Beispiel #1
0
/**
    Purpose
    -------
    DGETF2_NOPIV computes an LU factorization of a general m-by-n
    matrix A without pivoting.

    The factorization has the form
       A = L * U
    where L is lower triangular with unit diagonal elements (lower
    trapezoidal if m > n), and U is upper triangular (upper
    trapezoidal if m < n).

    This is the right-looking Level 2 BLAS version of the algorithm.
    
    This is a CPU-only (not accelerated) version.

    Arguments
    ---------
    @param[in]
    m       INTEGER
            The number of rows of the matrix A.  M >= 0.

    @param[in]
    n       INTEGER
            The number of columns of the matrix A.  N >= 0.

    @param[in,out]
    A       DOUBLE PRECISION array, dimension (LDA,N)
            On entry, the m by n matrix to be factored.
            On exit, the factors L and U from the factorization
            A = P*L*U; the unit diagonal elements of L are not stored.

    @param[in]
    lda     INTEGER
            The leading dimension of the array A.  LDA >= max(1,M).

    @param[out]
    info    INTEGER
      -     = 0: successful exit
      -     < 0: if INFO = -k, the k-th argument had an illegal value
      -     > 0: if INFO = k, U(k,k) is exactly zero. The factorization
                 has been completed, but the factor U is exactly
                 singular, and division by zero will occur if it is used
                 to solve a system of equations.

    @ingroup magma_dgesv_aux
    ********************************************************************/
extern "C" magma_int_t
magma_dgetf2_nopiv(
    magma_int_t m, magma_int_t n,
    double *A, magma_int_t lda,
    magma_int_t *info)
{
    #define A(i_,j_) (A + (i_) + (j_)*lda)
    
    double c_one     = MAGMA_D_ONE;
    double c_zero    = MAGMA_D_ZERO;
    double c_neg_one = MAGMA_D_NEG_ONE;
    magma_int_t ione = 1;

    magma_int_t min_mn, m_j, n_j;
    double inv_Ajj;
    magma_int_t i, j;
    double sfmin;

    A -= 1 + lda;

    /* Function Body */
    *info = 0;
    if (m < 0) {
        *info = -1;
    } else if (n < 0) {
        *info = -2;
    } else if (lda < max(1,m)) {
        *info = -4;
    }
    if (*info != 0) {
        magma_xerbla( __func__, -(*info) );
        return *info;
    }

    /* Quick return if possible */
    if (m == 0 || n == 0)
        return *info;

    /* Compute machine safe minimum */
    sfmin = lapackf77_dlamch("S");

    min_mn = min(m,n);
    for (j = 1; j <= min_mn; ++j) {
        /* Test for singularity. */
        if ( ! MAGMA_D_EQUAL( *A(j,j), c_zero)) {
            /* Compute elements J+1:M of J-th column. */
            if (j < m) {
                if (MAGMA_D_ABS( *A(j,j) ) >= sfmin) {
                    m_j = m - j;
                    inv_Ajj = MAGMA_D_DIV(c_one, *A(j,j));
                    blasf77_dscal( &m_j, &inv_Ajj, A(j+1,j), &ione );
                }
                else {
                    m_j = m - j;
                    for (i = 1; i <= m_j; ++i) {
                        *A(j+i,j) = MAGMA_D_DIV( *A(j+i,j), *A(j,j) );
                    }
                }
            }
        }
        else if (*info == 0) {
            *info = j;
        }

        if (j < min_mn) {
            /* Update trailing submatrix. */
            m_j = m - j;
            n_j = n - j;
            blasf77_dger( &m_j, &n_j, &c_neg_one,
                           A(j+1,j),   &ione,
                           A(j,j+1),   &lda,
                           A(j+1,j+1), &lda );
        }
    }

    return *info;
} /* magma_dgetf2_nopiv */
Beispiel #2
0
/**
    Purpose
    -------
    DGEEV computes for an N-by-N real nonsymmetric matrix A, the
    eigenvalues and, optionally, the left and/or right eigenvectors.

    The right eigenvector v(j) of A satisfies
                     A * v(j) = lambda(j) * v(j)
    where lambda(j) is its eigenvalue.
    The left eigenvector u(j) of A satisfies
                  u(j)**T * A = lambda(j) * u(j)**T
    where u(j)**T denotes the transpose of u(j).

    The computed eigenvectors are normalized to have Euclidean norm
    equal to 1 and largest component real.

    Arguments
    ---------
    @param[in]
    jobvl   magma_vec_t
      -     = MagmaNoVec: left eigenvectors of A are not computed;
      -     = MagmaVec:   left eigenvectors of are computed.

    @param[in]
    jobvr   magma_vec_t
      -     = MagmaNoVec: right eigenvectors of A are not computed;
      -     = MagmaVec:   right eigenvectors of A are computed.

    @param[in]
    n       INTEGER
            The order of the matrix A. N >= 0.

    @param[in,out]
    A       DOUBLE PRECISION array, dimension (LDA,N)
            On entry, the N-by-N matrix A.
            On exit, A has been overwritten.

    @param[in]
    lda     INTEGER
            The leading dimension of the array A.  LDA >= max(1,N).

    @param[out]
    wr      DOUBLE PRECISION array, dimension (N)
    @param[out]
    wi      DOUBLE PRECISION array, dimension (N)
            WR and WI contain the real and imaginary parts,
            respectively, of the computed eigenvalues.  Complex
            conjugate pairs of eigenvalues appear consecutively
            with the eigenvalue having the positive imaginary part
            first.

    @param[out]
    VL      DOUBLE PRECISION array, dimension (LDVL,N)
            If JOBVL = MagmaVec, the left eigenvectors u(j) are stored one
            after another in the columns of VL, in the same order
            as their eigenvalues.
            If JOBVL = MagmaNoVec, VL is not referenced.
            u(j) = VL(:,j), the j-th column of VL.

    @param[in]
    ldvl    INTEGER
            The leading dimension of the array VL.  LDVL >= 1; if
            JOBVL = MagmaVec, LDVL >= N.

    @param[out]
    VR      DOUBLE PRECISION array, dimension (LDVR,N)
            If JOBVR = MagmaVec, the right eigenvectors v(j) are stored one
            after another in the columns of VR, in the same order
            as their eigenvalues.
            If JOBVR = MagmaNoVec, VR is not referenced.
            v(j) = VR(:,j), the j-th column of VR.

    @param[in]
    ldvr    INTEGER
            The leading dimension of the array VR.  LDVR >= 1; if
            JOBVR = MagmaVec, LDVR >= N.

    @param[out]
    work    (workspace) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
            On exit, if INFO = 0, WORK[0] returns the optimal LWORK.

    @param[in]
    lwork   INTEGER
            The dimension of the array WORK.  LWORK >= (2+nb)*N.
            For optimal performance, LWORK >= (2+2*nb)*N.
    \n
            If LWORK = -1, then a workspace query is assumed; the routine
            only calculates the optimal size of the WORK array, returns
            this value as the first entry of the WORK array, and no error
            message related to LWORK is issued by XERBLA.

    @param[out]
    info    INTEGER
      -     = 0:  successful exit
      -     < 0:  if INFO = -i, the i-th argument had an illegal value.
      -     > 0:  if INFO = i, the QR algorithm failed to compute all the
                  eigenvalues, and no eigenvectors have been computed;
                  elements and i+1:N of W contain eigenvalues which have
                  converged.

    @ingroup magma_dgeev_driver
    ********************************************************************/
extern "C" magma_int_t
magma_dgeev_m(
    magma_vec_t jobvl, magma_vec_t jobvr, magma_int_t n,
    double *A, magma_int_t lda,
    double *wr, double *wi,
    double *VL, magma_int_t ldvl,
    double *VR, magma_int_t ldvr,
    double *work, magma_int_t lwork,
    magma_int_t *info )
{
    #define VL(i,j)  (VL + (i) + (j)*ldvl)
    #define VR(i,j)  (VR + (i) + (j)*ldvr)
    
    const magma_int_t ione  = 1;
    const magma_int_t izero = 0;
    
    double d__1, d__2;
    double r, cs, sn, scl;
    double dum[1], eps;
    double anrm, cscale, bignum, smlnum;
    magma_int_t i, k, ilo, ihi;
    magma_int_t ibal, ierr, itau, iwrk, nout, liwrk, nb;
    magma_int_t scalea, minwrk, optwrk, lquery, wantvl, wantvr, select[1];
    
    magma_side_t side = MagmaRight;
    
    magma_timer_t time_total=0, time_gehrd=0, time_unghr=0, time_hseqr=0, time_trevc=0, time_sum=0;
    magma_flops_t flop_total=0, flop_gehrd=0, flop_unghr=0, flop_hseqr=0, flop_trevc=0, flop_sum=0;
    timer_start( time_total );
    flops_start( flop_total );
    
    *info = 0;
    lquery = (lwork == -1);
    wantvl = (jobvl == MagmaVec);
    wantvr = (jobvr == MagmaVec);
    if (! wantvl && jobvl != MagmaNoVec) {
        *info = -1;
    } else if (! wantvr && jobvr != MagmaNoVec) {
        *info = -2;
    } else if (n < 0) {
        *info = -3;
    } else if (lda < max(1,n)) {
        *info = -5;
    } else if ( (ldvl < 1) || (wantvl && (ldvl < n))) {
        *info = -9;
    } else if ( (ldvr < 1) || (wantvr && (ldvr < n))) {
        *info = -11;
    }

    /* Compute workspace */
    nb = magma_get_dgehrd_nb( n );
    if (*info == 0) {
        minwrk = (2 +   nb)*n;
        optwrk = (2 + 2*nb)*n;
        work[0] = MAGMA_D_MAKE( (double) optwrk, 0. );
        
        if (lwork < minwrk && ! lquery) {
            *info = -13;
        }
    }

    if (*info != 0) {
        magma_xerbla( __func__, -(*info) );
        return *info;
    }
    else if (lquery) {
        return *info;
    }

    /* Quick return if possible */
    if (n == 0) {
        return *info;
    }
   
    #if defined(Version3) || defined(Version4) || defined(Version5)
    double *dT;
    if (MAGMA_SUCCESS != magma_dmalloc( &dT, nb*n )) {
        *info = MAGMA_ERR_DEVICE_ALLOC;
        return *info;
    }
    #endif
    #if defined(Version4) || defined(Version5)
    double *T;
    if (MAGMA_SUCCESS != magma_dmalloc_cpu( &T, nb*n )) {
        magma_free( dT );
        *info = MAGMA_ERR_HOST_ALLOC;
        return *info;
    }
    #endif

    /* Get machine constants */
    eps    = lapackf77_dlamch( "P" );
    smlnum = lapackf77_dlamch( "S" );
    bignum = 1. / smlnum;
    lapackf77_dlabad( &smlnum, &bignum );
    smlnum = magma_dsqrt( smlnum ) / eps;
    bignum = 1. / smlnum;

    /* Scale A if max element outside range [SMLNUM,BIGNUM] */
    anrm = lapackf77_dlange( "M", &n, &n, A, &lda, dum );
    scalea = 0;
    if (anrm > 0. && anrm < smlnum) {
        scalea = 1;
        cscale = smlnum;
    } else if (anrm > bignum) {
        scalea = 1;
        cscale = bignum;
    }
    if (scalea) {
        lapackf77_dlascl( "G", &izero, &izero, &anrm, &cscale, &n, &n, A, &lda, &ierr );
    }

    /* Balance the matrix
     * (Workspace: need N)
     *  - this space is reserved until after gebak */
    ibal = 0;
    lapackf77_dgebal( "B", &n, A, &lda, &ilo, &ihi, &work[ibal], &ierr );

    /* Reduce to upper Hessenberg form
     * (Workspace: need 3*N, prefer 2*N + N*NB)
     *  - including N reserved for gebal/gebak, unused by dgehrd */
    itau = ibal + n;
    iwrk = itau + n;
    liwrk = lwork - iwrk;

    timer_start( time_gehrd );
    flops_start( flop_gehrd );
    #if defined(Version1)
        // Version 1 - LAPACK
        lapackf77_dgehrd( &n, &ilo, &ihi, A, &lda,
                          &work[itau], &work[iwrk], &liwrk, &ierr );
    #elif defined(Version2)
        // Version 2 - LAPACK consistent HRD
        magma_dgehrd2( n, ilo, ihi, A, lda,
                       &work[itau], &work[iwrk], liwrk, &ierr );
    #elif defined(Version3)
        // Version 3 - LAPACK consistent MAGMA HRD + T matrices stored,
        magma_dgehrd( n, ilo, ihi, A, lda,
                      &work[itau], &work[iwrk], liwrk, dT, &ierr );
    #elif defined(Version4) || defined(Version5)
        // Version 4 - Multi-GPU, T on host
        magma_dgehrd_m( n, ilo, ihi, A, lda,
                        &work[itau], &work[iwrk], liwrk, T, &ierr );
        magma_dsetmatrix( nb, n, T, nb, dT, nb );
    #endif
    time_sum += timer_stop( time_gehrd );
    flop_sum += flops_stop( flop_gehrd );

    if (wantvl) {
        /* Want left eigenvectors
         * Copy Householder vectors to VL */
        side = MagmaLeft;
        lapackf77_dlacpy( MagmaLowerStr, &n, &n, A, &lda, VL, &ldvl );

        /* Generate orthogonal matrix in VL
         * (Workspace: need 3*N-1, prefer 2*N + (N-1)*NB)
         *  - including N reserved for gebal/gebak, unused by dorghr */
        timer_start( time_unghr );
        flops_start( flop_unghr );
        #if defined(Version1) || defined(Version2)
            // Version 1 & 2 - LAPACK
            lapackf77_dorghr( &n, &ilo, &ihi, VL, &ldvl, &work[itau],
                              &work[iwrk], &liwrk, &ierr );
        #elif defined(Version3) || defined(Version4)
            // Version 3 - LAPACK consistent MAGMA HRD + T matrices stored
            magma_dorghr( n, ilo, ihi, VL, ldvl, &work[itau], dT, nb, &ierr );
        #elif defined(Version5)
            // Version 5 - Multi-GPU, T on host
            magma_dorghr_m( n, ilo, ihi, VL, ldvl, &work[itau], T, nb, &ierr );
        #endif
        time_sum += timer_stop( time_unghr );
        flop_sum += flops_stop( flop_unghr );

        timer_start( time_hseqr );
        flops_start( flop_hseqr );
        /* Perform QR iteration, accumulating Schur vectors in VL
         * (Workspace: need N+1, prefer N+HSWORK (see comments) )
         *  - including N reserved for gebal/gebak, unused by dhseqr */
        iwrk = itau;
        liwrk = lwork - iwrk;
        lapackf77_dhseqr( "S", "V", &n, &ilo, &ihi, A, &lda, wr, wi,
                          VL, &ldvl, &work[iwrk], &liwrk, info );
        time_sum += timer_stop( time_hseqr );
        flop_sum += flops_stop( flop_hseqr );

        if (wantvr) {
            /* Want left and right eigenvectors
             * Copy Schur vectors to VR */
            side = MagmaBothSides;
            lapackf77_dlacpy( "F", &n, &n, VL, &ldvl, VR, &ldvr );
        }
    }
    else if (wantvr) {
        /* Want right eigenvectors
         * Copy Householder vectors to VR */
        side = MagmaRight;
        lapackf77_dlacpy( "L", &n, &n, A, &lda, VR, &ldvr );

        /* Generate orthogonal matrix in VR
         * (Workspace: need 3*N-1, prefer 2*N + (N-1)*NB)
         *  - including N reserved for gebal/gebak, unused by dorghr */
        timer_start( time_unghr );
        flops_start( flop_unghr );
        #if defined(Version1) || defined(Version2)
            // Version 1 & 2 - LAPACK
            lapackf77_dorghr( &n, &ilo, &ihi, VR, &ldvr, &work[itau],
                              &work[iwrk], &liwrk, &ierr );
        #elif defined(Version3) || defined(Version4)
            // Version 3 - LAPACK consistent MAGMA HRD + T matrices stored
            magma_dorghr( n, ilo, ihi, VR, ldvr, &work[itau], dT, nb, &ierr );
        #elif defined(Version5)
            // Version 5 - Multi-GPU, T on host
            magma_dorghr_m( n, ilo, ihi, VR, ldvr, &work[itau], T, nb, &ierr );
        #endif
        time_sum += timer_stop( time_unghr );
        flop_sum += flops_stop( flop_unghr );

        /* Perform QR iteration, accumulating Schur vectors in VR
         * (Workspace: need N+1, prefer N+HSWORK (see comments) )
         *  - including N reserved for gebal/gebak, unused by dhseqr */
        timer_start( time_hseqr );
        flops_start( flop_hseqr );
        iwrk = itau;
        liwrk = lwork - iwrk;
        lapackf77_dhseqr( "S", "V", &n, &ilo, &ihi, A, &lda, wr, wi,
                          VR, &ldvr, &work[iwrk], &liwrk, info );
        time_sum += timer_stop( time_hseqr );
        flop_sum += flops_stop( flop_hseqr );
    }
    else {
        /* Compute eigenvalues only
         * (Workspace: need N+1, prefer N+HSWORK (see comments) )
         *  - including N reserved for gebal/gebak, unused by dhseqr */
        timer_start( time_hseqr );
        flops_start( flop_hseqr );
        iwrk = itau;
        liwrk = lwork - iwrk;
        lapackf77_dhseqr( "E", "N", &n, &ilo, &ihi, A, &lda, wr, wi,
                          VR, &ldvr, &work[iwrk], &liwrk, info );
        time_sum += timer_stop( time_hseqr );
        flop_sum += flops_stop( flop_hseqr );
    }

    /* If INFO > 0 from DHSEQR, then quit */
    if (*info > 0) {
        goto CLEANUP;
    }

    timer_start( time_trevc );
    flops_start( flop_trevc );
    if (wantvl || wantvr) {
        /* Compute left and/or right eigenvectors
         * (Workspace: need 4*N, prefer (2 + 2*nb)*N)
         *  - including N reserved for gebal/gebak, unused by dtrevc */
        liwrk = lwork - iwrk;
        #if TREVC_VERSION == 1
        lapackf77_dtrevc( lapack_side_const(side), "B", select, &n, A, &lda, VL, &ldvl,
                          VR, &ldvr, &n, &nout, &work[iwrk], &ierr );
        #elif TREVC_VERSION == 2
        lapackf77_dtrevc3( lapack_side_const(side), "B", select, &n, A, &lda, VL, &ldvl,
                           VR, &ldvr, &n, &nout, &work[iwrk], &liwrk, &ierr );
        #elif TREVC_VERSION == 3
        magma_dtrevc3( side, MagmaBacktransVec, select, n, A, lda, VL, ldvl,
                       VR, ldvr, n, &nout, &work[iwrk], liwrk, &ierr );
        #elif TREVC_VERSION == 4
        magma_dtrevc3_mt( side, MagmaBacktransVec, select, n, A, lda, VL, ldvl,
                          VR, ldvr, n, &nout, &work[iwrk], liwrk, &ierr );
        #elif TREVC_VERSION == 5
        magma_dtrevc3_mt_gpu( side, MagmaBacktransVec, select, n, A, lda, VL, ldvl,
                              VR, ldvr, n, &nout, &work[iwrk], liwrk, &ierr );
        #else
        #error Unknown TREVC_VERSION
        #endif
    }
    time_sum += timer_stop( time_trevc );
    flop_sum += flops_stop( flop_trevc );

    if (wantvl) {
        /* Undo balancing of left eigenvectors
         * (Workspace: need N) */
        lapackf77_dgebak( "B", "L", &n, &ilo, &ihi, &work[ibal], &n,
                          VL, &ldvl, &ierr );

        /* Normalize left eigenvectors and make largest component real */
        for (i = 0; i < n; ++i) {
            if ( wi[i] == 0. ) {
                scl = 1. / magma_cblas_dnrm2( n, VL(0,i), 1 );
                blasf77_dscal( &n, &scl, VL(0,i), &ione );
            }
            else if ( wi[i] > 0. ) {
                d__1 = magma_cblas_dnrm2( n, VL(0,i), 1 );
                d__2 = magma_cblas_dnrm2( n, VL(0,i+1), 1 );
                scl = 1. / lapackf77_dlapy2( &d__1, &d__2 );
                blasf77_dscal( &n, &scl, VL(0,i), &ione );
                blasf77_dscal( &n, &scl, VL(0,i+1), &ione );
                for (k = 0; k < n; ++k) {
                    /* Computing 2nd power */
                    d__1 = *VL(k,i);
                    d__2 = *VL(k,i+1);
                    work[iwrk + k] = d__1*d__1 + d__2*d__2;
                }
                k = blasf77_idamax( &n, &work[iwrk], &ione ) - 1;  // subtract 1; k is 0-based
                lapackf77_dlartg( VL(k,i), VL(k,i+1), &cs, &sn, &r );
                blasf77_drot( &n, VL(0,i), &ione, VL(0,i+1), &ione, &cs, &sn );
                *VL(k,i+1) = 0.;
            }
        }
    }

    if (wantvr) {
        /* Undo balancing of right eigenvectors
         * (Workspace: need N) */
        lapackf77_dgebak( "B", "R", &n, &ilo, &ihi, &work[ibal], &n,
                          VR, &ldvr, &ierr );

        /* Normalize right eigenvectors and make largest component real */
        for (i = 0; i < n; ++i) {
            if ( wi[i] == 0. ) {
                scl = 1. / magma_cblas_dnrm2( n, VR(0,i), 1 );
                blasf77_dscal( &n, &scl, VR(0,i), &ione );
            }
            else if ( wi[i] > 0. ) {
                d__1 = magma_cblas_dnrm2( n, VR(0,i), 1 );
                d__2 = magma_cblas_dnrm2( n, VR(0,i+1), 1 );
                scl = 1. / lapackf77_dlapy2( &d__1, &d__2 );
                blasf77_dscal( &n, &scl, VR(0,i), &ione );
                blasf77_dscal( &n, &scl, VR(0,i+1), &ione );
                for (k = 0; k < n; ++k) {
                    /* Computing 2nd power */
                    d__1 = *VR(k,i);
                    d__2 = *VR(k,i+1);
                    work[iwrk + k] = d__1*d__1 + d__2*d__2;
                }
                k = blasf77_idamax( &n, &work[iwrk], &ione ) - 1;  // subtract 1; k is 0-based
                lapackf77_dlartg( VR(k,i), VR(k,i+1), &cs, &sn, &r );
                blasf77_drot( &n, VR(0,i), &ione, VR(0,i+1), &ione, &cs, &sn );
                *VR(k,i+1) = 0.;
            }
        }
    }

CLEANUP:
    /* Undo scaling if necessary */
    if (scalea) {
        // converged eigenvalues, stored in wr[i+1:n] and wi[i+1:n] for i = INFO
        magma_int_t nval = n - (*info);
        magma_int_t ld = max( nval, 1 );
        lapackf77_dlascl( "G", &izero, &izero, &cscale, &anrm, &nval, &ione, wr + (*info), &ld, &ierr );
        lapackf77_dlascl( "G", &izero, &izero, &cscale, &anrm, &nval, &ione, wi + (*info), &ld, &ierr );
        if (*info > 0) {
            // first ilo columns were already upper triangular,
            // so the corresponding eigenvalues are also valid.
            nval = ilo - 1;
            lapackf77_dlascl( "G", &izero, &izero, &cscale, &anrm, &nval, &ione, wr, &n, &ierr );
            lapackf77_dlascl( "G", &izero, &izero, &cscale, &anrm, &nval, &ione, wi, &n, &ierr );
        }
    }

    #if defined(Version3) || defined(Version4) || defined(Version5)
    magma_free( dT );
    #endif
    #if defined(Version4) || defined(Version5)
    magma_free_cpu( T );
    #endif
    
    timer_stop( time_total );
    flops_stop( flop_total );
    timer_printf( "dgeev times n %5d, gehrd %7.3f, unghr %7.3f, hseqr %7.3f, trevc %7.3f, total %7.3f, sum %7.3f\n",
                  (int) n, time_gehrd, time_unghr, time_hseqr, time_trevc, time_total, time_sum );
    timer_printf( "dgeev flops n %5d, gehrd %7lld, unghr %7lld, hseqr %7lld, trevc %7lld, total %7lld, sum %7lld\n",
                  (int) n, flop_gehrd, flop_unghr, flop_hseqr, flop_trevc, flop_total, flop_sum );
    
    work[0] = MAGMA_D_MAKE( (double) optwrk, 0. );
    
    return *info;
} /* magma_dgeev */
Beispiel #3
0
extern "C" magma_int_t
magma_dlatrd2(char uplo, magma_int_t n, magma_int_t nb,
              double *a,  magma_int_t lda,
              double *e, double *tau,
              double *w,  magma_int_t ldw,
              double *da, magma_int_t ldda,
              double *dw, magma_int_t lddw,
              double *dwork, magma_int_t ldwork)
{
/*  -- MAGMA (version 1.4.1) --
       Univ. of Tennessee, Knoxville
       Univ. of California, Berkeley
       Univ. of Colorado, Denver
       December 2013

    Purpose
    =======
    DLATRD2 reduces NB rows and columns of a real symmetric matrix A to
    symmetric tridiagonal form by an orthogonal similarity
    transformation Q' * A * Q, and returns the matrices V and W which are
    needed to apply the transformation to the unreduced part of A.

