if (type == GL_TEXTURE_1D)
			glTexImage1D(type, 0, GL_DEPTH_COMPONENT, m_width, 0, GL_DEPTH_COMPONENT, GL_FLOAT, NULL);
		bindBuffer();
		glFramebufferTexture2DEXT(GL_FRAMEBUFFER_EXT, GL_DEPTH_ATTACHMENT_EXT, GL_TEXTURE_2D, m_depthID, 0);
		unbindBuffer();
	}
	
	glBindTexture(type, 0);
}
	void TextureBuffer::sendBuffer()
	{
		SCOPE_profile_cpu_function("TextureBuffer");
		bindBuffer();
		glBufferSubData(GL_TEXTURE_BUFFER, 0, _offset * _size, _buffer);
	}