    If UPLO = 'U', DLATRD reduces the last NB rows and columns of a
    matrix, of which the upper triangle is supplied;
    if UPLO = 'L', DLATRD reduces the first NB rows and columns of a
    matrix, of which the lower triangle is supplied.

    This is an auxiliary routine called by DSYTRD2_GPU. It uses an
    accelerated HEMV that needs extra memory.

    Arguments
    =========
    UPLO    (input) CHARACTER*1
            Specifies whether the upper or lower triangular part of the
            symmetric matrix A is stored:
            = 'U': Upper triangular
            = 'L': Lower triangular

    N       (input) INTEGER
            The order of the matrix A.

    NB      (input) INTEGER
            The number of rows and columns to be reduced.

    A       (input/output) DOUBLE_PRECISION array, dimension (LDA,N)
            On entry, the symmetric matrix A.  If UPLO = 'U', the leading
            n-by-n upper triangular part of A contains the upper
            triangular part of the matrix A, and the strictly lower
            triangular part of A is not referenced.  If UPLO = 'L', the
            leading n-by-n lower triangular part of A contains the lower
            triangular part of the matrix A, and the strictly upper
            triangular part of A is not referenced.
            On exit:
            if UPLO = 'U', the last NB columns have been reduced to
              tridiagonal form, with the diagonal elements overwriting
              the diagonal elements of A; the elements above the diagonal
              with the array TAU, represent the orthogonal matrix Q as a
              product of elementary reflectors;
            if UPLO = 'L', the first NB columns have been reduced to
              tridiagonal form, with the diagonal elements overwriting
              the diagonal elements of A; the elements below the diagonal
              with the array TAU, represent the  orthogonal matrix Q as a
              product of elementary reflectors.
            See Further Details.

    LDA     (input) INTEGER
            The leading dimension of the array A.  LDA >= (1,N).

    E       (output) DOUBLE_PRECISION array, dimension (N-1)
            If UPLO = 'U', E(n-nb:n-1) contains the superdiagonal
            elements of the last NB columns of the reduced matrix;
            if UPLO = 'L', E(1:nb) contains the subdiagonal elements of
            the first NB columns of the reduced matrix.

    TAU     (output) DOUBLE_PRECISION array, dimension (N-1)
            The scalar factors of the elementary reflectors, stored in
            TAU(n-nb:n-1) if UPLO = 'U', and in TAU(1:nb) if UPLO = 'L'.
            See Further Details.

    W       (output) DOUBLE_PRECISION array, dimension (LDW,NB)
            The n-by-nb matrix W required to update the unreduced part
            of A.

    LDW     (input) INTEGER
            The leading dimension of the array W. LDW >= max(1,N).

    Further Details
    ===============
    If UPLO = 'U', the matrix Q is represented as a product of elementary
    reflectors

       Q = H(n) H(n-1) . . . H(n-nb+1).

    Each H(i) has the form

       H(i) = I - tau * v * v'

    where tau is a real scalar, and v is a real vector with
    v(i:n) = 0 and v(i-1) = 1; v(1:i-1) is stored on exit in A(1:i-1,i),
    and tau in TAU(i-1).

    If UPLO = 'L', the matrix Q is represented as a product of elementary
    reflectors

       Q = H(1) H(2) . . . H(nb).

    Each H(i) has the form

       H(i) = I - tau * v * v'

    where tau is a real scalar, and v is a real vector with
    v(1:i) = 0 and v(i+1) = 1; v(i+1:n) is stored on exit in A(i+1:n,i),
    and tau in TAU(i).

    The elements of the vectors v together form the n-by-nb matrix V
    which is needed, with W, to apply the transformation to the unreduced
    part of the matrix, using a symmetric rank-2k update of the form:
    A := A - V*W' - W*V'.

    The contents of A on exit are illustrated by the following examples
    with n = 5 and nb = 2:

    if UPLO = 'U':                       if UPLO = 'L':

      (  a   a   a   v4  v5 )              (  d                  )
      (      a   a   v4  v5 )              (  1   d              )
      (          a   1   v5 )              (  v1  1   a          )
      (              d   1  )              (  v1  v2  a   a      )
      (                  d  )              (  v1  v2  a   a   a  )

    where d denotes a diagonal element of the reduced matrix, a denotes
    an element of the original matrix that is unchanged, and vi denotes
    an element of the vector defining H(i).
    =====================================================================    */
    
    char uplo_[2]  = {uplo, 0};

    magma_int_t i;
    
    double c_neg_one = MAGMA_D_NEG_ONE;
    double c_one     = MAGMA_D_ONE;
    double c_zero    = MAGMA_D_ZERO;

    double value = MAGMA_D_ZERO;
    
    magma_int_t ione = 1;

    magma_int_t i_n, i_1, iw;
    
    double alpha;
    double *f;

    if (n <= 0) {
        return 0;
    }

    magma_queue_t stream;
    magma_queue_create( &stream );
    magma_dmalloc_cpu( &f, n );
    assert( f != NULL );  // TODO return error, or allocate outside dlatrd
    
    if (lapackf77_lsame(uplo_, "U")) {

        /* Reduce last NB columns of upper triangle */
        for (i = n-1; i >= n - nb ; --i) {
            i_1 = i + 1;
            i_n = n - i - 1;
            
            iw = i - n + nb;
            if (i < n-1) {
                /* Update A(1:i,i) */
                #if defined(PRECISION_z) || defined(PRECISION_c)
                lapackf77_dlacgv(&i_n, W(i, iw+1), &ldw);
                #endif
                blasf77_dgemv("No transpose", &i_1, &i_n, &c_neg_one, A(0, i+1), &lda,
                              W(i, iw+1), &ldw, &c_one, A(0, i), &ione);
                #if defined(PRECISION_z) || defined(PRECISION_c)
                lapackf77_dlacgv(&i_n, W(i, iw+1), &ldw);
                lapackf77_dlacgv(&i_n, A(i, i+1), &ldw);
                #endif
                blasf77_dgemv("No transpose", &i_1, &i_n, &c_neg_one, W(0, iw+1), &ldw,
                              A(i, i+1), &lda, &c_one, A(0, i), &ione);
                #if defined(PRECISION_z) || defined(PRECISION_c)
                lapackf77_dlacgv(&i_n, A(i, i+1), &ldw);
                #endif
            }
            if (i > 0) {
                /* Generate elementary reflector H(i) to annihilate A(1:i-2,i) */
                
                alpha = *A(i-1, i);
                
                lapackf77_dlarfg(&i, &alpha, A(0, i), &ione, &tau[i - 1]);
                
                e[i-1] = MAGMA_D_REAL( alpha );
                *A(i-1,i) = MAGMA_D_MAKE( 1, 0 );
                
                /* Compute W(1:i-1,i) */
                // 1. Send the block reflector  A(0:n-i-1,i) to the GPU
                magma_dsetvector( i, A(0, i), 1, dA(0, i), 1 );
                
                //#if (GPUSHMEM < 200)
                //magma_dsymv(MagmaUpper, i, c_one, dA(0, 0), ldda,
                //            dA(0, i), ione, c_zero, dW(0, iw), ione);
                //#else
                magmablas_dsymv_work(MagmaUpper, i, c_one, dA(0, 0), ldda,
                                     dA(0, i), ione, c_zero, dW(0, iw), ione,
                                     dwork, ldwork);
                //#endif
                
                // 2. Start putting the result back (asynchronously)
                magma_dgetmatrix_async( i, 1,
                                        dW(0, iw),         lddw,
                                        W(0, iw) /*test*/, ldw, stream );
                
                if (i < n-1) {
                    blasf77_dgemv(MagmaTransStr, &i, &i_n, &c_one, W(0, iw+1), &ldw,
                                  A(0, i), &ione, &c_zero, W(i+1, iw), &ione);
                }
                
                // 3. Here is where we need it // TODO find the right place
                magma_queue_sync( stream );
                
                if (i < n-1) {
                    blasf77_dgemv("No transpose", &i, &i_n, &c_neg_one, A(0, i+1), &lda,
                                  W(i+1, iw), &ione, &c_one, W(0, iw), &ione);
                    
                    blasf77_dgemv(MagmaTransStr, &i, &i_n, &c_one, A(0, i+1), &lda,
                                  A(0, i), &ione, &c_zero, W(i+1, iw), &ione);
                    
                    blasf77_dgemv("No transpose", &i, &i_n, &c_neg_one, W(0, iw+1), &ldw,
                                  W(i+1, iw), &ione, &c_one, W(0, iw), &ione);
                }
                
                blasf77_dscal(&i, &tau[i - 1], W(0, iw), &ione);
                
                #if defined(PRECISION_z) || defined(PRECISION_c)
                cblas_ddot_sub( i, W(0,iw), ione, A(0,i), ione, &value );
                #else
                value = cblas_ddot( i, W(0,iw), ione, A(0,i), ione );
                #endif
                alpha = tau[i - 1] * -0.5f * value;
                blasf77_daxpy(&i, &alpha, A(0, i), &ione,
                              W(0, iw), &ione);
            }
        }
    }
    else {
        /*  Reduce first NB columns of lower triangle */
        for (i = 0; i < nb; ++i) {
            
            /* Update A(i:n,i) */
            i_n = n - i;
            #if defined(PRECISION_z) || defined(PRECISION_c)
            lapackf77_dlacgv(&i, W(i, 0), &ldw);
            #endif
            blasf77_dgemv("No transpose", &i_n, &i, &c_neg_one, A(i, 0), &lda,
                          W(i, 0), &ldw, &c_one, A(i, i), &ione);
            #if defined(PRECISION_z) || defined(PRECISION_c)
            lapackf77_dlacgv(&i, W(i, 0), &ldw);
            lapackf77_dlacgv(&i, A(i ,0), &lda);
            #endif
            blasf77_dgemv("No transpose", &i_n, &i, &c_neg_one, W(i, 0), &ldw,
                          A(i, 0), &lda, &c_one, A(i, i), &ione);
            #if defined(PRECISION_z) || defined(PRECISION_c)
            lapackf77_dlacgv(&i, A(i, 0), &lda);
            #endif
        
            if (i < n-1) {
                /* Generate elementary reflector H(i) to annihilate A(i+2:n,i) */
                i_n = n - i - 1;
                alpha = *A(i+1, i);
                lapackf77_dlarfg(&i_n, &alpha, A(min(i+2,n-1), i), &ione, &tau[i]);
                e[i] = MAGMA_D_REAL( alpha );
                *A(i+1,i) = MAGMA_D_MAKE( 1, 0 );
        
                /* Compute W(i+1:n,i) */
                // 1. Send the block reflector  A(i+1:n,i) to the GPU
                magma_dsetvector( i_n, A(i+1, i), 1, dA(i+1, i), 1 );
            
                //#if (GPUSHMEM < 200)
                //magma_dsymv(MagmaLower, i_n, c_one, dA(i+1, i+1), ldda, dA(i+1, i), ione, c_zero,
                //            dW(i+1, i), ione);
                //#else
                magmablas_dsymv_work('L', i_n, c_one, dA(i+1, i+1), ldda, dA(i+1, i), ione, c_zero,
                                     dW(i+1, i), ione,
                                     dwork, ldwork);
                //#endif
        
                // 2. Start putting the result back (asynchronously)
                magma_dgetmatrix_async( i_n, 1,
                                        dW(i+1, i), lddw,
                                        W(i+1, i),  ldw, stream );
        
                blasf77_dgemv(MagmaTransStr, &i_n, &i, &c_one, W(i+1, 0), &ldw,
                              A(i+1, i), &ione, &c_zero, W(0, i), &ione);
            
                blasf77_dgemv("No transpose", &i_n, &i, &c_neg_one, A(i+1, 0), &lda,
                              W(0, i), &ione, &c_zero, f, &ione);
                
                blasf77_dgemv(MagmaTransStr, &i_n, &i, &c_one, A(i+1, 0), &lda,
                              A(i+1, i), &ione, &c_zero, W(0, i), &ione);
        
                // 3. Here is where we need it
                magma_queue_sync( stream );
        
                if (i!=0)
                  blasf77_daxpy(&i_n, &c_one, f, &ione, W(i+1, i), &ione);
        
                blasf77_dgemv("No transpose", &i_n, &i, &c_neg_one, W(i+1, 0), &ldw,
                              W(0, i), &ione, &c_one, W(i+1, i), &ione);
                blasf77_dscal(&i_n, &tau[i], W(i+1,i), &ione);
                #if defined(PRECISION_z) || defined(PRECISION_c)
                cblas_ddot_sub( i_n, W(i+1,i), ione, A(i+1,i), ione, &value );
                #else
                value = cblas_ddot( i_n, W(i+1,i), ione, A(i+1,i), ione );
                #endif
                alpha = tau[i] * -0.5f * value;
                blasf77_daxpy(&i_n, &alpha, A(i+1, i), &ione, W(i+1,i), &ione);
            }
        }
    }

    magma_free_cpu(f);
    magma_queue_destroy( stream );

    return 0;
} /* dlatrd */
Beispiel #4
0
/**
    Purpose
    -------
    DLABRD reduces the first NB rows and columns of a real general
    m by n matrix A to upper or lower bidiagonal form by an orthogonal
    transformation Q' * A * P, and returns the matrices X and Y which
    are needed to apply the transformation to the unreduced part of A.

    If m >= n, A is reduced to upper bidiagonal form; if m < n, to lower
    bidiagonal form.

    This is an auxiliary routine called by DGEBRD.

    Arguments
    ---------
    @param[in]
    m       INTEGER
            The number of rows in the matrix A.

    @param[in]
    n       INTEGER
            The number of columns in the matrix A.

    @param[in]
    nb      INTEGER
            The number of leading rows and columns of A to be reduced.

    @param[in,out]
    A       DOUBLE_PRECISION array, dimension (LDA,N)
            On entry, the m by n general matrix to be reduced.
            On exit, the first NB rows and columns of the matrix are
            overwritten; the rest of the array is unchanged.
            If m >= n, elements on and below the diagonal in the first NB
              columns, with the array TAUQ, represent the orthogonal
              matrix Q as a product of elementary reflectors; and
              elements above the diagonal in the first NB rows, with the
              array TAUP, represent the orthogonal matrix P as a product
              of elementary reflectors.
    \n
            If m < n, elements below the diagonal in the first NB
              columns, with the array TAUQ, represent the orthogonal
              matrix Q as a product of elementary reflectors, and
              elements on and above the diagonal in the first NB rows,
              with the array TAUP, represent the orthogonal matrix P as
              a product of elementary reflectors.
            See Further Details.

    @param[in]
    lda     INTEGER
            The leading dimension of the array A.  LDA >= max(1,M).

    @param[in,out]
    dA      DOUBLE_PRECISION array, dimension (LDDA,N)
            Copy of A on GPU.

    @param[in]
    ldda    INTEGER
            The leading dimension of the array dA.  LDDA >= max(1,M).

    @param[out]
    d       DOUBLE_PRECISION array, dimension (NB)
            The diagonal elements of the first NB rows and columns of
            the reduced matrix.  D(i) = A(i,i).

    @param[out]
    e       DOUBLE_PRECISION array, dimension (NB)
            The off-diagonal elements of the first NB rows and columns of
            the reduced matrix.

    @param[out]
    tauq    DOUBLE_PRECISION array dimension (NB)
            The scalar factors of the elementary reflectors which
            represent the orthogonal matrix Q. See Further Details.

    @param[out]
    taup    DOUBLE_PRECISION array, dimension (NB)
            The scalar factors of the elementary reflectors which
            represent the orthogonal matrix P. See Further Details.

    @param[out]
    X       DOUBLE_PRECISION array, dimension (LDX,NB)
            The m-by-nb matrix X required to update the unreduced part
            of A.

    @param[in]
    ldx     INTEGER
            The leading dimension of the array X. LDX >= M.

    @param[out]
    dX      DOUBLE_PRECISION array, dimension (LDDX,NB)
            Copy of X on GPU.

    @param[in]
    lddx    INTEGER
            The leading dimension of the array dX. LDDX >= M.

    @param[out]
    Y       DOUBLE_PRECISION array, dimension (LDY,NB)
            The n-by-nb matrix Y required to update the unreduced part
            of A.

    @param[in]
    ldy     INTEGER
            The leading dimension of the array Y. LDY >= N.

    @param[out]
    dY      DOUBLE_PRECISION array, dimension (LDDY,NB)
            Copy of Y on GPU.

    @param[in]
    lddy    INTEGER
            The leading dimension of the array dY. LDDY >= N.

    Further Details
    ---------------
    The matrices Q and P are represented as products of elementary
    reflectors:

       Q = H(1) H(2) . . . H(nb)  and  P = G(1) G(2) . . . G(nb)

    Each H(i) and G(i) has the form:

       H(i) = I - tauq * v * v'  and G(i) = I - taup * u * u'

    where tauq and taup are real scalars, and v and u are real vectors.

    If m >= n, v(1:i-1) = 0, v(i) = 1, and v(i:m) is stored on exit in
    A(i:m,i); u(1:i) = 0, u(i+1) = 1, and u(i+1:n) is stored on exit in
    A(i,i+1:n); tauq is stored in TAUQ(i) and taup in TAUP(i).

    If m < n, v(1:i) = 0, v(i+1) = 1, and v(i+1:m) is stored on exit in
    A(i+2:m,i); u(1:i-1) = 0, u(i) = 1, and u(i:n) is stored on exit in
    A(i,i+1:n); tauq is stored in TAUQ(i) and taup in TAUP(i).

    The elements of the vectors v and u together form the m-by-nb matrix
    V and the nb-by-n matrix U' which are needed, with X and Y, to apply
    the transformation to the unreduced part of the matrix, using a block
    update of the form:  A := A - V*Y' - X*U'.

    The contents of A on exit are illustrated by the following examples
    with nb = 2:

    @verbatim
    m = 6 and n = 5 (m > n):          m = 5 and n = 6 (m < n):

      (  1   1   u1  u1  u1 )           (  1   u1  u1  u1  u1  u1 )
      (  v1  1   1   u2  u2 )           (  1   1   u2  u2  u2  u2 )
      (  v1  v2  a   a   a  )           (  v1  1   a   a   a   a  )
      (  v1  v2  a   a   a  )           (  v1  v2  a   a   a   a  )
      (  v1  v2  a   a   a  )           (  v1  v2  a   a   a   a  )
      (  v1  v2  a   a   a  )
    @endverbatim

    where a denotes an element of the original matrix which is unchanged,
    vi denotes an element of the vector defining H(i), and ui an element
    of the vector defining G(i).

    @ingroup magma_dgesvd_aux
    ********************************************************************/
extern "C" magma_int_t
magma_dlabrd_gpu( magma_int_t m, magma_int_t n, magma_int_t nb,
                  double *A,  magma_int_t lda,
                  double *dA, magma_int_t ldda,
                  double *d, double *e, double *tauq, double *taup,
                  double *X,  magma_int_t ldx,
                  double *dX, magma_int_t lddx,
                  double *Y,  magma_int_t ldy,
                  double *dY, magma_int_t lddy)
{
    #define A(i_,j_) (A + (i_) + (j_)*lda)
    #define X(i_,j_) (X + (i_) + (j_)*ldx)
    #define Y(i_,j_) (Y + (i_) + (j_)*ldy)
    #define dA(i_,j_) (dA + (i_) + (j_)*ldda)
    #define dY(i_,j_) (dY + (i_) + (j_)*lddy)
    #define dX(i_,j_) (dX + (i_) + (j_)*lddx)
    
    double c_neg_one = MAGMA_D_NEG_ONE;
    double c_one     = MAGMA_D_ONE;
    double c_zero    = MAGMA_D_ZERO;
    magma_int_t ione = 1;
    
    magma_int_t i__2, i__3;
    magma_int_t i;
    double alpha;

    A  -= 1 + lda;
    X  -= 1 + ldx;
    dX -= 1 + lddx;
    Y  -= 1 + ldy;
    dY -= 1 + lddy;
    --d;
    --e;
    --tauq;
    --taup;

    /* Quick return if possible */
    magma_int_t info = 0;
    if (m <= 0 || n <= 0) {
        return info;
    }

    double *f;
    magma_queue_t stream;
    magma_queue_create( &stream );
    magma_dmalloc_cpu( &f, max(n,m) );
    if ( f == NULL ) {
        info = MAGMA_ERR_HOST_ALLOC;
        return info;
    }
    
    if (m >= n) {
        /* Reduce to upper bidiagonal form */
        for (i = 1; i <= nb; ++i) {
            /*  Update A(i:m,i) */
            i__2 = m - i + 1;
            i__3 = i - 1;
            #if defined(PRECISION_z) || defined(PRECISION_c)
            lapackf77_dlacgv( &i__3, Y(i,1), &ldy );
            #endif
            blasf77_dgemv( "No transpose", &i__2, &i__3, &c_neg_one,
                           A(i,1), &lda,
                           Y(i,1), &ldy, &c_one,
                           A(i,i), &ione );
            #if defined(PRECISION_z) || defined(PRECISION_c)
            lapackf77_dlacgv( &i__3, Y(i,1), &ldy );
            #endif
            blasf77_dgemv( "No transpose", &i__2, &i__3, &c_neg_one,
                           X(i,1), &ldx,
                           A(1,i), &ione, &c_one,
                           A(i,i), &ione );
            
            /* Generate reflection Q(i) to annihilate A(i+1:m,i) */
            alpha = *A(i,i);
            i__2 = m - i + 1;
            i__3 = i + 1;
            lapackf77_dlarfg( &i__2, &alpha, A(min(i__3,m),i), &ione, &tauq[i] );
            d[i] = MAGMA_D_REAL( alpha );
            if (i < n) {
                *A(i,i) = c_one;

                /* Compute Y(i+1:n,i) */
                i__2 = m - i + 1;
                i__3 = n - i;

                // 1. Send the block reflector  A(i+1:m,i) to the GPU ------
                magma_dsetvector( i__2,
                                  A(i,i), 1,
                                  dA(i-1,i-1), 1 );
                // 2. Multiply ---------------------------------------------
                magma_dgemv( MagmaConjTrans, i__2, i__3, c_one,
                             dA(i-1,i),   ldda,
                             dA(i-1,i-1), ione, c_zero,
                             dY(i+1,i),   ione );
                
                // 3. Put the result back ----------------------------------
                magma_dgetmatrix_async( i__3, 1,
                                        dY(i+1,i), lddy,
                                        Y(i+1,i),  ldy, stream );
                i__2 = m - i + 1;
                i__3 = i - 1;
                blasf77_dgemv( MagmaConjTransStr, &i__2, &i__3, &c_one,
                               A(i,1), &lda,
                               A(i,i), &ione, &c_zero,
                               Y(1,i), &ione );

                i__2 = n - i;
                i__3 = i - 1;
                blasf77_dgemv( "N", &i__2, &i__3, &c_neg_one,
                               Y(i+1,1), &ldy,
                               Y(1,i),   &ione, &c_zero,
                               f,        &ione );
                i__2 = m - i + 1;
                i__3 = i - 1;
                blasf77_dgemv( MagmaConjTransStr, &i__2, &i__3, &c_one,
                               X(i,1), &ldx,
                               A(i,i), &ione, &c_zero,
                               Y(1,i), &ione );
                
                // 4. Sync to make sure the result is back ----------------
                magma_queue_sync( stream );

                if (i__3 != 0) {
                    i__2 = n - i;
                    blasf77_daxpy( &i__2, &c_one, f, &ione, Y(i+1,i), &ione );
                }

                i__2 = i - 1;
                i__3 = n - i;
                blasf77_dgemv( MagmaConjTransStr, &i__2, &i__3, &c_neg_one,
                               A(1,i+1), &lda,
                               Y(1,i),   &ione, &c_one,
                               Y(i+1,i), &ione );
                i__2 = n - i;
                blasf77_dscal( &i__2, &tauq[i], Y(i+1,i), &ione );

                /* Update A(i,i+1:n) */
                i__2 = n - i;
                #if defined(PRECISION_z) || defined(PRECISION_c)
                lapackf77_dlacgv( &i__2, A(i,i+1), &lda );
                lapackf77_dlacgv( &i,  A(i,1), &lda );
                #endif
                blasf77_dgemv( "No transpose", &i__2, &i, &c_neg_one,
                               Y(i+1,1), &ldy,
                               A(i,1),   &lda, &c_one,
                               A(i,i+1), &lda );
                i__2 = i - 1;
                i__3 = n - i;
                #if defined(PRECISION_z) || defined(PRECISION_c)
                lapackf77_dlacgv( &i,  A(i,1), &lda );
                lapackf77_dlacgv( &i__2, X(i,1), &ldx );
                #endif
                blasf77_dgemv( MagmaConjTransStr, &i__2, &i__3, &c_neg_one,
                               A(1,i+1), &lda,
                               X(i,1),   &ldx, &c_one,
                               A(i,i+1), &lda );
                #if defined(PRECISION_z) || defined(PRECISION_c)
                lapackf77_dlacgv( &i__2, X(i,1), &ldx );
                #endif

                /* Generate reflection P(i) to annihilate A(i,i+2:n) */
                i__2 = n - i;
                i__3 = i + 2;
                alpha = *A(i,i+1);
                lapackf77_dlarfg( &i__2, &alpha, A(i,min(i__3,n)), &lda, &taup[i] );
                e[i] = MAGMA_D_REAL( alpha );
                *A(i,i+1) = c_one;

                /* Compute X(i+1:m,i) */
                i__2 = m - i;
                i__3 = n - i;
                // 1. Send the block reflector  A(i+1:m,i) to the GPU ------
                magma_dsetvector( i__3,
                                  A(i,i+1), lda,
                                  dA(i-1,i), ldda );
                // 2. Multiply ---------------------------------------------
                //magma_dcopy( i__3, dA(i-1,i), ldda, dY(1,1), 1 );
                magma_dgemv( MagmaNoTrans, i__2, i__3, c_one,
                             dA(i,i), ldda,
                             dA(i-1,i), ldda,
                             //dY(1,1), 1,
                             c_zero,
                             dX(i+1,i), ione );

                // 3. Put the result back ----------------------------------
                magma_dgetmatrix_async( i__2, 1,
                                        dX(i+1,i), lddx,
                                        X(i+1,i),  ldx, stream );

                i__2 = n - i;
                blasf77_dgemv( MagmaConjTransStr, &i__2, &i, &c_one,
                               Y(i+1,1), &ldy,
                               A(i,i+1), &lda, &c_zero,
                               X(1,i),   &ione );

                i__2 = m - i;
                blasf77_dgemv( "N", &i__2, &i, &c_neg_one,
                               A(i+1,1), &lda,
                               X(1,i),   &ione, &c_zero,
                               f,        &ione );
                i__2 = i - 1;
                i__3 = n - i;
                blasf77_dgemv( "N", &i__2, &i__3, &c_one,
                               A(1,i+1), &lda,
                               A(i,i+1), &lda, &c_zero,
                               X(1,i),   &ione );

                // 4. Sync to make sure the result is back ----------------
                magma_queue_sync( stream );
                if (i != 0) {
                    i__2 = m - i;
                    blasf77_daxpy( &i__2, &c_one, f, &ione, X(i+1,i), &ione );
                }


                i__2 = m - i;
                i__3 = i - 1;
                blasf77_dgemv( "No transpose", &i__2, &i__3, &c_neg_one,
                               X(i+1,1), &ldx,
                               X(1,i),   &ione, &c_one,
                               X(i+1,i), &ione );
                i__2 = m - i;
                blasf77_dscal( &i__2, &taup[i], X(i+1,i), &ione );

                #if defined(PRECISION_z) || defined(PRECISION_c)
                i__2 = n - i;
                lapackf77_dlacgv( &i__2,  A(i,i+1), &lda );
                // 4. Send the block reflector  A(i+1:m,i) to the GPU after DLACGV()
                magma_dsetvector( i__2,
                                  A(i,i+1),  lda,
                                  dA(i-1,i), ldda );
                #endif
            }
        }
    }
    else {
        /* Reduce to lower bidiagonal form */
        for (i = 1; i <= nb; ++i) {
        
            /* Update A(i,i:n) */
            i__2 = n - i + 1;
            i__3 = i - 1;
            #if defined(PRECISION_z) || defined(PRECISION_c)
            lapackf77_dlacgv( &i__2, A(i,i), &lda );
            lapackf77_dlacgv( &i__3, A(i,1), &lda );
            #endif
            blasf77_dgemv( "No transpose", &i__2, &i__3, &c_neg_one,
                           Y(i,1), &ldy,
                           A(i,1), &lda, &c_one,
                           A(i,i), &lda );
            i__2 = i - 1;
            #if defined(PRECISION_z) || defined(PRECISION_c)
            lapackf77_dlacgv( &i__3, A(i,1), &lda );
            lapackf77_dlacgv( &i__3, X(i,1), &ldx );
            #endif
            i__3 = n - i + 1;
            blasf77_dgemv( MagmaConjTransStr, &i__2, &i__3, &c_neg_one,
                           A(1,i), &lda,
                           X(i,1), &ldx, &c_one,
                           A(i,i), &lda );
            #if defined(PRECISION_z) || defined(PRECISION_c)
            lapackf77_dlacgv( &i__2, X(i,1), &ldx );
            #endif
            
            /* Generate reflection P(i) to annihilate A(i,i+1:n) */
            i__2 = n - i + 1;
            i__3 = i + 1;
            alpha = *A(i,i);
            lapackf77_dlarfg( &i__2, &alpha, A(i,min(i__3,n)), &lda, &taup[i] );
            d[i] = MAGMA_D_REAL( alpha );
            if (i < m) {
                *A(i,i) = c_one;
                
                /* Compute X(i+1:m,i) */
                i__2 = m - i;
                i__3 = n - i + 1;
                
                // 1. Send the block reflector  A(i,i+1:n) to the GPU ------
                magma_dsetvector( i__3,
                                  A(i,i), lda,
                                  dA(i-1,i-1), ldda );
                
                // 2. Multiply ---------------------------------------------
                //magma_dcopy( i__3, dA(i-1,i-1), ldda, dY(1,1), 1 );
                magma_dgemv( MagmaNoTrans, i__2, i__3, c_one,
                             dA(i,i-1), ldda,
                             dA(i-1,i-1), ldda,
                             //dY(1,1), 1,
                             c_zero,
                             dX(i+1,i), ione );
                
                // 3. Put the result back ----------------------------------
                magma_dgetmatrix_async( i__2, 1,
                                        dX(i+1,i), lddx,
                                        X(i+1,i),  ldx, stream );
                
                i__2 = n - i + 1;
                i__3 = i - 1;
                blasf77_dgemv( MagmaConjTransStr, &i__2, &i__3, &c_one,
                               Y(i,1), &ldy,
                               A(i,i), &lda, &c_zero,
                               X(1,i), &ione );
                i__2 = m - i;
                i__3 = i - 1;
                blasf77_dgemv( "No transpose", &i__2, &i__3, &c_neg_one,
                               A(i+1,1), &lda,
                               X(1,i),   &ione, &c_zero,
                               f,        &ione );
                
                i__2 = i - 1;
                i__3 = n - i + 1;
                blasf77_dgemv( "No transpose", &i__2, &i__3, &c_one,
                               A(1,i), &lda,
                               A(i,i), &lda, &c_zero,
                               X(1,i), &ione );
                
                // 4. Sync to make sure the result is back ----------------
                magma_queue_sync( stream );
                if (i__2 != 0) {
                    i__3 = m - i;
                    blasf77_daxpy( &i__3, &c_one, f, &ione, X(i+1,i), &ione );
                }
                
                i__2 = m - i;
                i__3 = i - 1;
                blasf77_dgemv( "No transpose", &i__2, &i__3, &c_neg_one,
                               X(i+1,1), &ldx,
                               X(1,i),   &ione, &c_one,
                               X(i+1,i), &ione );
                i__2 = m - i;
                blasf77_dscal( &i__2, &taup[i], X(i+1,i), &ione );
                i__2 = n - i + 1;
                #if defined(PRECISION_z) || defined(PRECISION_c)
                lapackf77_dlacgv( &i__2, A(i,i), &lda );
                magma_dsetvector( i__2,
                                  A(i,i), lda,
                                  dA(i-1,i-1), ldda );
                #endif
                
                /* Update A(i+1:m,i) */
                i__2 = m - i;
                i__3 = i - 1;
                #if defined(PRECISION_z) || defined(PRECISION_c)
                lapackf77_dlacgv( &i__3, Y(i,1), &ldy );
                #endif
                blasf77_dgemv( "No transpose", &i__2, &i__3, &c_neg_one,
                               A(i+1,1), &lda,
                               Y(i,1),   &ldy, &c_one,
                               A(i+1,i), &ione );
                i__2 = m - i;
                #if defined(PRECISION_z) || defined(PRECISION_c)
                lapackf77_dlacgv( &i__3, Y(i,1), &ldy );
                #endif
                blasf77_dgemv( "No transpose", &i__2, &i, &c_neg_one,
                               X(i+1,1), &ldx,
                               A(1,i),   &ione, &c_one,
                               A(i+1,i), &ione );
                
                /* Generate reflection Q(i) to annihilate A(i+2:m,i) */
                i__2 = m - i;
                i__3 = i + 2;
                alpha = *A(i+1,i);
                lapackf77_dlarfg( &i__2, &alpha, A(min(i__3,m),i), &ione, &tauq[i] );
                e[i] = MAGMA_D_REAL( alpha );
                *A(i+1,i) = c_one;
                
                /* Compute Y(i+1:n,i) */
                i__2 = m - i;
                i__3 = n - i;
                
                // 1. Send the block reflector  A(i+1:m,i) to the GPU ------
                magma_dsetvector( i__2,
                                  A(i+1,i), 1,
                                  dA(i,i-1), 1 );
                // 2. Multiply ---------------------------------------------
                magma_dgemv( MagmaConjTrans, i__2, i__3, c_one,
                             dA(i,i),   ldda,
                             dA(i,i-1), ione, c_zero,
                             dY(i+1,i), ione );
                
                // 3. Put the result back ----------------------------------
                magma_dgetmatrix_async( i__3, 1,
                                        dY(i+1,i), lddy,
                                        Y(i+1,i),  ldy, stream );
                
                i__2 = m - i;
                i__3 = i - 1;
                blasf77_dgemv( MagmaConjTransStr, &i__2, &i__3, &c_one,
                               A(i+1,1), &lda,
                               A(i+1,i), &ione, &c_zero,
                               Y(1,i),   &ione );
                i__2 = n - i;
                i__3 = i - 1;
                blasf77_dgemv( "No transpose", &i__2, &i__3, &c_neg_one,
                               Y(i+1,1), &ldy,
                               Y(1,i),   &ione, &c_zero,
                               f,        &ione );
                
                i__2 = m - i;
                blasf77_dgemv( MagmaConjTransStr, &i__2, &i, &c_one,
                               X(i+1,1), &ldx,
                               A(i+1,i), &ione, &c_zero,
                               Y(1,i),   &ione );
                
                // 4. Sync to make sure the result is back ----------------
                magma_queue_sync( stream );
                if (i__3 != 0) {
                    i__2 = n - i;
                    blasf77_daxpy( &i__2, &c_one, f, &ione, Y(i+1,i), &ione );
                }
                
                i__2 = n - i;
                blasf77_dgemv( MagmaConjTransStr, &i, &i__2, &c_neg_one,
                               A(1,i+1), &lda,
                               Y(1,i),   &ione, &c_one,
                               Y(i+1,i), &ione );
                i__2 = n - i;
                blasf77_dscal( &i__2, &tauq[i], Y(i+1,i), &ione );
            }
            #if defined(PRECISION_z) || defined(PRECISION_c)
            else {
                i__2 = n - i + 1;
                lapackf77_dlacgv( &i__2, A(i,i), &lda );
                magma_dsetvector( i__2,
                                  A(i,i), lda,
                                  dA(i-1,i-1), ldda );
            }
            #endif
        }
    }
    
    magma_queue_destroy( stream );
    magma_free_cpu( f );
    
    return info;
} /* magma_dlabrd_gpu */
Beispiel #5
0
/**
    Purpose
    -------
    DSYEVD computes all eigenvalues and, optionally, eigenvectors of a
    real symmetric matrix A.  If eigenvectors are desired, it uses a
    divide and conquer algorithm.

    The divide and conquer algorithm makes very mild assumptions about
    floating point arithmetic. It will work on machines with a guard
    digit in add/subtract, or on those binary machines without guard
    digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
    Cray-2. It could conceivably fail on hexadecimal or decimal machines
    without guard digits, but we know of none.

    Arguments
    ---------
    @param[in]
    nrgpu   INTEGER
            Number of GPUs to use.

    @param[in]
    jobz    magma_vec_t
      -     = MagmaNoVec:  Compute eigenvalues only;
      -     = MagmaVec:    Compute eigenvalues and eigenvectors.

    @param[in]
    uplo    magma_uplo_t
      -     = MagmaUpper:  Upper triangle of A is stored;
      -     = MagmaLower:  Lower triangle of A is stored.

    @param[in]
    n       INTEGER
            The order of the matrix A.  N >= 0.

    @param[in,out]
    A       DOUBLE_PRECISION array, dimension (LDA, N)
            On entry, the symmetric matrix A.  If UPLO = MagmaUpper, the
            leading N-by-N upper triangular part of A contains the
            upper triangular part of the matrix A.  If UPLO = MagmaLower,
            the leading N-by-N lower triangular part of A contains
            the lower triangular part of the matrix A.
            On exit, if JOBZ = MagmaVec, then if INFO = 0, A contains the
            orthonormal eigenvectors of the matrix A.
            If JOBZ = MagmaNoVec, then on exit the lower triangle (if UPLO=MagmaLower)
            or the upper triangle (if UPLO=MagmaUpper) of A, including the
            diagonal, is destroyed.

    @param[in]
    lda     INTEGER
            The leading dimension of the array A.  LDA >= max(1,N).

    @param[out]
    w       DOUBLE PRECISION array, dimension (N)
            If INFO = 0, the eigenvalues in ascending order.

    @param[out]
    work    (workspace) DOUBLE_PRECISION array, dimension (MAX(1,LWORK))
            On exit, if INFO = 0, WORK[0] returns the optimal LWORK.

    @param[in]
    lwork   INTEGER
            The length of the array WORK.
            If N <= 1,                      LWORK >= 1.
            If JOBZ = MagmaNoVec and N > 1, LWORK >= 2*N + N*NB.
            If JOBZ = MagmaVec   and N > 1, LWORK >= max( 2*N + N*NB, 1 + 6*N + 2*N**2 ).
            NB can be obtained through magma_get_dsytrd_nb(N).
    \n
            If LWORK = -1, then a workspace query is assumed; the routine
            only calculates the optimal sizes of the WORK, RWORK and
            IWORK arrays, returns these values as the first entries of
            the WORK, RWORK and IWORK arrays, and no error message
            related to LWORK or LRWORK or LIWORK is issued by XERBLA.

    @param[out]
    iwork   (workspace) INTEGER array, dimension (MAX(1,LIWORK))
            On exit, if INFO = 0, IWORK[0] returns the optimal LIWORK.

    @param[in]
    liwork  INTEGER
            The dimension of the array IWORK.
            If N <= 1,                      LIWORK >= 1.
            If JOBZ = MagmaNoVec and N > 1, LIWORK >= 1.
            If JOBZ = MagmaVec   and N > 1, LIWORK >= 3 + 5*N.
    \n
            If LIWORK = -1, then a workspace query is assumed; the
            routine only calculates the optimal sizes of the WORK, RWORK
            and IWORK arrays, returns these values as the first entries
            of the WORK, RWORK and IWORK arrays, and no error message
            related to LWORK or LRWORK or LIWORK is issued by XERBLA.

    @param[out]
    info    INTEGER
      -     = 0:  successful exit
      -     < 0:  if INFO = -i, the i-th argument had an illegal value
      -     > 0:  if INFO = i and JOBZ = MagmaNoVec, then the algorithm failed
                  to converge; i off-diagonal elements of an intermediate
                  tridiagonal form did not converge to zero;
                  if INFO = i and JOBZ = MagmaVec, then the algorithm failed
                  to compute an eigenvalue while working on the submatrix
                  lying in rows and columns INFO/(N+1) through
                  mod(INFO,N+1).

    Further Details
    ---------------
    Based on contributions by
       Jeff Rutter, Computer Science Division, University of California
       at Berkeley, USA

    Modified description of INFO. Sven, 16 Feb 05.

    @ingroup magma_dsyev_driver
    ********************************************************************/
extern "C" magma_int_t
magma_dsyevd_m(magma_int_t nrgpu, magma_vec_t jobz, magma_uplo_t uplo,
               magma_int_t n,
               double *A, magma_int_t lda,
               double *w,
               double *work, magma_int_t lwork,
               magma_int_t *iwork, magma_int_t liwork,
               magma_int_t *info)
{
    const char* uplo_ = lapack_uplo_const( uplo );
    const char* jobz_ = lapack_vec_const( jobz );
    magma_int_t ione = 1;
    magma_int_t izero = 0;
    double d_one = 1.;

    double d__1;

    double eps;
    magma_int_t inde;
    double anrm;
    double rmin, rmax;
    double sigma;
    magma_int_t iinfo, lwmin;
    magma_int_t lower;
    magma_int_t wantz;
    magma_int_t indwk2, llwrk2;
    magma_int_t iscale;
    double safmin;
    double bignum;
    magma_int_t indtau;
    magma_int_t indwrk, liwmin;
    magma_int_t llwork;
    double smlnum;
    magma_int_t lquery;

    wantz = (jobz == MagmaVec);
    lower = (uplo == MagmaLower);
    lquery = (lwork == -1 || liwork == -1);

    *info = 0;
    if (! (wantz || (jobz == MagmaNoVec))) {
        *info = -1;
    } else if (! (lower || (uplo == MagmaUpper))) {
        *info = -2;
    } else if (n < 0) {
        *info = -3;
    } else if (lda < max(1,n)) {
        *info = -5;
    }

    magma_int_t nb = magma_get_dsytrd_nb( n );
    if ( n <= 1 ) {
        lwmin  = 1;
        liwmin = 1;
    }
    else if ( wantz ) {
        lwmin  = max( 2*n + n*nb, 1 + 6*n + 2*n*n );
        liwmin = 3 + 5*n;
    }
    else {
        lwmin  = 2*n + n*nb;
        liwmin = 1;
    }
    
    // multiply by 1+eps (in Double!) to ensure length gets rounded up,
    // if it cannot be exactly represented in floating point.
    real_Double_t one_eps = 1. + lapackf77_dlamch("Epsilon");
    work[0]  = lwmin * one_eps;
    iwork[0] = liwmin;

    if ((lwork < lwmin) && !lquery) {
        *info = -8;
    } else if ((liwork < liwmin) && ! lquery) {
        *info = -10;
    }

    if (*info != 0) {
        magma_xerbla( __func__, -(*info) );
        return *info;
    }
    else if (lquery) {
        return *info;
    }

    /* Quick return if possible */
    if (n == 0) {
        return *info;
    }

    if (n == 1) {
        w[0] = A[0];
        if (wantz) {
            A[0] = 1.;
        }
        return *info;
    }
    /* Check if matrix is very small then just call LAPACK on CPU, no need for GPU */
    if (n <= 128) {
        #ifdef ENABLE_DEBUG
        printf("--------------------------------------------------------------\n");
        printf("  warning matrix too small N=%d NB=%d, calling lapack on CPU  \n", (int) n, (int) nb);
        printf("--------------------------------------------------------------\n");
        #endif
        lapackf77_dsyevd(jobz_, uplo_,
                         &n, A, &lda,
                         w, work, &lwork,
                         iwork, &liwork, info);
        return *info;
    }

    /* Get machine constants. */
    safmin = lapackf77_dlamch("Safe minimum");
    eps = lapackf77_dlamch("Precision");
    smlnum = safmin / eps;
    bignum = 1. / smlnum;
    rmin = magma_dsqrt(smlnum);
    rmax = magma_dsqrt(bignum);

    /* Scale matrix to allowable range, if necessary. */
    anrm = lapackf77_dlansy("M", uplo_, &n, A, &lda, work);
    iscale = 0;
    if (anrm > 0. && anrm < rmin) {
        iscale = 1;
        sigma = rmin / anrm;
    } else if (anrm > rmax) {
        iscale = 1;
        sigma = rmax / anrm;
    }
    if (iscale == 1) {
        lapackf77_dlascl(uplo_, &izero, &izero, &d_one, &sigma, &n, &n, A,
                &lda, info);
    }

    /* Call DSYTRD to reduce symmetric matrix to tridiagonal form. */
    // dsytrd work: e (n) + tau (n) + llwork (n*nb)  ==>  2n + n*nb
    // dstedx work: e (n) + tau (n) + z (n*n) + llwrk2 (1 + 4*n + n^2)  ==>  1 + 6n + 2n^2
    inde   = 0;
    indtau = inde   + n;
    indwrk = indtau + n;
    indwk2 = indwrk + n*n;
    llwork = lwork - indwrk;
    llwrk2 = lwork - indwk2;

    magma_timer_t time=0;
    timer_start( time );

    magma_dsytrd_mgpu(nrgpu, 1, uplo, n, A, lda, w, &work[inde],
                      &work[indtau], &work[indwrk], llwork, &iinfo);

    timer_stop( time );
    timer_printf( "time dsytrd = %6.2f\n", time );

    /* For eigenvalues only, call DSTERF.  For eigenvectors, first call
       DSTEDC to generate the eigenvector matrix, WORK(INDWRK), of the
       tridiagonal matrix, then call DORMTR to multiply it to the Householder
       transformations represented as Householder vectors in A. */
    if (! wantz) {
        lapackf77_dsterf(&n, w, &work[inde], info);
    }
    else {
        timer_start( time );

#ifdef USE_SINGLE_GPU
        if (MAGMA_SUCCESS != magma_dmalloc( &dwork, 3*n*(n/2 + 1) )) {
            *info = MAGMA_ERR_DEVICE_ALLOC;
            return *info;
        }

        magma_dstedx(MagmaRangeAll, n, 0., 0., 0, 0, w, &work[inde],
                     &work[indwrk], n, &work[indwk2],
                     llwrk2, iwork, liwork, dwork, info);

        magma_free( dwork );
#else
        magma_dstedx_m(nrgpu, MagmaRangeAll, n, 0., 0., 0, 0, w, &work[inde],
                       &work[indwrk], n, &work[indwk2],
                       llwrk2, iwork, liwork, info);
#endif

        timer_stop( time );
        timer_printf( "time dstedc = %6.2f\n", time );
        timer_start( time );

        magma_dormtr_m(nrgpu, MagmaLeft, uplo, MagmaNoTrans, n, n, A, lda, &work[indtau],
                       &work[indwrk], n, &work[indwk2], llwrk2, &iinfo);

        lapackf77_dlacpy("A", &n, &n, &work[indwrk], &n, A, &lda);

        timer_stop( time );
        timer_printf( "time dormtr + copy = %6.2f\n", time );
    }

    /* If matrix was scaled, then rescale eigenvalues appropriately. */
    if (iscale == 1) {
        d__1 = 1. / sigma;
        blasf77_dscal(&n, &d__1, w, &ione);
    }

    work[0]  = lwmin * one_eps;  // round up
    iwork[0] = liwmin;

    return *info;
} /* magma_dsyevd_m */
Beispiel #6
0
/**
    Purpose
    -------
    ZHEEVDX computes selected eigenvalues and, optionally, eigenvectors
    of a complex Hermitian matrix A. Eigenvalues and eigenvectors can
    be selected by specifying either a range of values or a range of
    indices for the desired eigenvalues.
    If eigenvectors are desired, it uses a divide and conquer algorithm.

    The divide and conquer algorithm makes very mild assumptions about
    floating point arithmetic. It will work on machines with a guard
    digit in add/subtract, or on those binary machines without guard
    digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
    Cray-2. It could conceivably fail on hexadecimal or decimal machines
    without guard digits, but we know of none.

    Arguments
    ---------
    @param[in]
    jobz    magma_vec_t
      -     = MagmaNoVec:  Compute eigenvalues only;
      -     = MagmaVec:    Compute eigenvalues and eigenvectors.

    @param[in]
    range   magma_range_t
      -     = MagmaRangeAll: all eigenvalues will be found.
      -     = MagmaRangeV:   all eigenvalues in the half-open interval (VL,VU]
                   will be found.
      -     = MagmaRangeI:   the IL-th through IU-th eigenvalues will be found.

    @param[in]
    uplo    magma_uplo_t
      -     = MagmaUpper:  Upper triangle of A is stored;
      -     = MagmaLower:  Lower triangle of A is stored.

    @param[in]
    n       INTEGER
            The order of the matrix A.  N >= 0.

    @param[in,out]
    A       COMPLEX_16 array, dimension (LDA, N)
            On entry, the Hermitian matrix A.  If UPLO = MagmaUpper, the
            leading N-by-N upper triangular part of A contains the
            upper triangular part of the matrix A.  If UPLO = MagmaLower,
            the leading N-by-N lower triangular part of A contains
            the lower triangular part of the matrix A.
            On exit, if JOBZ = MagmaVec, then if INFO = 0, the first m columns
            of A contains the required
            orthonormal eigenvectors of the matrix A.
            If JOBZ = MagmaNoVec, then on exit the lower triangle (if UPLO=MagmaLower)
            or the upper triangle (if UPLO=MagmaUpper) of A, including the
            diagonal, is destroyed.

    @param[in]
    lda     INTEGER
            The leading dimension of the array A.  LDA >= max(1,N).

    @param[in]
    vl      DOUBLE PRECISION
    @param[in]
    vu      DOUBLE PRECISION
            If RANGE=MagmaRangeV, the lower and upper bounds of the interval to
            be searched for eigenvalues. VL < VU.
            Not referenced if RANGE = MagmaRangeAll or MagmaRangeI.

    @param[in]
    il      INTEGER
    @param[in]
    iu      INTEGER
            If RANGE=MagmaRangeI, the indices (in ascending order) of the
            smallest and largest eigenvalues to be returned.
            1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
            Not referenced if RANGE = MagmaRangeAll or MagmaRangeV.

    @param[out]
    m       INTEGER
            The total number of eigenvalues found.  0 <= M <= N.
            If RANGE = MagmaRangeAll, M = N, and if RANGE = MagmaRangeI, M = IU-IL+1.

    @param[out]
    w       DOUBLE PRECISION array, dimension (N)
            If INFO = 0, the required m eigenvalues in ascending order.

    @param[out]
    work    (workspace) COMPLEX_16 array, dimension (MAX(1,LWORK))
            On exit, if INFO = 0, WORK[0] returns the optimal LWORK.

    @param[in]
    lwork   INTEGER
            The length of the array WORK.
            If N <= 1,                      LWORK >= 1.
            If JOBZ = MagmaNoVec and N > 1, LWORK >= N + N*NB.
            If JOBZ = MagmaVec   and N > 1, LWORK >= max( N + N*NB, 2*N + N**2 ).
            NB can be obtained through magma_get_zhetrd_nb(N).
    \n
            If LWORK = -1, then a workspace query is assumed; the routine
            only calculates the optimal sizes of the WORK, RWORK and
            IWORK arrays, returns these values as the first entries of
            the WORK, RWORK and IWORK arrays, and no error message
            related to LWORK or LRWORK or LIWORK is issued by XERBLA.

    @param[out]
    rwork   (workspace) DOUBLE PRECISION array,
                                           dimension (LRWORK)
            On exit, if INFO = 0, RWORK[0] returns the optimal LRWORK.

    @param[in]
    lrwork  INTEGER
            The dimension of the array RWORK.
            If N <= 1,                      LRWORK >= 1.
            If JOBZ = MagmaNoVec and N > 1, LRWORK >= N.
            If JOBZ = MagmaVec   and N > 1, LRWORK >= 1 + 5*N + 2*N**2.
    \n
            If LRWORK = -1, then a workspace query is assumed; the
            routine only calculates the optimal sizes of the WORK, RWORK
            and IWORK arrays, returns these values as the first entries
            of the WORK, RWORK and IWORK arrays, and no error message
            related to LWORK or LRWORK or LIWORK is issued by XERBLA.

    @param[out]
    iwork   (workspace) INTEGER array, dimension (MAX(1,LIWORK))
            On exit, if INFO = 0, IWORK[0] returns the optimal LIWORK.

    @param[in]
    liwork  INTEGER
            The dimension of the array IWORK.
            If N <= 1,                      LIWORK >= 1.
            If JOBZ = MagmaNoVec and N > 1, LIWORK >= 1.
            If JOBZ = MagmaVec   and N > 1, LIWORK >= 3 + 5*N.
    \n
            If LIWORK = -1, then a workspace query is assumed; the
            routine only calculates the optimal sizes of the WORK, RWORK
            and IWORK arrays, returns these values as the first entries
            of the WORK, RWORK and IWORK arrays, and no error message
            related to LWORK or LRWORK or LIWORK is issued by XERBLA.

    @param[out]
    info    INTEGER
      -     = 0:  successful exit
      -     < 0:  if INFO = -i, the i-th argument had an illegal value
      -     > 0:  if INFO = i and JOBZ = MagmaNoVec, then the algorithm failed
                  to converge; i off-diagonal elements of an intermediate
                  tridiagonal form did not converge to zero;
                  if INFO = i and JOBZ = MagmaVec, then the algorithm failed
                  to compute an eigenvalue while working on the submatrix
                  lying in rows and columns INFO/(N+1) through
                  mod(INFO,N+1).

    Further Details
    ---------------
    Based on contributions by
       Jeff Rutter, Computer Science Division, University of California
       at Berkeley, USA

    Modified description of INFO. Sven, 16 Feb 05.

    @ingroup magma_zheev_driver
    ********************************************************************/
extern "C" magma_int_t
magma_zheevdx(
    magma_vec_t jobz, magma_range_t range, magma_uplo_t uplo,
    magma_int_t n,
    magmaDoubleComplex *A, magma_int_t lda,
    double vl, double vu, magma_int_t il, magma_int_t iu,
    magma_int_t *m, double *w,
    magmaDoubleComplex *work, magma_int_t lwork,
    #ifdef COMPLEX
    double *rwork, magma_int_t lrwork,
    #endif
    magma_int_t *iwork, magma_int_t liwork,
    magma_int_t *info)
{
    const char* uplo_  = lapack_uplo_const( uplo  );
    const char* jobz_  = lapack_vec_const( jobz  );
    magma_int_t ione = 1;
    magma_int_t izero = 0;
    double d_one = 1.;

    double d__1;

    double eps;
    magma_int_t inde;
    double anrm;
    magma_int_t imax;
    double rmin, rmax;
    double sigma;
    magma_int_t iinfo, lwmin;
    magma_int_t lower;
    magma_int_t llrwk;
    magma_int_t wantz;
    magma_int_t indwk2, llwrk2;
    magma_int_t iscale;
    double safmin;
    double bignum;
    magma_int_t indtau;
    magma_int_t indrwk, indwrk, liwmin;
    magma_int_t lrwmin, llwork;
    double smlnum;
    magma_int_t lquery;
    magma_int_t alleig, valeig, indeig;

    double* dwork;

    wantz = (jobz == MagmaVec);
    lower = (uplo == MagmaLower);

    alleig = (range == MagmaRangeAll);
    valeig = (range == MagmaRangeV);
    indeig = (range == MagmaRangeI);

    lquery = (lwork == -1 || lrwork == -1 || liwork == -1);

    *info = 0;
    if (! (wantz || (jobz == MagmaNoVec))) {
        *info = -1;
    } else if (! (alleig || valeig || indeig)) {
        *info = -2;
    } else if (! (lower || (uplo == MagmaUpper))) {
        *info = -3;
    } else if (n < 0) {
        *info = -4;
    } else if (lda < max(1,n)) {
        *info = -6;
    } else {
        if (valeig) {
            if (n > 0 && vu <= vl) {
                *info = -8;
            }
        } else if (indeig) {
            if (il < 1 || il > max(1,n)) {
                *info = -9;
            } else if (iu < min(n,il) || iu > n) {
                *info = -10;
            }
        }
    }

    magma_int_t nb = magma_get_zhetrd_nb( n );
    if ( n <= 1 ) {
        lwmin  = 1;
        lrwmin = 1;
        liwmin = 1;
    }
    else if ( wantz ) {
        lwmin  = max( n + n*nb, 2*n + n*n );
        lrwmin = 1 + 5*n + 2*n*n;
        liwmin = 3 + 5*n;
    }
    else {
        lwmin  = n + n*nb;
        lrwmin = n;
        liwmin = 1;
    }
    
    // multiply by 1+eps (in Double!) to ensure length gets rounded up,
    // if it cannot be exactly represented in floating point.
    real_Double_t one_eps = 1. + lapackf77_dlamch("Epsilon");
    work[0]  = MAGMA_Z_MAKE( lwmin * one_eps, 0.);
    rwork[0] = lrwmin * one_eps;
    iwork[0] = liwmin;

    if ((lwork < lwmin) && !lquery) {
        *info = -14;
    } else if ((lrwork < lrwmin) && ! lquery) {
        *info = -16;
    } else if ((liwork < liwmin) && ! lquery) {
        *info = -18;
    }

    if (*info != 0) {
        magma_xerbla( __func__, -(*info) );
        return *info;
    }
    else if (lquery) {
        return *info;
    }

    /* Quick return if possible */
    if (n == 0) {
        return *info;
    }

    if (n == 1) {
        w[0] = MAGMA_Z_REAL(A[0]);
        if (wantz) {
            A[0] = MAGMA_Z_ONE;
        }
        return *info;
    }
    /* Check if matrix is very small then just call LAPACK on CPU, no need for GPU */
    if (n <= 128) {
        #ifdef ENABLE_DEBUG
        printf("--------------------------------------------------------------\n");
        printf("  warning matrix too small N=%d NB=%d, calling lapack on CPU  \n", (int) n, (int) nb);
        printf("--------------------------------------------------------------\n");
        #endif
        lapackf77_zheevd(jobz_, uplo_,
                         &n, A, &lda,
                         w, work, &lwork,
#if defined(PRECISION_z) || defined(PRECISION_c)
                         rwork, &lrwork,
#endif
                         iwork, &liwork, info);
        return *info;
    }
    /* Get machine constants. */
    safmin = lapackf77_dlamch("Safe minimum");
    eps    = lapackf77_dlamch("Precision");
    smlnum = safmin / eps;
    bignum = 1. / smlnum;
    rmin = magma_dsqrt(smlnum);
    rmax = magma_dsqrt(bignum);

    /* Scale matrix to allowable range, if necessary. */
    anrm = lapackf77_zlanhe("M", uplo_, &n, A, &lda, rwork);
    iscale = 0;
    if (anrm > 0. && anrm < rmin) {
        iscale = 1;
        sigma = rmin / anrm;
    } else if (anrm > rmax) {
        iscale = 1;
        sigma = rmax / anrm;
    }
    if (iscale == 1) {
        lapackf77_zlascl(uplo_, &izero, &izero, &d_one, &sigma, &n, &n, A,
                         &lda, info);
    }

    /* Call ZHETRD to reduce Hermitian matrix to tridiagonal form. */
    // zhetrd rwork: e (n)
    // zstedx rwork: e (n) + llrwk (1 + 4*N + 2*N**2)  ==>  1 + 5n + 2n^2
    inde   = 0;
    indrwk = inde + n;
    llrwk  = lrwork - indrwk;

    // zhetrd work: tau (n) + llwork (n*nb)  ==>  n + n*nb
    // zstedx work: tau (n) + z (n^2)
    // zunmtr work: tau (n) + z (n^2) + llwrk2 (n or n*nb)  ==>  2n + n^2, or n + n*nb + n^2
    indtau = 0;
    indwrk = indtau + n;
    indwk2 = indwrk + n*n;
    llwork = lwork - indwrk;
    llwrk2 = lwork - indwk2;

    magma_timer_t time=0;
    timer_start( time );

    magma_zhetrd(uplo, n, A, lda, w, &rwork[inde],
                 &work[indtau], &work[indwrk], llwork, &iinfo);

    timer_stop( time );
    timer_printf( "time zhetrd = %6.2f\n", time );

    /* For eigenvalues only, call DSTERF.  For eigenvectors, first call
     ZSTEDC to generate the eigenvector matrix, WORK(INDWRK), of the
     tridiagonal matrix, then call ZUNMTR to multiply it to the Householder
     transformations represented as Householder vectors in A. */
    if (! wantz) {
        lapackf77_dsterf(&n, w, &rwork[inde], info);

        magma_dmove_eig(range, n, w, &il, &iu, vl, vu, m);
    }
    else {
        timer_start( time );

        if (MAGMA_SUCCESS != magma_dmalloc( &dwork, 3*n*(n/2 + 1) )) {
            *info = MAGMA_ERR_DEVICE_ALLOC;
            return *info;
        }

        magma_zstedx(range, n, vl, vu, il, iu, w, &rwork[inde],
                     &work[indwrk], n, &rwork[indrwk],
                     llrwk, iwork, liwork, dwork, info);

        magma_free( dwork );

        timer_stop( time );
        timer_printf( "time zstedx = %6.2f\n", time );
        timer_start( time );

        magma_dmove_eig(range, n, w, &il, &iu, vl, vu, m);

        magma_zunmtr(MagmaLeft, uplo, MagmaNoTrans, n, *m, A, lda, &work[indtau],
                     &work[indwrk + n * (il-1) ], n, &work[indwk2], llwrk2, &iinfo);

        lapackf77_zlacpy("A", &n, m, &work[indwrk + n * (il-1)], &n, A, &lda);

        timer_stop( time );
        timer_printf( "time zunmtr + copy = %6.2f\n", time );
    }

    /* If matrix was scaled, then rescale eigenvalues appropriately. */
    if (iscale == 1) {
        if (*info == 0) {
            imax = n;
        } else {
            imax = *info - 1;
        }
        d__1 = 1. / sigma;
        blasf77_dscal(&imax, &d__1, w, &ione);
    }

    work[0]  = MAGMA_Z_MAKE( lwmin * one_eps, 0.);  // round up
    rwork[0] = lrwmin * one_eps;
    iwork[0] = liwmin;

    return *info;
} /* magma_zheevdx */
Beispiel #7
0
extern "C" magma_int_t
magma_dlabrd_gpu( magma_int_t m, magma_int_t n, magma_int_t nb,
                  double *a, magma_int_t lda, double *da, magma_int_t ldda,
                  double *d, double *e, double *tauq, double *taup,
                  double *x, magma_int_t ldx, double *dx, magma_int_t lddx,
                  double *y, magma_int_t ldy, double *dy, magma_int_t lddy)
{
/*  -- MAGMA (version 1.4.0) --
       Univ. of Tennessee, Knoxville
       Univ. of California, Berkeley
       Univ. of Colorado, Denver
       August 2013

    Purpose
    =======
    DLABRD reduces the first NB rows and columns of a real general
    m by n matrix A to upper or lower bidiagonal form by an orthogonal
    transformation Q' * A * P, and returns the matrices X and Y which
    are needed to apply the transformation to the unreduced part of A.

    If m >= n, A is reduced to upper bidiagonal form; if m < n, to lower
    bidiagonal form.

    This is an auxiliary routine called by SGEBRD

    Arguments
    =========
    M       (input) INTEGER
            The number of rows in the matrix A.

    N       (input) INTEGER
            The number of columns in the matrix A.

    NB      (input) INTEGER
            The number of leading rows and columns of A to be reduced.

    A       (input/output) DOUBLE_PRECISION array, dimension (LDA,N)
            On entry, the m by n general matrix to be reduced.
            On exit, the first NB rows and columns of the matrix are
            overwritten; the rest of the array is unchanged.
            If m >= n, elements on and below the diagonal in the first NB
              columns, with the array TAUQ, represent the orthogonal
              matrix Q as a product of elementary reflectors; and
              elements above the diagonal in the first NB rows, with the
              array TAUP, represent the orthogonal matrix P as a product
              of elementary reflectors.
            If m < n, elements below the diagonal in the first NB
              columns, with the array TAUQ, represent the orthogonal
              matrix Q as a product of elementary reflectors, and
              elements on and above the diagonal in the first NB rows,
              with the array TAUP, represent the orthogonal matrix P as
              a product of elementary reflectors.
            See Further Details.

    LDA     (input) INTEGER
            The leading dimension of the array A.  LDA >= max(1,M).

    D       (output) DOUBLE_PRECISION array, dimension (NB)
            The diagonal elements of the first NB rows and columns of
            the reduced matrix.  D(i) = A(i,i).

    E       (output) DOUBLE_PRECISION array, dimension (NB)
            The off-diagonal elements of the first NB rows and columns of
            the reduced matrix.

    TAUQ    (output) DOUBLE_PRECISION array dimension (NB)
            The scalar factors of the elementary reflectors which
            represent the orthogonal matrix Q. See Further Details.

    TAUP    (output) DOUBLE_PRECISION array, dimension (NB)
            The scalar factors of the elementary reflectors which
            represent the orthogonal matrix P. See Further Details.

    X       (output) DOUBLE_PRECISION array, dimension (LDX,NB)
            The m-by-nb matrix X required to update the unreduced part
            of A.

    LDX     (input) INTEGER
            The leading dimension of the array X. LDX >= M.

    Y       (output) DOUBLE_PRECISION array, dimension (LDY,NB)
            The n-by-nb matrix Y required to update the unreduced part
            of A.

    LDY     (input) INTEGER
            The leading dimension of the array Y. LDY >= N.

    Further Details
    ===============
    The matrices Q and P are represented as products of elementary
    reflectors:

       Q = H(1) H(2) . . . H(nb)  and  P = G(1) G(2) . . . G(nb)

    Each H(i) and G(i) has the form:

       H(i) = I - tauq * v * v'  and G(i) = I - taup * u * u'

    where tauq and taup are real scalars, and v and u are real vectors.

    If m >= n, v(1:i-1) = 0, v(i) = 1, and v(i:m) is stored on exit in
    A(i:m,i); u(1:i) = 0, u(i+1) = 1, and u(i+1:n) is stored on exit in
    A(i,i+1:n); tauq is stored in TAUQ(i) and taup in TAUP(i).

    If m < n, v(1:i) = 0, v(i+1) = 1, and v(i+1:m) is stored on exit in
    A(i+2:m,i); u(1:i-1) = 0, u(i) = 1, and u(i:n) is stored on exit in
    A(i,i+1:n); tauq is stored in TAUQ(i) and taup in TAUP(i).

    The elements of the vectors v and u together form the m-by-nb matrix
    V and the nb-by-n matrix U' which are needed, with X and Y, to apply
    the transformation to the unreduced part of the matrix, using a block
    update of the form:  A := A - V*Y' - X*U'.

    The contents of A on exit are illustrated by the following examples
    with nb = 2:

    m = 6 and n = 5 (m > n):          m = 5 and n = 6 (m < n):

      (  1   1   u1  u1  u1 )           (  1   u1  u1  u1  u1  u1 )
      (  v1  1   1   u2  u2 )           (  1   1   u2  u2  u2  u2 )
      (  v1  v2  a   a   a  )           (  v1  1   a   a   a   a  )
      (  v1  v2  a   a   a  )           (  v1  v2  a   a   a   a  )
      (  v1  v2  a   a   a  )           (  v1  v2  a   a   a   a  )
      (  v1  v2  a   a   a  )

    where a denotes an element of the original matrix which is unchanged,
    vi denotes an element of the vector defining H(i), and ui an element
    of the vector defining G(i).

    =====================================================================    */


    /* Table of constant values */
    double c_neg_one = MAGMA_D_NEG_ONE;
    double c_one = MAGMA_D_ONE;
    double c_zero = MAGMA_D_ZERO;
    magma_int_t c__1 = 1;
    
    /* System generated locals */
    magma_int_t a_dim1, a_offset, x_dim1, x_offset, y_dim1, y_offset, i__2, i__3;
    /* Local variables */
    magma_int_t i__;
    double alpha;

    a_dim1 = lda;
    a_offset = 1 + a_dim1;
    a -= a_offset;
    --d;
    --e;
    --tauq;
    --taup;

    x_dim1 = ldx;
    x_offset = 1 + x_dim1;
    x -= x_offset;
    dx-= 1 + lddx;

    y_dim1 = ldy;
    y_offset = 1 + y_dim1;
    y -= y_offset;
    dy-= 1 + lddy;

    /* Function Body */
    if (m <= 0 || n <= 0) {
        return 0;
    }

    double *f;
    magma_queue_t stream;
    magma_queue_create( &stream );
    magma_dmalloc_cpu( &f, max(n,m) );
    assert( f != NULL );  // TODO return error, or allocate outside dlatrd
    
    if (m >= n) {

        /* Reduce to upper bidiagonal form */

        for (i__ = 1; i__ <= nb; ++i__) {

            /*  Update A(i:m,i) */
            i__2 = m - i__ + 1;
            i__3 = i__ - 1;
            #if defined(PRECISION_z) || defined(PRECISION_c)
            lapackf77_dlacgv( &i__3, &y[i__+y_dim1], &ldy );
            #endif
            blasf77_dgemv("No transpose", &i__2, &i__3, &c_neg_one, &a[i__ + a_dim1], &lda,
                   &y[i__+y_dim1], &ldy, &c_one, &a[i__ + i__ * a_dim1], &c__1);
            #if defined(PRECISION_z) || defined(PRECISION_c)
            lapackf77_dlacgv( &i__3, &y[i__+y_dim1], &ldy );
            #endif
            blasf77_dgemv("No transpose", &i__2, &i__3, &c_neg_one, &x[i__ + x_dim1], &ldx,
                   &a[i__*a_dim1+1], &c__1, &c_one, &a[i__+i__*a_dim1], &c__1);
            
            /* Generate reflection Q(i) to annihilate A(i+1:m,i) */

            alpha = a[i__ + i__ * a_dim1];
            i__2 = m - i__ + 1;
            i__3 = i__ + 1;
            lapackf77_dlarfg(&i__2, &alpha,
                    &a[min(i__3,m) + i__ * a_dim1], &c__1, &tauq[i__]);
            d[i__] = MAGMA_D_REAL( alpha );
            if (i__ < n) {
                a[i__ + i__ * a_dim1] = c_one;

                /* Compute Y(i+1:n,i) */
                i__2 = m - i__ + 1;
                i__3 = n - i__;

                // 1. Send the block reflector  A(i+1:m,i) to the GPU ------
                magma_dsetvector( i__2,
                                  a + i__   + i__   * a_dim1, 1,
                                  da+(i__-1)+(i__-1)* (ldda), 1 );
                // 2. Multiply ---------------------------------------------
                magma_dgemv(MagmaTrans, i__2, i__3, c_one,
                            da + (i__-1) + ((i__-1) + 1) * (ldda), ldda,
                            da + (i__-1) + (i__-1) * (ldda), c__1, c_zero,
                            dy + i__ + 1 + i__ * y_dim1, c__1);
                
                // 3. Put the result back ----------------------------------
                magma_dgetmatrix_async( i__3, 1,
                                        dy+i__+1+i__*y_dim1, y_dim1,
                                        y+i__+1+i__*y_dim1,  y_dim1, stream );
                i__2 = m - i__ + 1;
                i__3 = i__ - 1;
                blasf77_dgemv(MagmaTransStr, &i__2, &i__3, &c_one, &a[i__ + a_dim1],
                        &lda, &a[i__ + i__ * a_dim1], &c__1, &c_zero,
                       &y[i__ * y_dim1 + 1], &c__1);

                i__2 = n - i__;
                i__3 = i__ - 1;
                blasf77_dgemv("N", &i__2, &i__3, &c_neg_one, &y[i__ + 1 +y_dim1], &ldy,
                       &y[i__ * y_dim1 + 1], &c__1,
                       &c_zero, f, &c__1);
                i__2 = m - i__ + 1;
                i__3 = i__ - 1;
                blasf77_dgemv(MagmaTransStr, &i__2, &i__3, &c_one, &x[i__ + x_dim1],
                       &ldx, &a[i__ + i__ * a_dim1], &c__1, &c_zero,
                       &y[i__ * y_dim1 + 1], &c__1);
                
                // 4. Synch to make sure the result is back ----------------
                magma_queue_sync( stream );

                if (i__3!=0){
                    i__2 = n - i__;
                    blasf77_daxpy(&i__2, &c_one, f,&c__1, &y[i__+1+i__*y_dim1],&c__1);
                }

                i__2 = i__ - 1;
                i__3 = n - i__;
                blasf77_dgemv(MagmaTransStr, &i__2, &i__3, &c_neg_one, &a[(i__ + 1) *
                        a_dim1 + 1], &lda, &y[i__ * y_dim1 + 1], &c__1, &c_one,
                        &y[i__ + 1 + i__ * y_dim1], &c__1);
                i__2 = n - i__;
                blasf77_dscal(&i__2, &tauq[i__], &y[i__ + 1 + i__ * y_dim1], &c__1);

                /* Update A(i,i+1:n) */
                i__2 = n - i__;
                #if defined(PRECISION_z) || defined(PRECISION_c)
                lapackf77_dlacgv( &i__2, &a[i__+(i__+1)*a_dim1], &lda );
                lapackf77_dlacgv( &i__,  &a[i__+a_dim1], &lda );
                #endif
                blasf77_dgemv("No transpose", &i__2, &i__, &c_neg_one, &y[i__ + 1 +
                        y_dim1], &ldy, &a[i__ + a_dim1], &lda, &c_one, &a[i__ + (
                        i__ + 1) * a_dim1], &lda);
                i__2 = i__ - 1;
                i__3 = n - i__;
                #if defined(PRECISION_z) || defined(PRECISION_c)
                lapackf77_dlacgv( &i__,  &a[i__+a_dim1], &lda );
                lapackf77_dlacgv( &i__2, &x[i__+x_dim1], &ldx );
                #endif
                blasf77_dgemv(MagmaTransStr, &i__2, &i__3, &c_neg_one, &a[(i__ + 1) *
                        a_dim1 + 1], &lda, &x[i__ + x_dim1], &ldx, &c_one, &a[
                        i__ + (i__ + 1) * a_dim1], &lda);
                #if defined(PRECISION_z) || defined(PRECISION_c)
                lapackf77_dlacgv( &i__2, &x[i__+x_dim1], &ldx );
                #endif

                /* Generate reflection P(i) to annihilate A(i,i+2:n) */
                i__2 = n - i__;
                /* Computing MIN */
                i__3 = i__ + 2;
                alpha = a[i__ + (i__ + 1) * a_dim1];
                lapackf77_dlarfg(&i__2, &alpha, &a[i__ + min(
                        i__3,n) * a_dim1], &lda, &taup[i__]);
                e[i__] = MAGMA_D_REAL( alpha );
                a[i__ + (i__ + 1) * a_dim1] = c_one;

                /* Compute X(i+1:m,i) */
                i__2 = m - i__;
                i__3 = n - i__;
                // 1. Send the block reflector  A(i+1:m,i) to the GPU ------
                magma_dsetvector( i__3,
                                  a + i__   + (i__   +1)* a_dim1, lda,
                                  da+(i__-1)+((i__-1)+1)*(ldda),  ldda );
                // 2. Multiply ---------------------------------------------
                //magma_dcopy(i__3, da+(i__-1)+((i__-1)+1)*(ldda), ldda,
                //            dy + 1 + lddy, 1);
                magma_dgemv(MagmaNoTrans, i__2, i__3, c_one,
                            da + (i__-1)+1+ ((i__-1)+1) * (ldda), ldda,
                            da + (i__-1) +  ((i__-1)+1) * (ldda), ldda,
                            //dy + 1 + lddy, 1,
                            c_zero, dx + i__ + 1 + i__ * x_dim1, c__1);

                // 3. Put the result back ----------------------------------
                magma_dgetmatrix_async( i__2, 1,
                                        dx+i__+1+i__*x_dim1, x_dim1,
                                        x+i__+1+i__*x_dim1,  x_dim1, stream );

                i__2 = n - i__;
                blasf77_dgemv(MagmaTransStr, &i__2, &i__, &c_one, &y[i__ + 1 + y_dim1],
                        &ldy, &a[i__ + (i__ + 1) * a_dim1], &lda, &c_zero, &x[
                        i__ * x_dim1 + 1], &c__1);

                i__2 = m - i__;
                blasf77_dgemv("N", &i__2, &i__, &c_neg_one, &a[i__ + 1 + a_dim1], &lda,
                       &x[i__ * x_dim1 + 1], &c__1, &c_zero, f, &c__1);
                i__2 = i__ - 1;
                i__3 = n - i__;
                blasf77_dgemv("N", &i__2, &i__3, &c_one, &a[(i__ + 1) * a_dim1 + 1],
                       &lda, &a[i__ + (i__ + 1) * a_dim1], &lda,
                       &c_zero, &x[i__ * x_dim1 + 1], &c__1);

                // 4. Synch to make sure the result is back ----------------
                magma_queue_sync( stream );
                if (i__!=0){
                    i__2 = m - i__;
                    blasf77_daxpy(&i__2, &c_one, f,&c__1, &x[i__+1+i__*x_dim1],&c__1);
                }


                i__2 = m - i__;
                i__3 = i__ - 1;
                blasf77_dgemv("No transpose", &i__2, &i__3, &c_neg_one, &x[i__ + 1 +
                        x_dim1], &ldx, &x[i__ * x_dim1 + 1], &c__1, &c_one, &x[
                        i__ + 1 + i__ * x_dim1], &c__1);
                i__2 = m - i__;
                blasf77_dscal(&i__2, &taup[i__], &x[i__ + 1 + i__ * x_dim1], &c__1);

                #if defined(PRECISION_z) || defined(PRECISION_c)
                i__2 = n - i__;
                lapackf77_dlacgv( &i__2,  &a[i__+(i__+1)*a_dim1], &lda );
                // 4. Send the block reflector  A(i+1:m,i) to the GPU after DLACGV()
                magma_dsetvector( i__2,
                                  a + i__   + (i__   +1)* a_dim1, lda,
                                  da+(i__-1)+((i__-1)+1)*(ldda),  ldda );
                #endif
            }
        }
    }
    else {

        /* Reduce to lower bidiagonal form */
        
        for (i__ = 1; i__ <= nb; ++i__) {
        
            /* Update A(i,i:n) */
            i__2 = n - i__ + 1;
            i__3 = i__ - 1;
            #if defined(PRECISION_z) || defined(PRECISION_c)
            lapackf77_dlacgv(&i__2, &a[i__ + i__ * a_dim1], &lda);
            lapackf77_dlacgv(&i__3, &a[i__ + a_dim1], &lda);
            #endif
            blasf77_dgemv("No transpose", &i__2, &i__3, &c_neg_one, &y[i__ + y_dim1], &ldy,
                   &a[i__ + a_dim1], &lda, &c_one, &a[i__ + i__ * a_dim1], &lda);
            i__2 = i__ - 1;
            #if defined(PRECISION_z) || defined(PRECISION_c)
            lapackf77_dlacgv(&i__3, &a[i__ + a_dim1], &lda);
            lapackf77_dlacgv(&i__3, &x[i__ + x_dim1], &ldx);
            #endif
            i__3 = n - i__ + 1;
            blasf77_dgemv(MagmaTransStr, &i__2, &i__3, &c_neg_one, &a[i__ * a_dim1 + 1],
                   &lda, &x[i__ + x_dim1], &ldx, &c_one, &a[i__ + i__ * a_dim1], &lda);
            #if defined(PRECISION_z) || defined(PRECISION_c)
            lapackf77_dlacgv(&i__2, &x[i__ + x_dim1], &ldx);
            #endif
            
            /* Generate reflection P(i) to annihilate A(i,i+1:n) */
            i__2 = n - i__ + 1;
            /* Computing MIN */
            i__3 = i__ + 1;
            alpha = a[i__ + i__ * a_dim1];
            lapackf77_dlarfg(&i__2, &alpha,
                    &a[i__ + min(i__3,n) * a_dim1], &lda, &taup[i__]);
            d[i__] = MAGMA_D_REAL( alpha );
            if (i__ < m) {
                a[i__ + i__ * a_dim1] = c_one;
                
                /* Compute X(i+1:m,i) */
                i__2 = m - i__;
                i__3 = n - i__ + 1;
                
                // 1. Send the block reflector  A(i,i+1:n) to the GPU ------
                magma_dsetvector( i__3,
                                  a + i__   + i__   * a_dim1, lda,
                                  da+(i__-1)+(i__-1)* (ldda), ldda );
                
                // 2. Multiply ---------------------------------------------
                //magma_dcopy(i__3, da+(i__-1)+(i__-1)*(ldda), ldda,
                //            dy + 1 + lddy, 1);
                magma_dgemv(MagmaNoTrans, i__2, i__3, c_one,
                            da + (i__-1)+1 + (i__-1) * ldda, ldda,
                            da + (i__-1)   + (i__-1) * ldda, ldda,
                            // dy + 1 + lddy, 1,
                            c_zero,
                            dx + i__ + 1 + i__ * x_dim1, c__1);
                
                // 3. Put the result back ----------------------------------
                magma_dgetmatrix_async( i__2, 1,
                                        dx+i__+1+i__*x_dim1, x_dim1,
                                        x+i__+1+i__*x_dim1,  x_dim1, stream );
                
                i__2 = n - i__ + 1;
                i__3 = i__ - 1;
                blasf77_dgemv(MagmaTransStr, &i__2, &i__3, &c_one, &y[i__ + y_dim1],
                       &ldy, &a[i__ + i__ * a_dim1], &lda, &c_zero,
                       &x[i__ *  x_dim1 + 1], &c__1);
                i__2 = m - i__;
                i__3 = i__ - 1;
                blasf77_dgemv("No transpose", &i__2, &i__3, &c_neg_one,
                              &a[i__ + 1 + a_dim1], &lda, &x[i__ * x_dim1 + 1], &c__1, &c_zero,
                              f, &c__1);
                
                i__2 = i__ - 1;
                i__3 = n - i__ + 1;
                blasf77_dgemv("No transpose", &i__2, &i__3, &c_one,
                       &a[i__ * a_dim1 + 1], &lda, &a[i__ + i__ * a_dim1], &lda, &c_zero,
                       &x[i__ * x_dim1 + 1], &c__1);
                
                // 4. Synch to make sure the result is back ----------------
                magma_queue_sync( stream );
                if (i__2!=0){
                    i__3 = m - i__;
                    blasf77_daxpy(&i__3, &c_one, f,&c__1, &x[i__+1+i__*x_dim1],&c__1);
                }
                
                i__2 = m - i__;
                i__3 = i__ - 1;
                blasf77_dgemv("No transpose", &i__2, &i__3, &c_neg_one,
                       &x[i__ + 1 + x_dim1], &ldx, &x[i__ * x_dim1 + 1], &c__1, &c_one,
                       &x[i__ + 1 + i__ * x_dim1], &c__1);
                i__2 = m - i__;
                blasf77_dscal(&i__2, &taup[i__], &x[i__ + 1 + i__ * x_dim1], &c__1);
                i__2 = n - i__ + 1;
                #if defined(PRECISION_z) || defined(PRECISION_c)
                lapackf77_dlacgv(&i__2, &a[i__ + i__ * a_dim1], &lda);
                magma_dsetvector( i__2,
                                  a + i__   + (i__  )* a_dim1, lda,
                                  da+(i__-1)+ (i__-1)*(ldda),  ldda );
                #endif
                
                /* Update A(i+1:m,i) */
                i__2 = m - i__;
                i__3 = i__ - 1;
                #if defined(PRECISION_z) || defined(PRECISION_c)
                lapackf77_dlacgv(&i__3, &y[i__ + y_dim1], &ldy);
                #endif
                blasf77_dgemv("No transpose", &i__2, &i__3, &c_neg_one,
                       &a[i__ + 1 + a_dim1], &lda, &y[i__ + y_dim1], &ldy, &c_one,
                       &a[i__ + 1 + i__ * a_dim1], &c__1);
                i__2 = m - i__;
                #if defined(PRECISION_z) || defined(PRECISION_c)
                lapackf77_dlacgv(&i__3, &y[i__ + y_dim1], &ldy);
                #endif
                blasf77_dgemv("No transpose", &i__2, &i__, &c_neg_one,
                       &x[i__ + 1 + x_dim1], &ldx, &a[i__ * a_dim1 + 1], &c__1, &c_one,
                       &a[i__ + 1 + i__ * a_dim1], &c__1);
                
                /* Generate reflection Q(i) to annihilate A(i+2:m,i) */
                i__2 = m - i__;
                i__3 = i__ + 2;
                alpha = a[i__ + 1 + i__ * a_dim1];
                lapackf77_dlarfg(&i__2, &alpha,
                        &a[min(i__3,m) + i__ * a_dim1], &c__1, &tauq[i__]);
                e[i__] = MAGMA_D_REAL( alpha );
                a[i__ + 1 + i__ * a_dim1] = c_one;
                
                /* Compute Y(i+1:n,i) */
                i__2 = m - i__;
                i__3 = n - i__;
                
                // 1. Send the block reflector  A(i+1:m,i) to the GPU ------
                magma_dsetvector( i__2,
                                  a + i__   +1+  i__   * a_dim1, 1,
                                  da+(i__-1)+1+ (i__-1)*(ldda),  1 );
                // 2. Multiply ---------------------------------------------
                magma_dgemv(MagmaTrans, i__2, i__3, c_one,
                            da + (i__-1)+1+ ((i__-1)+1) * ldda, ldda,
                            da + (i__-1)+1+  (i__-1)    * ldda, c__1,
                            c_zero, dy + i__ + 1 + i__ * y_dim1, c__1);
                
                // 3. Put the result back ----------------------------------
                magma_dgetmatrix_async( i__3, 1,
                                        dy+i__+1+i__*y_dim1, y_dim1,
                                        y+i__+1+i__*y_dim1,  y_dim1, stream );
                
                i__2 = m - i__;
                i__3 = i__ - 1;
                blasf77_dgemv(MagmaTransStr, &i__2, &i__3, &c_one, &a[i__ + 1 + a_dim1],
                       &lda, &a[i__ + 1 + i__ * a_dim1], &c__1, &c_zero,
                       &y[ i__ * y_dim1 + 1], &c__1);
                i__2 = n - i__;
                i__3 = i__ - 1;
                blasf77_dgemv("No transpose", &i__2, &i__3, &c_neg_one,
                       &y[i__ + 1 + y_dim1], &ldy, &y[i__ * y_dim1 + 1], &c__1,
                       &c_zero, f, &c__1);
                
                i__2 = m - i__;
                blasf77_dgemv(MagmaTransStr, &i__2, &i__, &c_one, &x[i__ + 1 + x_dim1],
                       &ldx, &a[i__ + 1 + i__ * a_dim1], &c__1, &c_zero,
                       &y[i__ * y_dim1 + 1], &c__1);
                
                // 4. Synch to make sure the result is back ----------------
                magma_queue_sync( stream );
                if (i__3!=0){
                    i__2 = n - i__;
                    blasf77_daxpy(&i__2, &c_one, f,&c__1, &y[i__+1+i__*y_dim1],&c__1);
                }
                
                i__2 = n - i__;
                blasf77_dgemv(MagmaTransStr, &i__, &i__2, &c_neg_one,
                       &a[(i__ + 1) * a_dim1 + 1], &lda, &y[i__ * y_dim1 + 1],
                       &c__1, &c_one, &y[i__ + 1 + i__ * y_dim1], &c__1);
                i__2 = n - i__;
                blasf77_dscal(&i__2, &tauq[i__], &y[i__ + 1 + i__ * y_dim1], &c__1);
            }
            #if defined(PRECISION_z) || defined(PRECISION_c)
            else {
                i__2 = n - i__ + 1;
                lapackf77_dlacgv(&i__2, &a[i__ + i__ * a_dim1], &lda);
                magma_dsetvector( i__2,
                                  a + i__   + (i__  )* a_dim1, lda,
                                  da+(i__-1)+ (i__-1)*(ldda),  ldda );
            }
            #endif
        }
    }
    
    magma_queue_destroy( stream );
    magma_free_cpu(f);
    
    return MAGMA_SUCCESS;
} /* dlabrd */
Beispiel #8
0
/* ////////////////////////////////////////////////////////////////////////////
   -- Testing dsygvd
*/
int main( int argc, char** argv)
{
    TESTING_INIT();

    real_Double_t   gpu_time, cpu_time;
    double *h_A, *h_R, *h_B, *h_S, *h_work;
    double *w1, *w2;
    magma_int_t *iwork;
    magma_int_t N, n2, info, nb, lwork, liwork, lda;
    double result[4] = {0};

    double c_one     = MAGMA_D_ONE;
    double c_neg_one = MAGMA_D_NEG_ONE;

    double d_zero        =  0.;
    double d_one         =  1.;
    double d_neg_one     = -1.;
    //magma_int_t izero    = 0;
    magma_int_t ione     = 1;
    magma_int_t ISEED[4] = {0,0,0,1};
    magma_int_t status = 0;

    magma_opts opts;
    parse_opts( argc, argv, &opts );
    
    double tol    = opts.tolerance * lapackf77_dlamch("E");
    double tolulp = opts.tolerance * lapackf77_dlamch("P");
    
    if ( opts.check && opts.jobz == MagmaNoVec ) {
        fprintf( stderr, "checking results requires vectors; setting jobz=V (option -JV)\n" );
        opts.jobz = MagmaVec;
    }
    
    printf("using: itype = %d, jobz = %s, uplo = %s\n",
           (int) opts.itype, lapack_vec_const(opts.jobz), lapack_uplo_const(opts.uplo));

    printf("    N   CPU Time (sec)   GPU Time(sec)\n");
    printf("======================================\n");
    for( int itest = 0; itest < opts.ntest; ++itest ) {
        for( int iter = 0; iter < opts.niter; ++iter ) {
            N = opts.nsize[itest];
            lda    = N;
            n2     = N*lda;
            nb     = magma_get_dsytrd_nb(N);
            lwork  = 1 + 6*N*nb + 2* N*N;
            liwork = 3 + 5*N;

            TESTING_MALLOC_CPU( h_A,    double,      n2     );
            TESTING_MALLOC_CPU( h_B,    double,      n2     );
            TESTING_MALLOC_CPU( w1,     double,      N      );
            TESTING_MALLOC_CPU( w2,     double,      N      );
            TESTING_MALLOC_CPU( iwork,  magma_int_t, liwork );
            
            TESTING_MALLOC_PIN( h_R,    double,      n2     );
            TESTING_MALLOC_PIN( h_S,    double,      n2     );
            TESTING_MALLOC_PIN( h_work, double,      lwork  );
            
            /* Initialize the matrix */
            lapackf77_dlarnv( &ione, ISEED, &n2, h_A );
            lapackf77_dlarnv( &ione, ISEED, &n2, h_B );
            magma_dmake_hpd( N, h_B, lda );
            lapackf77_dlacpy( MagmaUpperLowerStr, &N, &N, h_A, &lda, h_R, &lda );
            lapackf77_dlacpy( MagmaUpperLowerStr, &N, &N, h_B, &lda, h_S, &lda );
            
            /* warmup */
            if ( opts.warmup ) {
                magma_dsygvd( opts.itype, opts.jobz, opts.uplo,
                              N, h_R, lda, h_S, lda, w1,
                              h_work, lwork,
                              iwork, liwork,
                              &info );
                if (info != 0)
                    printf("magma_dsygvd returned error %d: %s.\n",
                           (int) info, magma_strerror( info ));
                
                lapackf77_dlacpy( MagmaUpperLowerStr, &N, &N, h_A, &lda, h_R, &lda );
                lapackf77_dlacpy( MagmaUpperLowerStr, &N, &N, h_B, &lda, h_S, &lda );
            }
            
            /* ====================================================================
               Performs operation using MAGMA
               =================================================================== */
            gpu_time = magma_wtime();
            magma_dsygvd( opts.itype, opts.jobz, opts.uplo,
                          N, h_R, lda, h_S, lda, w1,
                          h_work, lwork,
                          iwork, liwork,
                          &info );
            gpu_time = magma_wtime() - gpu_time;
            if (info != 0)
                printf("magma_dsygvd returned error %d: %s.\n",
                       (int) info, magma_strerror( info ));
            
            if ( opts.check ) {
                /* =====================================================================
                   Check the results following the LAPACK's [zc]hegvd routine.
                   A x = lambda B x is solved
                   and the following 3 tests computed:
                   (1)    | A Z - B Z D | / ( |A||Z| N )   (itype = 1)
                          | A B Z - Z D | / ( |A||Z| N )   (itype = 2)
                          | B A Z - Z D | / ( |A||Z| N )   (itype = 3)
                   (2)    | I - V V' B | / ( N )           (itype = 1,2)
                          | B - V V' | / ( |B| N )         (itype = 3)
                   (3)    | S(with V) - S(w/o V) | / | S |
                   =================================================================== */
                double temp1, temp2;
                //double *tau;
                
                if ( opts.itype == 1 || opts.itype == 2 ) {
                    lapackf77_dlaset( "A", &N, &N, &d_zero, &c_one, h_S, &lda);
                    blasf77_dgemm("N", "C", &N, &N, &N, &c_one, h_R, &lda, h_R, &lda, &d_zero, h_work, &N);
                    blasf77_dsymm("R", lapack_uplo_const(opts.uplo), &N, &N, &c_neg_one, h_B, &lda, h_work, &N, &c_one, h_S, &lda);
                    result[1] = lapackf77_dlange("1", &N, &N, h_S, &lda, h_work) / N;
                }
                else if ( opts.itype == 3 ) {
                    lapackf77_dlacpy( MagmaUpperLowerStr, &N, &N, h_B, &lda, h_S, &lda);
                    blasf77_dsyrk(lapack_uplo_const(opts.uplo), "N", &N, &N, &d_neg_one, h_R, &lda, &d_one, h_S, &lda);
                    result[1] = lapackf77_dlansy("1", lapack_uplo_const(opts.uplo), &N, h_S, &lda, h_work) / N
                              / lapackf77_dlansy("1", lapack_uplo_const(opts.uplo), &N, h_B, &lda, h_work);
                }
                
                result[0] = 1.;
                result[0] /= lapackf77_dlansy("1", lapack_uplo_const(opts.uplo), &N, h_A, &lda, h_work);
                result[0] /= lapackf77_dlange("1", &N, &N, h_R, &lda, h_work);
                
                if ( opts.itype == 1 ) {
                    blasf77_dsymm("L", lapack_uplo_const(opts.uplo), &N, &N, &c_one, h_A, &lda, h_R, &lda, &d_zero, h_work, &N);
                    for(int i=0; i<N; ++i)
                        blasf77_dscal(&N, &w1[i], &h_R[i*N], &ione);
                    blasf77_dsymm("L", lapack_uplo_const(opts.uplo), &N, &N, &c_neg_one, h_B, &lda, h_R, &lda, &c_one, h_work, &N);
                    result[0] *= lapackf77_dlange("1", &N, &N, h_work, &N, &temp1)/N;
                }
                else if ( opts.itype == 2 ) {
                    blasf77_dsymm("L", lapack_uplo_const(opts.uplo), &N, &N, &c_one, h_B, &lda, h_R, &lda, &d_zero, h_work, &N);
                    for(int i=0; i<N; ++i)
                        blasf77_dscal(&N, &w1[i], &h_R[i*N], &ione);
                    blasf77_dsymm("L", lapack_uplo_const(opts.uplo), &N, &N, &c_one, h_A, &lda, h_work, &N, &c_neg_one, h_R, &lda);
                    result[0] *= lapackf77_dlange("1", &N, &N, h_R, &lda, &temp1)/N;
                }
                else if ( opts.itype == 3 ) {
                    blasf77_dsymm("L", lapack_uplo_const(opts.uplo), &N, &N, &c_one, h_A, &lda, h_R, &lda, &d_zero, h_work, &N);
                    for(int i=0; i<N; ++i)
                        blasf77_dscal(&N, &w1[i], &h_R[i*N], &ione);
                    blasf77_dsymm("L", lapack_uplo_const(opts.uplo), &N, &N, &c_one, h_B, &lda, h_work, &N, &c_neg_one, h_R, &lda);
                    result[0] *= lapackf77_dlange("1", &N, &N, h_R, &lda, &temp1)/N;
                }
                
                /*
                lapackf77_dsyt21(&ione, lapack_uplo_const(opts.uplo), &N, &izero,
                                 h_A, &lda,
                                 w1, w1,
                                 h_R, &lda,
                                 h_R, &lda,
                                 tau, h_work, rwork, &result[0]);
                */
                
                lapackf77_dlacpy( MagmaUpperLowerStr, &N, &N, h_A, &lda, h_R, &lda );
                lapackf77_dlacpy( MagmaUpperLowerStr, &N, &N, h_B, &lda, h_S, &lda );
                
                magma_dsygvd( opts.itype, MagmaNoVec, opts.uplo,
                              N, h_R, lda, h_S, lda, w2,
                              h_work, lwork,
                              iwork, liwork,
                              &info );
                if (info != 0)
                    printf("magma_dsygvd returned error %d: %s.\n",
                           (int) info, magma_strerror( info ));
                
                temp1 = temp2 = 0;
                for(int j=0; j<N; j++) {
                    temp1 = max(temp1, absv(w1[j]));
                    temp1 = max(temp1, absv(w2[j]));
                    temp2 = max(temp2, absv(w1[j]-w2[j]));
                }
                result[2] = temp2 / temp1;
            }
            
            /* =====================================================================
               Performs operation using LAPACK
               =================================================================== */
            if ( opts.lapack ) {
                cpu_time = magma_wtime();
                lapackf77_dsygvd( &opts.itype, lapack_vec_const(opts.jobz), lapack_uplo_const(opts.uplo),
                                  &N, h_A, &lda, h_B, &lda, w2,
                                  h_work, &lwork,
                                  iwork, &liwork,
                                  &info );
                cpu_time = magma_wtime() - cpu_time;
                if (info != 0)
                    printf("lapackf77_dsygvd returned error %d: %s.\n",
                           (int) info, magma_strerror( info ));
                
                printf("%5d     %7.2f         %7.2f\n",
                       (int) N, cpu_time, gpu_time);
            }
            else {
                printf("%5d       ---           %7.2f\n",
                       (int) N, gpu_time);
            }
            
            /* =====================================================================
               Print execution time
               =================================================================== */
            if ( opts.check ) {
                printf("Testing the eigenvalues and eigenvectors for correctness:\n");
                if ( opts.itype==1 ) {
                    printf("(1)    | A Z - B Z D | / (|A| |Z| N) = %8.2e   %s\n",   result[0], (result[0] < tol    ? "ok" : "failed") );
                }
                else if ( opts.itype==2 ) {
                    printf("(1)    | A B Z - Z D | / (|A| |Z| N) = %8.2e   %s\n",   result[0], (result[0] < tol    ? "ok" : "failed") );
                }
                else if ( opts.itype==3 ) {
                    printf("(1)    | B A Z - Z D | / (|A| |Z| N) = %8.2e   %s\n",   result[0], (result[0] < tol    ? "ok" : "failed") );
                }
                if ( opts.itype==1 || opts.itype==2 ) {
                    printf("(2)    | I -   Z Z' B | /  N         = %8.2e   %s\n",   result[1], (result[1] < tol    ? "ok" : "failed") );
                }
                else {
                    printf("(2)    | B -  Z Z' | / (|B| N)       = %8.2e   %s\n",   result[1], (result[1] < tol    ? "ok" : "failed") );
                }
                printf(    "(3)    | D(w/ Z) - D(w/o Z) | / |D|  = %8.2e   %s\n\n", result[2], (result[2] < tolulp ? "ok" : "failed") );
                status += ! (result[0] < tol && result[1] < tol && result[2] < tolulp);
            }
            
            TESTING_FREE_CPU( h_A   );
            TESTING_FREE_CPU( h_B   );
            TESTING_FREE_CPU( w1    );
            TESTING_FREE_CPU( w2    );
            TESTING_FREE_CPU( iwork );
            
            TESTING_FREE_PIN( h_R    );
            TESTING_FREE_PIN( h_S    );
            TESTING_FREE_PIN( h_work );
            fflush( stdout );
        }
        if ( opts.niter > 1 ) {
            printf( "\n" );
        }
    }
    
    TESTING_FINALIZE();
    return status;
}
Beispiel #9
0
/**
    Purpose
    -------
    DSYEVD_GPU computes all eigenvalues and, optionally, eigenvectors of
    a real symmetric matrix A.  If eigenvectors are desired, it uses a
    divide and conquer algorithm.

    The divide and conquer algorithm makes very mild assumptions about
    floating point arithmetic. It will work on machines with a guard
    digit in add/subtract, or on those binary machines without guard
    digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
    Cray-2. It could conceivably fail on hexadecimal or decimal machines
    without guard digits, but we know of none.

    Arguments
    ---------
    @param[in]
    jobz    magma_vec_t
      -     = MagmaNoVec:  Compute eigenvalues only;
      -     = MagmaVec:    Compute eigenvalues and eigenvectors.

    @param[in]
    uplo    magma_uplo_t
      -     = MagmaUpper:  Upper triangle of A is stored;
      -     = MagmaLower:  Lower triangle of A is stored.

    @param[in]
    n       INTEGER
            The order of the matrix A.  N >= 0.

    @param[in,out]
    dA      DOUBLE PRECISION array on the GPU,
            dimension (LDDA, N).
            On entry, the symmetric matrix A.  If UPLO = MagmaUpper, the
            leading N-by-N upper triangular part of A contains the
            upper triangular part of the matrix A.  If UPLO = MagmaLower,
            the leading N-by-N lower triangular part of A contains
            the lower triangular part of the matrix A.
            On exit, if JOBZ = MagmaVec, then if INFO = 0, A contains the
            orthonormal eigenvectors of the matrix A.
            If JOBZ = MagmaNoVec, then on exit the lower triangle (if UPLO=MagmaLower)
            or the upper triangle (if UPLO=MagmaUpper) of A, including the
            diagonal, is destroyed.

    @param[in]
    ldda    INTEGER
            The leading dimension of the array DA.  LDDA >= max(1,N).

    @param[out]
    w       DOUBLE PRECISION array, dimension (N)
            If INFO = 0, the eigenvalues in ascending order.

    @param
    wA      (workspace) DOUBLE PRECISION array, dimension (LDWA, N)

    @param[in]
    ldwa    INTEGER
            The leading dimension of the array wA.  LDWA >= max(1,N).

    @param[out]
    work    (workspace) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
            On exit, if INFO = 0, WORK[0] returns the optimal LWORK.

    @param[in]
    lwork   INTEGER
            The length of the array WORK.
            If N <= 1,                      LWORK >= 1.
            If JOBZ = MagmaNoVec and N > 1, LWORK >= 2*N + N*NB.
            If JOBZ = MagmaVec   and N > 1, LWORK >= max( 2*N + N*NB, 1 + 6*N + 2*N**2 ).
            NB can be obtained through magma_get_dsytrd_nb(N).
    \n
            If LWORK = -1, then a workspace query is assumed; the routine
            only calculates the optimal sizes of the WORK and IWORK
            arrays, returns these values as the first entries of the WORK
            and IWORK arrays, and no error message related to LWORK or
            LIWORK is issued by XERBLA.

    @param[out]
    iwork   (workspace) INTEGER array, dimension (MAX(1,LIWORK))
            On exit, if INFO = 0, IWORK[0] returns the optimal LIWORK.

    @param[in]
    liwork  INTEGER
            The dimension of the array IWORK.
            If N <= 1,                       LIWORK >= 1.
            If JOBZ = MagmaNoVec and N > 1, LIWORK >= 1.
            If JOBZ  = MagmaVec   and N > 1, LIWORK >= 3 + 5*N.
    \n
            If LIWORK = -1, then a workspace query is assumed; the
            routine only calculates the optimal sizes of the WORK and
            IWORK arrays, returns these values as the first entries of
            the WORK and IWORK arrays, and no error message related to
            LWORK or LIWORK is issued by XERBLA.

    @param[out]
    info    INTEGER
      -     = 0:  successful exit
      -     < 0:  if INFO = -i, the i-th argument had an illegal value
      -     > 0:  if INFO = i and JOBZ = MagmaNoVec, then the algorithm failed
                  to converge; i off-diagonal elements of an intermediate
                  tridiagonal form did not converge to zero;
                  if INFO = i and JOBZ = MagmaVec, then the algorithm failed
                  to compute an eigenvalue while working on the submatrix
                  lying in rows and columns INFO/(N+1) through
                  mod(INFO,N+1).

    Further Details
    ---------------
    Based on contributions by
       Jeff Rutter, Computer Science Division, University of California
       at Berkeley, USA

    Modified description of INFO. Sven, 16 Feb 05.

    @ingroup magma_dsyev_driver
    ********************************************************************/
extern "C" magma_int_t
magma_dsyevd_gpu(
    magma_vec_t jobz, magma_uplo_t uplo,
    magma_int_t n,
    magmaDouble_ptr dA, magma_int_t ldda,
    double *w,
    double *wA,  magma_int_t ldwa,
    double *work, magma_int_t lwork,
    #ifdef COMPLEX
    double *rwork, magma_int_t lrwork,
    #endif
    magma_int_t *iwork, magma_int_t liwork,
    magma_int_t *info)
{
    magma_int_t ione = 1;

    double d__1;

    double eps;
    magma_int_t inde;
    double anrm;
    double rmin, rmax;
    double sigma;
    magma_int_t iinfo, lwmin;
    magma_int_t lower;
    magma_int_t wantz;
    magma_int_t indwk2, llwrk2;
    magma_int_t iscale;
    double safmin;
    double bignum;
    magma_int_t indtau;
    magma_int_t indwrk, liwmin;
    magma_int_t llwork;
    double smlnum;
    magma_int_t lquery;

    magmaDouble_ptr dwork;
    magma_int_t lddc = ldda;

    wantz = (jobz == MagmaVec);
    lower = (uplo == MagmaLower);
    lquery = (lwork == -1 || liwork == -1);

    *info = 0;
    if (! (wantz || (jobz == MagmaNoVec))) {
        *info = -1;
    } else if (! (lower || (uplo == MagmaUpper))) {
        *info = -2;
    } else if (n < 0) {
        *info = -3;
    } else if (ldda < max(1,n)) {
        *info = -5;
    }

    magma_int_t nb = magma_get_dsytrd_nb( n );
    if ( n <= 1 ) {
        lwmin  = 1;
        liwmin = 1;
    }
    else if ( wantz ) {
        lwmin  = max( 2*n + n*nb, 1 + 6*n + 2*n*n );
        liwmin = 3 + 5*n;
    }
    else {
        lwmin  = 2*n + n*nb;
        liwmin = 1;
    }
    
    work[0]  = magma_dmake_lwork( lwmin );
    iwork[0] = liwmin;

    if ((lwork < lwmin) && !lquery) {
        *info = -10;
    } else if ((liwork < liwmin) && ! lquery) {
        *info = -12;
    }

    if (*info != 0) {
        magma_xerbla( __func__, -(*info) );
        return *info;
    }
    else if (lquery) {
        return *info;
    }

    magma_queue_t queue;
    magma_device_t cdev;
    magma_getdevice( &cdev );
    magma_queue_create( cdev, &queue );

    /* If matrix is very small, then just call LAPACK on CPU, no need for GPU */
    if (n <= 128) {
        magma_int_t lda = n;
        double *A;
        magma_dmalloc_cpu( &A, lda*n );
        magma_dgetmatrix( n, n, dA, ldda, A, lda, queue );
        lapackf77_dsyevd( lapack_vec_const(jobz), lapack_uplo_const(uplo),
                          &n, A, &lda,
                          w, work, &lwork,
                          iwork, &liwork, info );
        magma_dsetmatrix( n, n, A, lda, dA, ldda, queue );
        magma_free_cpu( A );
        magma_queue_destroy( queue );
        return *info;
    }

    // dsytrd2_gpu requires ldda*ceildiv(n,64) + 2*ldda*nb
    // dormtr_gpu  requires lddc*n
    // dlansy      requires n
    magma_int_t ldwork = max( ldda*magma_ceildiv(n,64) + 2*ldda*nb, lddc*n );
    ldwork = max( ldwork, n );
    if ( wantz ) {
        // dstedx requires 3n^2/2
        ldwork = max( ldwork, 3*n*(n/2 + 1) );
    }
    if (MAGMA_SUCCESS != magma_dmalloc( &dwork, ldwork )) {
        *info = MAGMA_ERR_DEVICE_ALLOC;
        return *info;
    }

    /* Get machine constants. */
    safmin = lapackf77_dlamch("Safe minimum");
    eps    = lapackf77_dlamch("Precision");
    smlnum = safmin / eps;
    bignum = 1. / smlnum;
    rmin = magma_dsqrt( smlnum );
    rmax = magma_dsqrt( bignum );

    /* Scale matrix to allowable range, if necessary. */
    anrm = magmablas_dlansy( MagmaMaxNorm, uplo, n, dA, ldda, dwork, ldwork, queue );
    iscale = 0;
    sigma  = 1;
    if (anrm > 0. && anrm < rmin) {
        iscale = 1;
        sigma = rmin / anrm;
    } else if (anrm > rmax) {
        iscale = 1;
        sigma = rmax / anrm;
    }
    if (iscale == 1) {
        magmablas_dlascl( uplo, 0, 0, 1., sigma, n, n, dA, ldda, queue, info );
    }

    /* Call DSYTRD to reduce symmetric matrix to tridiagonal form. */
    // dsytrd work: e (n) + tau (n) + llwork (n*nb)  ==>  2n + n*nb
    // dstedx work: e (n) + tau (n) + z (n*n) + llwrk2 (1 + 4*n + n^2)  ==>  1 + 6n + 2n^2
    inde   = 0;
    indtau = inde   + n;
    indwrk = indtau + n;
    indwk2 = indwrk + n*n;
    llwork = lwork - indwrk;
    llwrk2 = lwork - indwk2;

    magma_timer_t time=0;
    timer_start( time );

#ifdef FAST_SYMV
    magma_dsytrd2_gpu( uplo, n, dA, ldda, w, &work[inde],
                       &work[indtau], wA, ldwa, &work[indwrk], llwork,
                       dwork, ldwork, &iinfo );
#else
    magma_dsytrd_gpu(  uplo, n, dA, ldda, w, &work[inde],
                       &work[indtau], wA, ldwa, &work[indwrk], llwork,
                       &iinfo );
#endif

    timer_stop( time );
    #ifdef FAST_SYMV
    timer_printf( "time dsytrd2 = %6.2f\n", time );
    #else
    timer_printf( "time dsytrd = %6.2f\n", time );
    #endif

    /* For eigenvalues only, call DSTERF.  For eigenvectors, first call
       DSTEDC to generate the eigenvector matrix, WORK(INDWRK), of the
       tridiagonal matrix, then call DORMTR to multiply it to the Householder
       transformations represented as Householder vectors in A. */
    if (! wantz) {
        lapackf77_dsterf( &n, w, &work[inde], info );
    }
    else {
        timer_start( time );

        magma_dstedx( MagmaRangeAll, n, 0., 0., 0, 0, w, &work[inde],
                      &work[indwrk], n, &work[indwk2],
                      llwrk2, iwork, liwork, dwork, info );

        timer_stop( time );
        timer_printf( "time dstedx = %6.2f\n", time );
        timer_start( time );

        magma_dsetmatrix( n, n, &work[indwrk], n, dwork, lddc, queue );

        magma_dormtr_gpu( MagmaLeft, uplo, MagmaNoTrans, n, n, dA, ldda, &work[indtau],
                          dwork, lddc, wA, ldwa, &iinfo );

        magma_dcopymatrix( n, n, dwork, lddc, dA, ldda, queue );

        timer_stop( time );
        timer_printf( "time dormtr + copy = %6.2f\n", time );
    }

    /* If matrix was scaled, then rescale eigenvalues appropriately. */
    if (iscale == 1) {
        d__1 = 1. / sigma;
        blasf77_dscal( &n, &d__1, w, &ione );
    }

    work[0]  = magma_dmake_lwork( lwmin );
    iwork[0] = liwmin;

    magma_queue_destroy( queue );
    magma_free( dwork );

    return *info;
} /* magma_dsyevd_gpu */
Beispiel #10
0
/**
    Purpose
    -------
    DSYEVDX computes selected eigenvalues and, optionally, eigenvectors
    of a real symmetric matrix A. Eigenvalues and eigenvectors can
    be selected by specifying either a range of values or a range of
    indices for the desired eigenvalues.
    If eigenvectors are desired, it uses a divide and conquer algorithm.

    The divide and conquer algorithm makes very mild assumptions about
    floating point arithmetic. It will work on machines with a guard
    digit in add/subtract, or on those binary machines without guard
    digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
    Cray-2. It could conceivably fail on hexadecimal or decimal machines
    without guard digits, but we know of none.

    Arguments
    ---------
    @param[in]
    jobz    magma_vec_t
      -     = MagmaNoVec:  Compute eigenvalues only;
      -     = MagmaVec:    Compute eigenvalues and eigenvectors.

    @param[in]
    range   magma_range_t
      -     = MagmaRangeAll: all eigenvalues will be found.
      -     = MagmaRangeV:   all eigenvalues in the half-open interval (VL,VU]
                   will be found.
      -     = MagmaRangeI:   the IL-th through IU-th eigenvalues will be found.

    @param[in]
    uplo    magma_uplo_t
      -     = MagmaUpper:  Upper triangle of A is stored;
      -     = MagmaLower:  Lower triangle of A is stored.

    @param[in]
    n       INTEGER
            The order of the matrix A.  N >= 0.

    @param[in,out]
    dA      DOUBLE_PRECISION array on the GPU,
            dimension (LDDA, N).
            On entry, the symmetric matrix A.  If UPLO = MagmaUpper, the
            leading N-by-N upper triangular part of A contains the
            upper triangular part of the matrix A.  If UPLO = MagmaLower,
            the leading N-by-N lower triangular part of A contains
            the lower triangular part of the matrix A.
            On exit, if JOBZ = MagmaVec, then if INFO = 0, the first m columns
            of A contains the required
            orthonormal eigenvectors of the matrix A.
            If JOBZ = MagmaNoVec, then on exit the lower triangle (if UPLO=MagmaLower)
            or the upper triangle (if UPLO=MagmaUpper) of A, including the
            diagonal, is destroyed.

    @param[in]
    ldda    INTEGER
            The leading dimension of the array DA.  LDDA >= max(1,N).

    @param[in]
    vl      DOUBLE PRECISION
    @param[in]
    vu      DOUBLE PRECISION
            If RANGE=MagmaRangeV, the lower and upper bounds of the interval to
            be searched for eigenvalues. VL < VU.
            Not referenced if RANGE = MagmaRangeAll or MagmaRangeI.

    @param[in]
    il      INTEGER
    @param[in]
    iu      INTEGER
            If RANGE=MagmaRangeI, the indices (in ascending order) of the
            smallest and largest eigenvalues to be returned.
            1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
            Not referenced if RANGE = MagmaRangeAll or MagmaRangeV.

    @param[out]
    m       INTEGER
            The total number of eigenvalues found.  0 <= M <= N.
            If RANGE = MagmaRangeAll, M = N, and if RANGE = MagmaRangeI, M = IU-IL+1.

    @param[out]
    w       DOUBLE PRECISION array, dimension (N)
            If INFO = 0, the required m eigenvalues in ascending order.

    @param
    wA      (workspace) DOUBLE PRECISION array, dimension (LDWA, N)

    @param[in]
    ldwa    INTEGER
            The leading dimension of the array wA.  LDWA >= max(1,N).

    @param[out]
    work    (workspace) DOUBLE_PRECISION array, dimension (MAX(1,LWORK))
            On exit, if INFO = 0, WORK[0] returns the optimal LWORK.

    @param[in]
    lwork   INTEGER
            The length of the array WORK.
            If N <= 1,                      LWORK >= 1.
            If JOBZ = MagmaNoVec and N > 1, LWORK >= 2*N + N*NB.
            If JOBZ = MagmaVec   and N > 1, LWORK >= max( 2*N + N*NB, 1 + 6*N + 2*N**2 ).
            NB can be obtained through magma_get_dsytrd_nb(N).
    \n
            If LWORK = -1, then a workspace query is assumed; the routine
            only calculates the optimal sizes of the WORK and IWORK
            arrays, returns these values as the first entries of the WORK
            and IWORK arrays, and no error message related to LWORK or
            LIWORK is issued by XERBLA.

    @param[out]
    iwork   (workspace) INTEGER array, dimension (MAX(1,LIWORK))
            On exit, if INFO = 0, IWORK[0] returns the optimal LIWORK.

    @param[in]
    liwork  INTEGER
            The dimension of the array IWORK.
            If N <= 1,                      LIWORK >= 1.
            If JOBZ = MagmaNoVec and N > 1, LIWORK >= 1.
            If JOBZ = MagmaVec   and N > 1, LIWORK >= 3 + 5*N.
    \n
            If LIWORK = -1, then a workspace query is assumed; the
            routine only calculates the optimal sizes of the WORK and
            IWORK arrays, returns these values as the first entries of
            the WORK and IWORK arrays, and no error message related to
            LWORK or LIWORK is issued by XERBLA.

    @param[out]
    info    INTEGER
      -     = 0:  successful exit
      -     < 0:  if INFO = -i, the i-th argument had an illegal value
      -     > 0:  if INFO = i and JOBZ = MagmaNoVec, then the algorithm failed
                  to converge; i off-diagonal elements of an intermediate
                  tridiagonal form did not converge to zero;
                  if INFO = i and JOBZ = MagmaVec, then the algorithm failed
                  to compute an eigenvalue while working on the submatrix
                  lying in rows and columns INFO/(N+1) through
                  mod(INFO,N+1).

    Further Details
    ---------------
    Based on contributions by
       Jeff Rutter, Computer Science Division, University of California
       at Berkeley, USA

    Modified description of INFO. Sven, 16 Feb 05.

    @ingroup magma_dsyev_driver
    ********************************************************************/
extern "C" magma_int_t
magma_dsyevdx_gpu(magma_vec_t jobz, magma_range_t range, magma_uplo_t uplo,
                  magma_int_t n,
                  double *dA, magma_int_t ldda,
                  double vl, double vu, magma_int_t il, magma_int_t iu,
                  magma_int_t *m, double *w,
                  double *wA,  magma_int_t ldwa,
                  double *work, magma_int_t lwork,
                  magma_int_t *iwork, magma_int_t liwork,
                  magma_int_t *info)
{
    magma_int_t ione = 1;

    double d__1;

    double eps;
    magma_int_t inde;
    double anrm;
    double rmin, rmax;
    double sigma;
    magma_int_t iinfo, lwmin;
    magma_int_t lower;
    magma_int_t wantz;
    magma_int_t indwk2, llwrk2;
    magma_int_t iscale;
    double safmin;
    double bignum;
    magma_int_t indtau;
    magma_int_t indwrk, liwmin;
    magma_int_t llwork;
    double smlnum;
    magma_int_t lquery;
    magma_int_t alleig, valeig, indeig;

    double *dwork;
    magma_int_t lddc = ldda;

    wantz = (jobz == MagmaVec);
    lower = (uplo == MagmaLower);

    alleig = (range == MagmaRangeAll);
    valeig = (range == MagmaRangeV);
    indeig = (range == MagmaRangeI);

    lquery = (lwork == -1 || liwork == -1);

    *info = 0;
    if (! (wantz || (jobz == MagmaNoVec))) {
        *info = -1;
    } else if (! (alleig || valeig || indeig)) {
        *info = -2;
    } else if (! (lower || (uplo == MagmaUpper))) {
        *info = -3;
    } else if (n < 0) {
        *info = -4;
    } else if (ldda < max(1,n)) {
        *info = -6;
    } else if (ldwa < max(1,n)) {
        *info = -14;
    } else {
        if (valeig) {
            if (n > 0 && vu <= vl) {
                *info = -8;
            }
        } else if (indeig) {
            if (il < 1 || il > max(1,n)) {
                *info = -9;
            } else if (iu < min(n,il) || iu > n) {
                *info = -10;
            }
        }
    }

    magma_int_t nb = magma_get_dsytrd_nb( n );
    if ( n <= 1 ) {
        lwmin  = 1;
        liwmin = 1;
    }
    else if ( wantz ) {
        lwmin  = max( 2*n + n*nb, 1 + 6*n + 2*n*n );
        liwmin = 3 + 5*n;
    }
    else {
        lwmin  = 2*n + n*nb;
        liwmin = 1;
    }
    
    // multiply by 1+eps (in Double!) to ensure length gets rounded up,
    // if it cannot be exactly represented in floating point.
    real_Double_t one_eps = 1. + lapackf77_dlamch("Epsilon");
    work[0]  = lwmin * one_eps;
    iwork[0] = liwmin;

    if ((lwork < lwmin) && !lquery) {
        *info = -16;
    } else if ((liwork < liwmin) && ! lquery) {
        *info = -18;
    }

    if (*info != 0) {
        magma_xerbla( __func__, -(*info) );
        return *info;
    }
    else if (lquery) {
        return *info;
    }

    /* Check if matrix is very small then just call LAPACK on CPU, no need for GPU */
    if (n <= 128) {
        #ifdef ENABLE_DEBUG
        printf("--------------------------------------------------------------\n");
        printf("  warning matrix too small N=%d NB=%d, calling lapack on CPU  \n", (int) n, (int) nb);
        printf("--------------------------------------------------------------\n");
        #endif
        const char* jobz_ = lapack_vec_const( jobz );
        const char* uplo_ = lapack_uplo_const( uplo );
        double *A;
        magma_dmalloc_cpu( &A, n*n );
        magma_dgetmatrix(n, n, dA, ldda, A, n);
        lapackf77_dsyevd(jobz_, uplo_,
                         &n, A, &n,
                         w, work, &lwork,
                         iwork, &liwork, info);
        magma_dsetmatrix( n, n, A, n, dA, ldda);
        magma_free_cpu(A);
        return *info;
    }

    magma_queue_t stream;
    magma_queue_create( &stream );

    // n*lddc for dsytrd2_gpu
    // n for dlansy
    magma_int_t ldwork = n*lddc;
    if ( wantz ) {
        // need 3n^2/2 for dstedx
        ldwork = max( ldwork, 3*n*(n/2 + 1));
    }
    if (MAGMA_SUCCESS != magma_dmalloc( &dwork, ldwork )) {
        *info = MAGMA_ERR_DEVICE_ALLOC;
        return *info;
    }

    /* Get machine constants. */
    safmin = lapackf77_dlamch("Safe minimum");
    eps    = lapackf77_dlamch("Precision");
    smlnum = safmin / eps;
    bignum = 1. / smlnum;
    rmin = magma_dsqrt(smlnum);
    rmax = magma_dsqrt(bignum);

    /* Scale matrix to allowable range, if necessary. */
    anrm = magmablas_dlansy(MagmaMaxNorm, uplo, n, dA, ldda, dwork);
    iscale = 0;
    sigma  = 1;
    if (anrm > 0. && anrm < rmin) {
        iscale = 1;
        sigma = rmin / anrm;
    } else if (anrm > rmax) {
        iscale = 1;
        sigma = rmax / anrm;
    }
    if (iscale == 1) {
        magmablas_dlascl(uplo, 0, 0, 1., sigma, n, n, dA, ldda, info);
    }

    /* Call DSYTRD to reduce symmetric matrix to tridiagonal form. */
    // dsytrd work: e (n) + tau (n) + llwork (n*nb)  ==>  2n + n*nb
    // dstedx work: e (n) + tau (n) + z (n*n) + llwrk2 (1 + 4*n + n^2)  ==>  1 + 6n + 2n^2
    inde   = 0;
    indtau = inde   + n;
    indwrk = indtau + n;
    indwk2 = indwrk + n*n;
    llwork = lwork - indwrk;
    llwrk2 = lwork - indwk2;

    magma_timer_t time=0;
    timer_start( time );

#ifdef FAST_SYMV
    magma_dsytrd2_gpu(uplo, n, dA, ldda, w, &work[inde],
                      &work[indtau], wA, ldwa, &work[indwrk], llwork,
                      dwork, n*lddc, &iinfo);
#else
    magma_dsytrd_gpu(uplo, n, dA, ldda, w, &work[inde],
                     &work[indtau], wA, ldwa, &work[indwrk], llwork,
                     &iinfo);
#endif

    timer_stop( time );
    timer_printf( "time dsytrd = %6.2f\n", time );

    /* For eigenvalues only, call DSTERF.  For eigenvectors, first call
       DSTEDC to generate the eigenvector matrix, WORK(INDWRK), of the
       tridiagonal matrix, then call DORMTR to multiply it to the Householder
       transformations represented as Householder vectors in A. */

    if (! wantz) {
        lapackf77_dsterf(&n, w, &work[inde], info);

        magma_dmove_eig(range, n, w, &il, &iu, vl, vu, m);
    }
    else {
        timer_start( time );

        magma_dstedx(range, n, vl, vu, il, iu, w, &work[inde],
                     &work[indwrk], n, &work[indwk2],
                     llwrk2, iwork, liwork, dwork, info);

        timer_stop( time );
        timer_printf( "time dstedx = %6.2f\n", time );
        timer_start( time );

        magma_dmove_eig(range, n, w, &il, &iu, vl, vu, m);

        magma_dsetmatrix( n, *m, &work[indwrk + n* (il-1) ], n, dwork, lddc );

        magma_dormtr_gpu(MagmaLeft, uplo, MagmaNoTrans, n, *m, dA, ldda, &work[indtau],
                         dwork, lddc, wA, ldwa, &iinfo);

        magma_dcopymatrix( n, *m, dwork, lddc, dA, ldda );

        timer_stop( time );
        timer_printf( "time dormtr + copy = %6.2f\n", time );
    }

    /* If matrix was scaled, then rescale eigenvalues appropriately. */
    if (iscale == 1) {
        d__1 = 1. / sigma;
        blasf77_dscal(&n, &d__1, w, &ione);
    }

    work[0]  = lwmin * one_eps;  // round up
    iwork[0] = liwmin;

    magma_queue_destroy( stream );
    magma_free( dwork );

    return *info;
} /* magma_dsyevd_gpu */
Beispiel #11
0
/**
    Purpose
    -------
    DLATRD reduces NB rows and columns of a real symmetric matrix A to
    symmetric tridiagonal form by an orthogonal similarity
    transformation Q' * A * Q, and returns the matrices V and W which are
    needed to apply the transformation to the unreduced part of A.

    If UPLO = MagmaUpper, DLATRD reduces the last NB rows and columns of a
    matrix, of which the upper triangle is supplied;
    if UPLO = MagmaLower, DLATRD reduces the first NB rows and columns of a
    matrix, of which the lower triangle is supplied.

    This is an auxiliary routine called by DSYTRD.

    Arguments
    ---------
    @param[in]
    uplo    magma_uplo_t
            Specifies whether the upper or lower triangular part of the
            symmetric matrix A is stored:
      -     = MagmaUpper: Upper triangular
      -     = MagmaLower: Lower triangular

    @param[in]
    n       INTEGER
            The order of the matrix A.

    @param[in]
    nb      INTEGER
            The number of rows and columns to be reduced.

    @param[in,out]
    A       DOUBLE_PRECISION array, dimension (LDA,N)
            On entry, the symmetric matrix A.  If UPLO = MagmaUpper, the leading
            n-by-n upper triangular part of A contains the upper
            triangular part of the matrix A, and the strictly lower
            triangular part of A is not referenced.  If UPLO = MagmaLower, the
            leading n-by-n lower triangular part of A contains the lower
            triangular part of the matrix A, and the strictly upper
            triangular part of A is not referenced.
            On exit:
      -     if UPLO = MagmaUpper, the last NB columns have been reduced to
              tridiagonal form, with the diagonal elements overwriting
              the diagonal elements of A; the elements above the diagonal
              with the array TAU, represent the orthogonal matrix Q as a
              product of elementary reflectors;
      -     if UPLO = MagmaLower, the first NB columns have been reduced to
              tridiagonal form, with the diagonal elements overwriting
              the diagonal elements of A; the elements below the diagonal
              with the array TAU, represent the  orthogonal matrix Q as a
              product of elementary reflectors.
            See Further Details.

    @param[in]
    lda     INTEGER
            The leading dimension of the array A.  LDA >= (1,N).

    @param[out]
    e       DOUBLE_PRECISION array, dimension (N-1)
            If UPLO = MagmaUpper, E(n-nb:n-1) contains the superdiagonal
            elements of the last NB columns of the reduced matrix;
            if UPLO = MagmaLower, E(1:nb) contains the subdiagonal elements of
            the first NB columns of the reduced matrix.

    @param[out]
    tau     DOUBLE_PRECISION array, dimension (N-1)
            The scalar factors of the elementary reflectors, stored in
            TAU(n-nb:n-1) if UPLO = MagmaUpper, and in TAU(1:nb) if UPLO = MagmaLower.
            See Further Details.

    @param[out]
    W       DOUBLE_PRECISION array, dimension (LDW,NB)
            The n-by-nb matrix W required to update the unreduced part
            of A.

    @param[in]
    ldw     INTEGER
            The leading dimension of the array W. LDW >= max(1,N).

    Further Details
    ---------------
    If UPLO = MagmaUpper, the matrix Q is represented as a product of elementary
    reflectors

       Q = H(n) H(n-1) . . . H(n-nb+1).

    Each H(i) has the form

       H(i) = I - tau * v * v'

    where tau is a real scalar, and v is a real vector with
    v(i:n) = 0 and v(i-1) = 1; v(1:i-1) is stored on exit in A(1:i-1,i),
    and tau in TAU(i-1).

    If UPLO = MagmaLower, the matrix Q is represented as a product of elementary
    reflectors

       Q = H(1) H(2) . . . H(nb).

    Each H(i) has the form

       H(i) = I - tau * v * v'

    where tau is a real scalar, and v is a real vector with
    v(1:i) = 0 and v(i+1) = 1; v(i+1:n) is stored on exit in A(i+1:n,i),
    and tau in TAU(i).

    The elements of the vectors v together form the n-by-nb matrix V
    which is needed, with W, to apply the transformation to the unreduced
    part of the matrix, using a symmetric rank-2k update of the form:
    A := A - V*W' - W*V'.

    The contents of A on exit are illustrated by the following examples
    with n = 5 and nb = 2:

    if UPLO = MagmaUpper:                       if UPLO = MagmaLower:

      (  a   a   a   v4  v5 )              (  d                  )
      (      a   a   v4  v5 )              (  1   d              )
      (          a   1   v5 )              (  v1  1   a          )
      (              d   1  )              (  v1  v2  a   a      )
      (                  d  )              (  v1  v2  a   a   a  )

    where d denotes a diagonal element of the reduced matrix, a denotes
    an element of the original matrix that is unchanged, and vi denotes
    an element of the vector defining H(i).

    @ingroup magma_dsyev_aux
    ********************************************************************/
extern "C" double
magma_dlatrd_mgpu(magma_int_t num_gpus, magma_uplo_t uplo,
                  magma_int_t n0, magma_int_t n, magma_int_t nb, magma_int_t nb0,
                  double *A,  magma_int_t lda,
                  double *e, double *tau,
                  double *W,   magma_int_t ldw,
                  double **dA, magma_int_t ldda, magma_int_t offset,
                  double **dW, magma_int_t lddw,
                  double *dwork[MagmaMaxGPUs], magma_int_t ldwork,
                  magma_int_t k,
                  double *dx[MagmaMaxGPUs],
                  double *dy[MagmaMaxGPUs],
                  double *work,
                  magma_queue_t stream[][10],
                  double *times)
{
#define A(i, j) (A + (j)*lda + (i))
#define W(i, j) (W + (j)*ldw + (i))

#define dA(id, i, j)  (dA[(id)] + ((j)+loffset)*ldda + (i) + offset)
#define dW(id, i, j)  (dW[(id)] + (j)          *lddw + (i))
#define dW1(id, i, j) (dW[(id)] + ((j)+nb)     *lddw + (i))

    double mv_time = 0.0;
    magma_int_t i;
#ifndef MAGMABLAS_DSYMV_MGPU
    magma_int_t loffset = nb0*((offset/nb0)/num_gpus);
#endif

    double c_neg_one = MAGMA_D_NEG_ONE;
    double c_one     = MAGMA_D_ONE;
    double c_zero    = MAGMA_D_ZERO;
    double value     = MAGMA_D_ZERO;
    magma_int_t id, idw, i_one = 1;

    //magma_int_t kk;
    magma_int_t ione = 1;

    magma_int_t i_n, i_1, iw;

    double alpha;

    double *dx2[MagmaMaxGPUs];
    double *f;
    magma_dmalloc_cpu( &f, n );

    if (n <= 0) {
        return 0;
    }

//#define PROFILE_SYMV
#ifdef PROFILE_SYMV
    magma_event_t start, stop;
    float etime;
    magma_timestr_t cpu_start, cpu_end;
    magma_setdevice(0);
    magma_event_create( &start );
    magma_event_create( &stop  );
#endif

    if (uplo == MagmaUpper) {
        /* Reduce last NB columns of upper triangle */
        for (i = n-1; i >= n - nb ; --i) {
            i_1 = i + 1;
            i_n = n - i - 1;
            iw = i - n + nb;
            if (i < n-1) {
                /* Update A(1:i,i) */
                double wii = *W(i, iw+1);
                #if defined(PRECISION_z) || defined(PRECISION_c)
                    lapackf77_dlacgv(&i_one, &wii, &ldw);
                #endif
                wii = -wii;
                blasf77_daxpy(&i_1, &wii, A(0, i+1), &i_one, A(0, i), &ione);

                wii = *A(i, i+1);
                #if defined(PRECISION_z) || defined(PRECISION_c)
                    lapackf77_dlacgv(&i_one, &wii, &ldw);
                #endif
                wii = -wii;
                blasf77_daxpy(&i_1, &wii, W(0, iw+1), &i_one, A(0, i), &ione);
            }
            if (i > 0) {
                /* Generate elementary reflector H(i) to annihilate A(1:i-2,i) */
                alpha = *A(i-1, i);
                lapackf77_dlarfg(&i, &alpha, A(0, i), &ione, &tau[i - 1]);

                e[i-1] = MAGMA_D_REAL( alpha );
                *A(i-1,i) = MAGMA_D_MAKE( 1, 0 );
                for( id=0; id < num_gpus; id++ ) {
                    magma_setdevice(id);
                    dx2[id] = dW1(id, 0, iw);
                    magma_dsetvector_async( n, A(0,i), 1, dW1(id, 0, iw), 1, stream[id][0]);
#ifndef  MAGMABLAS_DSYMV_MGPU
                    magma_dsetvector_async( i, A(0,i), 1, dx[id], 1, stream[id][0] );
#endif
                }
                magmablas_dsymv_mgpu(num_gpus, k, MagmaUpper, i, nb0, c_one, dA, ldda, 0,
                                     dx2, ione, c_zero, dy, ione, dwork, ldwork,
                                     work, W(0, iw), stream );

                if (i < n-1) {
                    blasf77_dgemv(MagmaTransStr, &i, &i_n, &c_one, W(0, iw+1), &ldw,
                                  A(0, i), &ione, &c_zero, W(i+1, iw), &ione);
                }

                /* overlap update */
                if ( i < n-1 && i-1 >= n - nb ) {
                    magma_int_t im1_1 = i_1 - 1;
                    magma_int_t im1   = i-1;
                    /* Update A(1:i,i) */
                    #if defined(PRECISION_z) || defined(PRECISION_c)
                        magma_int_t im1_n = i_n + 1;
                        lapackf77_dlacgv(&im1_n, W(im1, iw+1), &ldw);
                    #endif
                    blasf77_dgemv("No transpose", &im1_1, &i_n, &c_neg_one, A(0, i+1), &lda,
                                  W(im1, iw+1), &ldw, &c_one, A(0, i-1), &ione);
                    #if defined(PRECISION_z) || defined(PRECISION_c)
                        lapackf77_dlacgv(&im1_n, W(im1, iw+1), &ldw);
                        lapackf77_dlacgv(&im1_n, A(im1, i +1), &lda);
                    #endif
                    blasf77_dgemv("No transpose", &im1_1, &i_n, &c_neg_one, W(0, iw+1), &ldw,
                                  A(im1, i+1), &lda, &c_one, A(0, i-1), &ione);
                    #if defined(PRECISION_z) || defined(PRECISION_c)
                        lapackf77_dlacgv(&im1_n, A(im1, i+1), &lda);
                    #endif
                }

                // 3. Here is where we need it // TODO find the right place
                magmablas_dsymv_sync(num_gpus, k, i, work, W(0, iw), stream );

                if (i < n-1) {
                    blasf77_dgemv("No transpose", &i, &i_n, &c_neg_one, A(0, i+1), &lda,
                                  W(i+1, iw), &ione, &c_one, W(0, iw), &ione);

                    blasf77_dgemv(MagmaTransStr, &i, &i_n, &c_one, A(0, i+1), &lda,
                                  A(0, i), &ione, &c_zero, W(i+1, iw), &ione);

                    blasf77_dgemv("No transpose", &i, &i_n, &c_neg_one, W(0, iw+1), &ldw,
                                  W(i+1, iw), &ione, &c_one, W(0, iw), &ione);
                }

                blasf77_dscal(&i, &tau[i - 1], W(0, iw), &ione);

                #if defined(PRECISION_z) || defined(PRECISION_c)
                cblas_ddot_sub( i, W(0,iw), ione, A(0,i), ione, &value );
                #else
                value = cblas_ddot( i, W(0,iw), ione, A(0,i), ione );
                #endif
                alpha = tau[i - 1] * -.5f * value;
                blasf77_daxpy(&i, &alpha, A(0, i), &ione, W(0, iw), &ione);

                for( id=0; id < num_gpus; id++ ) {
                    magma_setdevice(id);
                    if ( k > 1 ) {
                        magma_dsetvector_async( n, W(0,iw), 1, dW(id, 0, iw), 1, stream[id][1] );
                    } else {
                        magma_dsetvector_async( n, W(0,iw), 1, dW(id, 0, iw), 1, stream[id][0] );
                    }
                }
            }
        }
    } else {
        /*  Reduce first NB columns of lower triangle */
        for (i = 0; i < nb; ++i) {
            /* Update A(i:n,i) */
            i_n = n - i;
            idw = ((offset+i)/nb)%num_gpus;
            if ( i > 0 ) {
                trace_cpu_start( 0, "gemv", "gemv" );
                double wii = *W(i, i-1);
                #if defined(PRECISION_z) || defined(PRECISION_c)
                    lapackf77_dlacgv(&i_one, &wii, &ldw);
                #endif
                wii = -wii;
                blasf77_daxpy( &i_n, &wii, A(i, i-1), &ione, A(i, i), &ione);

                wii = *A(i, i-1);
                #if defined(PRECISION_z) || defined(PRECISION_c)
                    lapackf77_dlacgv(&i_one, &wii, &lda);
                #endif
                wii = -wii;
                blasf77_daxpy( &i_n, &wii, W(i, i-1), &ione, A(i, i), &ione);
            }

            if (i < n-1) {
                /* Generate elementary reflector H(i) to annihilate A(i+2:n,i) */
                i_n = n - i - 1;
                trace_cpu_start( 0, "larfg", "larfg" );
                alpha = *A(i+1, i);
#ifdef PROFILE_SYMV
                cpu_start = get_current_time();
#endif
                lapackf77_dlarfg(&i_n, &alpha, A(min(i+2,n-1), i), &ione, &tau[i]);
#ifdef PROFILE_SYMV
                cpu_end = get_current_time();
                times[0] += GetTimerValue(cpu_start,cpu_end)/1000.0;
#endif
                e[i] = MAGMA_D_REAL( alpha );
                *A(i+1,i) = MAGMA_D_MAKE( 1, 0 );
                trace_cpu_end( 0 );

                /* Compute W(i+1:n,i) */
                // 1. Send the block reflector  A(i+1:n,i) to the GPU
                //trace_gpu_start(  idw, 0, "comm", "comm1" );
#ifndef  MAGMABLAS_DSYMV_MGPU
                magma_setdevice(idw);
                magma_dsetvector( i_n, A(i+1,i), 1, dA(idw, i+1, i), 1 );
#endif
                for( id=0; id < num_gpus; id++ ) {
                    magma_setdevice(id);
                    trace_gpu_start( id, 0, "comm", "comm" );
#ifdef MAGMABLAS_DSYMV_MGPU
                    dx2[id] = dW1(id, 0, i)-offset;
#else
                    dx2[id] = dx[id];
                    magma_dsetvector( i_n, A(i+1,i), 1, dx[id], 1 );
#endif
                    magma_dsetvector_async( n, A(0,i), 1, dW1(id, 0, i), 1, stream[id][0] );
                    trace_gpu_end( id, 0 );
                }
                /* mat-vec on multiple GPUs */
#ifdef PROFILE_SYMV
                magma_setdevice(0);
                magma_event_record(start, stream[0][0]);
#endif
                magmablas_dsymv_mgpu(num_gpus, k, MagmaLower, i_n, nb0, c_one, dA, ldda, offset+i+1,
                                       dx2, ione, c_zero, dy, ione, dwork, ldwork,
                                       work, W(i+1,i), stream );
#ifdef PROFILE_SYMV
                magma_setdevice(0);
                magma_event_record(stop, stream[0][0]);
#endif
                trace_cpu_start( 0, "gemv", "gemv" );
                blasf77_dgemv(MagmaTransStr, &i_n, &i, &c_one, W(i+1, 0), &ldw,
                              A(i+1, i), &ione, &c_zero, W(0, i), &ione);
                blasf77_dgemv("No transpose", &i_n, &i, &c_neg_one, A(i+1, 0), &lda,
                              W(0, i), &ione, &c_zero, f, &ione);
                blasf77_dgemv(MagmaTransStr, &i_n, &i, &c_one, A(i+1, 0), &lda,
                              A(i+1, i), &ione, &c_zero, W(0, i), &ione);
                trace_cpu_end( 0 );

                /* overlap update */
                if ( i > 0 && i+1 < n ) {
                    magma_int_t ip1 = i+1;
                    trace_cpu_start( 0, "gemv", "gemv" );
                    #if defined(PRECISION_z) || defined(PRECISION_c)
                        lapackf77_dlacgv(&i, W(ip1, 0), &ldw);
                    #endif
                    blasf77_dgemv("No transpose", &i_n, &i, &c_neg_one, A(ip1, 0), &lda,
                                  W(ip1, 0), &ldw, &c_one, A(ip1, ip1), &ione);
                    #if defined(PRECISION_z) || defined(PRECISION_c)
                        lapackf77_dlacgv(&i, W(ip1, 0), &ldw);
                        lapackf77_dlacgv(&i, A(ip1, 0), &lda);
                    #endif
                    blasf77_dgemv("No transpose", &i_n, &i, &c_neg_one, W(ip1, 0), &ldw,
                                  A(ip1, 0), &lda, &c_one, A(ip1, ip1), &ione);
                    #if defined(PRECISION_z) || defined(PRECISION_c)
                        lapackf77_dlacgv(&i, A(ip1, 0), &lda);
                    #endif
                    trace_cpu_end( 0 );
                }

                /* synchronize */
                magmablas_dsymv_sync(num_gpus, k, i_n, work, W(i+1,i), stream );
#ifdef PROFILE_SYMV
                cudaEventElapsedTime(&etime, start, stop);
                mv_time += (etime/1000.0);
                times[1+(i_n/(n0/10))] += (etime/1000.0);
#endif
                trace_cpu_start( 0, "axpy", "axpy" );
                if (i != 0)
                    blasf77_daxpy(&i_n, &c_one, f, &ione, W(i+1, i), &ione);

                blasf77_dgemv("No transpose", &i_n, &i, &c_neg_one, W(i+1, 0), &ldw,
                              W(0, i), &ione, &c_one, W(i+1, i), &ione);
                blasf77_dscal(&i_n, &tau[i], W(i+1,i), &ione);

                #if defined(PRECISION_z) || defined(PRECISION_c)
                    cblas_ddot_sub( i_n, W(i+1,i), ione, A(i+1,i), ione, &value );
                #else
                    value = cblas_ddot( i_n, W(i+1,i), ione, A(i+1,i), ione );
                #endif
                alpha = tau[i]* -.5f * value;
                blasf77_daxpy(&i_n, &alpha, A(i+1, i), &ione, W(i+1,i), &ione);
                trace_cpu_end( 0 );
                for( id=0; id < num_gpus; id++ ) {
                    magma_setdevice(id);
                    if ( k > 1 ) {
                        magma_dsetvector_async( n, W(0,i), 1, dW(id, 0, i), 1, stream[id][1] );
                    } else {
                        magma_dsetvector_async( n, W(0,i), 1, dW(id, 0, i), 1, stream[id][0] );
                    }
                }
            }
        }
    }

#ifdef PROFILE_SYMV
    magma_setdevice(0);
    magma_event_destory( start );
    magma_event_destory( stop  );
#endif
    for( id=0; id < num_gpus; id++ ) {
        magma_setdevice(id);
        if ( k > 1 )
            magma_queue_sync(stream[id][1]);
    }
    magma_free_cpu(f);

    return mv_time;
} /* magma_dlatrd_mgpu */
Beispiel #12
0
extern "C" magma_int_t 
magma_dlahr2(magma_int_t n, magma_int_t k, magma_int_t nb,
             double *da, double *dv, 
             double *a, magma_int_t lda,
             double *tau, double *t, magma_int_t ldt, 
             double *y, magma_int_t ldy)
{
/*  -- MAGMA auxiliary routine (version 1.0) --
       Univ. of Tennessee, Knoxville
       Univ. of California, Berkeley
       Univ. of Colorado, Denver
       November 2012

    Purpose   
    =======   

    DLAHR2 reduces the first NB columns of a real general n-BY-(n-k+1)   
    matrix A so that elements below the k-th subdiagonal are zero. The   
    reduction is performed by an orthogonal similarity transformation   
    Q' * A * Q. The routine returns the matrices V and T which determine   
    Q as a block reflector I - V*T*V', and also the matrix Y = A * V.   

    This is an auxiliary routine called by DGEHRD.   

    Arguments   
    =========   

    N       (input) INTEGER   
            The order of the matrix A.   

    K       (input) INTEGER   
            The offset for the reduction. Elements below the k-th   
            subdiagonal in the first NB columns are reduced to zero.   
            K < N.   

    NB      (input) INTEGER   
            The number of columns to be reduced.

    DA      (input/output) DOUBLE_PRECISION array on the GPU, dimension (LDA,N-K+1)   
            On entry, the n-by-(n-k+1) general matrix A.   
            On exit, the elements on and above the k-th subdiagonal in   
            the first NB columns are overwritten with the corresponding   
            elements of the reduced matrix; the elements below the k-th   
            subdiagonal, with the array TAU, represent the matrix Q as a   
            product of elementary reflectors. The other columns of A are   
            unchanged. See Further Details.   

    DV      (output) DOUBLE_PRECISION array on the GPU, dimension (N, NB)
            On exit this contains the Householder vectors of the transformation.

    LDA     (input) INTEGER   
            The leading dimension of the array A.  LDA >= max(1,N).   

    TAU     (output) DOUBLE_PRECISION array, dimension (NB)   
            The scalar factors of the elementary reflectors. See Further   
            Details.   

    T       (output) DOUBLE_PRECISION array, dimension (LDT,NB)   
            The upper triangular matrix T.   

    LDT     (input) INTEGER   
            The leading dimension of the array T.  LDT >= NB.   

    Y       (output) DOUBLE_PRECISION array, dimension (LDY,NB)   
            The n-by-nb matrix Y.   

    LDY     (input) INTEGER   
            The leading dimension of the array Y. LDY >= N.   

    Further Details   
    ===============   
    The matrix Q is represented as a product of nb elementary reflectors   

       Q = H(1) H(2) . . . H(nb).   

    Each H(i) has the form   

       H(i) = I - tau * v * v'   

    where tau is a real scalar, and v is a real vector with   
    v(1:i+k-1) = 0, v(i+k) = 1; v(i+k+1:n) is stored on exit in   
    A(i+k+1:n,i), and tau in TAU(i).   

    The elements of the vectors v together form the (n-k+1)-by-nb matrix   
    V which is needed, with T and Y, to apply the transformation to the   
    unreduced part of the matrix, using an update of the form:   
    A := (I - V*T*V') * (A - Y*T*V').   

    The contents of A on exit are illustrated by the following example   
    with n = 7, k = 3 and nb = 2:   

       ( a   a   a   a   a )   
       ( a   a   a   a   a )   
       ( a   a   a   a   a )   
       ( h   h   a   a   a )   
       ( v1  h   a   a   a )   
       ( v1  v2  a   a   a )   
       ( v1  v2  a   a   a )   

    where a denotes an element of the original matrix A, h denotes a   
    modified element of the upper Hessenberg matrix H, and vi denotes an   
    element of the vector defining H(i).

    This implementation follows the hybrid algorithm and notations described in

    S. Tomov and J. Dongarra, "Accelerating the reduction to upper Hessenberg
    form through hybrid GPU-based computing," University of Tennessee Computer
    Science Technical Report, UT-CS-09-642 (also LAPACK Working Note 219),
    May 24, 2009.
    =====================================================================    */


    double c_zero    = MAGMA_D_ZERO;
    double c_one     = MAGMA_D_ONE;
    double c_neg_one = MAGMA_D_NEG_ONE;

    magma_int_t ldda = lda;
    magma_int_t c__1 = 1;
    
    magma_int_t a_dim1, a_offset, t_dim1, t_offset, y_dim1, y_offset, i__2, i__3;
    double d__1;

    magma_int_t i__;
    double ei;

    --tau;
    a_dim1 = lda;
    a_offset = 1 + a_dim1;
    a -= a_offset;
    t_dim1 = ldt;
    t_offset = 1 + t_dim1;
    t -= t_offset;
    y_dim1 = ldy;
    y_offset = 1 + y_dim1;
    y -= y_offset;

    /* Function Body */
    if (n <= 1)
      return 0;
    
    for (i__ = 1; i__ <= nb; ++i__) {
        if (i__ > 1) {

          /* Update A(K+1:N,I); Update I-th column of A - Y * V' */
          i__2 = n - k + 1;
          i__3 = i__ - 1;
          #if defined(PRECISION_z) || defined(PRECISION_c)
             lapackf77_dlacgv(&i__3, &a[k+i__-1+a_dim1], &lda);
          #endif
          blasf77_dcopy(&i__3, &a[k+i__-1+a_dim1], &lda, &t[nb*t_dim1+1], &c__1);
          blasf77_dtrmv("u","n","n",&i__3,&t[t_offset], &ldt, &t[nb*t_dim1+1], &c__1);

          blasf77_dgemv("NO TRANSPOSE", &i__2, &i__3, &c_neg_one, &y[k + y_dim1],
                        &ldy, &t[nb*t_dim1+1], &c__1, &c_one, &a[k+i__*a_dim1],&c__1);

          #if defined(PRECISION_z) || defined(PRECISION_c)
             lapackf77_dlacgv(&i__3, &a[k+i__-1+a_dim1], &lda);
          #endif

          /* Apply I - V * T' * V' to this column (call it b) from the   
             left, using the last column of T as workspace   

             Let  V = ( V1 )   and   b = ( b1 )   (first I-1 rows)   
                      ( V2 )             ( b2 )   
             where V1 is unit lower triangular   
             w := V1' * b1                                                 */
          
          i__2 = i__ - 1;
          blasf77_dcopy(&i__2, &a[k+1+i__*a_dim1], &c__1, &t[nb*t_dim1+1], &c__1);
          blasf77_dtrmv("Lower", MagmaTransStr, "UNIT", &i__2, 
                        &a[k + 1 + a_dim1], &lda, &t[nb * t_dim1 + 1], &c__1);

          /* w := w + V2'*b2 */
          i__2 = n - k - i__ + 1;
          i__3 = i__ - 1;
          blasf77_dgemv(MagmaTransStr, &i__2, &i__3, &c_one, 
                        &a[k + i__ + a_dim1], &lda, &a[k+i__+i__*a_dim1], &c__1, 
                        &c_one, &t[nb*t_dim1+1], &c__1);

          /* w := T'*w */
          i__2 = i__ - 1;
          blasf77_dtrmv("U", MagmaTransStr, "N", &i__2, &t[t_offset], &ldt, 
                        &t[nb*t_dim1+1], &c__1);
          
          /* b2 := b2 - V2*w */
          i__2 = n - k - i__ + 1;
          i__3 = i__ - 1;
          blasf77_dgemv("N", &i__2, &i__3, &c_neg_one, &a[k + i__ + a_dim1], &lda, 
                 &t[nb*t_dim1+1], &c__1, &c_one, &a[k+i__+i__*a_dim1], &c__1);

          /* b1 := b1 - V1*w */
          i__2 = i__ - 1;
          blasf77_dtrmv("L","N","U",&i__2,&a[k+1+a_dim1],&lda,&t[nb*t_dim1+1],&c__1);
          blasf77_daxpy(&i__2, &c_neg_one, &t[nb * t_dim1 + 1], &c__1, 
                 &a[k + 1 + i__ * a_dim1], &c__1);
          
          a[k + i__ - 1 + (i__ - 1) * a_dim1] = ei;
        }
        
        /* Generate the elementary reflector H(I) to annihilate A(K+I+1:N,I) */
        i__2 = n - k - i__ + 1;
        i__3 = k + i__ + 1;
        lapackf77_dlarfg(&i__2, &a[k + i__ + i__ * a_dim1], 
                         &a[min(i__3,n) + i__ * a_dim1], &c__1, &tau[i__]);
        ei = a[k + i__ + i__ * a_dim1];
        a[k + i__ + i__ * a_dim1] = c_one;

        /* Compute  Y(K+1:N,I) */
        i__2 = n - k;
        i__3 = n - k - i__ + 1;
        magma_dsetvector( i__3,
                          &a[k + i__ + i__*a_dim1], 1,
                          dv+(i__-1)*(ldda+1),      1 );

        magma_dgemv(MagmaNoTrans, i__2+1, i__3, c_one, 
                    da -1 + k + i__ * ldda, ldda, 
                    dv+(i__-1)*(ldda+1), c__1, c_zero, 
                    da-1 + k + (i__-1)*ldda, c__1);     
        
        i__2 = n - k - i__ + 1;
        i__3 = i__ - 1;
        blasf77_dgemv(MagmaTransStr, &i__2, &i__3, &c_one, 
                      &a[k + i__ + a_dim1], &lda, &a[k+i__+i__*a_dim1], &c__1, 
                      &c_zero, &t[i__*t_dim1+1], &c__1);

        /* Compute T(1:I,I) */
        i__2 = i__ - 1;
        d__1 = MAGMA_D_NEGATE( tau[i__] );
        blasf77_dscal(&i__2, &d__1, &t[i__ * t_dim1 + 1], &c__1);
        blasf77_dtrmv("U","N","N", &i__2, &t[t_offset], &ldt, &t[i__*t_dim1+1], &c__1);
        t[i__ + i__ * t_dim1] = tau[i__];

        magma_dgetvector( n - k + 1,
                          da-1+ k+(i__-1)*ldda, 1,
                          y+ k + i__*y_dim1,    1 );
    }
    a[k + nb + nb * a_dim1] = ei;

    return 0;
} /* magma_dlahr2 */
Beispiel #13
0
/**
    Purpose
    -------
    ZHEEVX computes selected eigenvalues and, optionally, eigenvectors
    of a complex Hermitian matrix A.  Eigenvalues and eigenvectors can
    be selected by specifying either a range of values or a range of
    indices for the desired eigenvalues.

    Arguments
    ---------
    @param[in]
    jobz    magma_vec_t
      -     = MagmaNoVec:  Compute eigenvalues only;
      -     = MagmaVec:    Compute eigenvalues and eigenvectors.

    @param[in]
    range   magma_range_t
      -     = MagmaRangeAll: all eigenvalues will be found.
      -     = MagmaRangeV:   all eigenvalues in the half-open interval (VL,VU]
                   will be found.
      -     = MagmaRangeI:   the IL-th through IU-th eigenvalues will be found.

    @param[in]
    uplo    magma_uplo_t
      -     = MagmaUpper:  Upper triangle of A is stored;
      -     = MagmaLower:  Lower triangle of A is stored.

    @param[in]
    n       INTEGER
            The order of the matrix A.  N >= 0.

    @param[in,out]
    dA      COMPLEX_16 array, dimension (LDDA, N)
            On entry, the Hermitian matrix A.  If UPLO = MagmaUpper, the
            leading N-by-N upper triangular part of A contains the
            upper triangular part of the matrix A.  If UPLO = MagmaLower,
            the leading N-by-N lower triangular part of A contains
            the lower triangular part of the matrix A.
            On exit, the lower triangle (if UPLO=MagmaLower) or the upper
            triangle (if UPLO=MagmaUpper) of A, including the diagonal, is
            destroyed.

    @param[in]
    ldda    INTEGER
            The leading dimension of the array DA.  LDDA >= max(1,N).

    @param[in]
    vl      DOUBLE PRECISION
    @param[in]
    vu      DOUBLE PRECISION
            If RANGE=MagmaRangeV, the lower and upper bounds of the interval to
            be searched for eigenvalues. VL < VU.
            Not referenced if RANGE = MagmaRangeAll or MagmaRangeI.

    @param[in]
    il      INTEGER
    @param[in]
    iu      INTEGER
            If RANGE=MagmaRangeI, the indices (in ascending order) of the
            smallest and largest eigenvalues to be returned.
            1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
            Not referenced if RANGE = MagmaRangeAll or MagmaRangeV.

    @param[in]
    abstol  DOUBLE PRECISION
            The absolute error tolerance for the eigenvalues.
            An approximate eigenvalue is accepted as converged
            when it is determined to lie in an interval [a,b]
            of width less than or equal to

                    ABSTOL + EPS * max( |a|,|b| ),
    \n
            where EPS is the machine precision.  If ABSTOL is less than
            or equal to zero, then  EPS*|T|  will be used in its place,
            where |T| is the 1-norm of the tridiagonal matrix obtained
            by reducing A to tridiagonal form.
    \n
            Eigenvalues will be computed most accurately when ABSTOL is
            set to twice the underflow threshold 2*DLAMCH('S'), not zero.
            If this routine returns with INFO > 0, indicating that some
            eigenvectors did not converge, try setting ABSTOL to
            2*DLAMCH('S').
    \n
            See "Computing Small Singular Values of Bidiagonal Matrices
            with Guaranteed High Relative Accuracy," by Demmel and
            Kahan, LAPACK Working Note #3.

    @param[out]
    m       INTEGER
            The total number of eigenvalues found.  0 <= M <= N.
            If RANGE = MagmaRangeAll, M = N, and if RANGE = MagmaRangeI, M = IU-IL+1.

    @param[out]
    w       DOUBLE PRECISION array, dimension (N)
            On normal exit, the first M elements contain the selected
            eigenvalues in ascending order.

    @param[out]
    dZ      COMPLEX_16 array, dimension (LDDZ, max(1,M))
            If JOBZ = MagmaVec, then if INFO = 0, the first M columns of Z
            contain the orthonormal eigenvectors of the matrix A
            corresponding to the selected eigenvalues, with the i-th
            column of Z holding the eigenvector associated with W(i).
            If an eigenvector fails to converge, then that column of Z
            contains the latest approximation to the eigenvector, and the
            index of the eigenvector is returned in IFAIL.
            If JOBZ = MagmaNoVec, then Z is not referenced.
            Note: the user must ensure that at least max(1,M) columns are
            supplied in the array Z; if RANGE = MagmaRangeV, the exact value of M
            is not known in advance and an upper bound must be used.
*********   (workspace) If FAST_HEMV is defined DZ should be (LDDZ, max(1,N)) in both cases.

    @param[in]
    lddz    INTEGER
            The leading dimension of the array DZ.  LDDZ >= 1, and if
            JOBZ = MagmaVec, LDDZ >= max(1,N).

    @param
    wA      (workspace) COMPLEX_16 array, dimension (LDWA, N)

    @param[in]
    ldwa    INTEGER
            The leading dimension of the array wA.  LDWA >= max(1,N).

    @param
    wZ      (workspace) COMPLEX_16 array, dimension (LDWZ, max(1,M))

    @param[in]
    ldwz    INTEGER
            The leading dimension of the array wZ.  LDWZ >= 1, and if
            JOBZ = MagmaVec, LDWZ >= max(1,N).

    @param[out]
    work    (workspace) COMPLEX_16 array, dimension (LWORK)
            On exit, if INFO = 0, WORK[0] returns the optimal LWORK.

    @param[in]
    lwork   INTEGER
            The length of the array WORK.  LWORK >= (NB+1)*N,
            where NB is the max of the blocksize for ZHETRD.
    \n
            If LWORK = -1, then a workspace query is assumed; the routine
            only calculates the optimal size of the WORK array, returns
            this value as the first entry of the WORK array, and no error
            message related to LWORK is issued by XERBLA.

    @param
    rwork   (workspace) DOUBLE PRECISION array, dimension (7*N)

    @param
    iwork   (workspace) INTEGER array, dimension (5*N)

    @param[out]
    ifail   INTEGER array, dimension (N)
            If JOBZ = MagmaVec, then if INFO = 0, the first M elements of
            IFAIL are zero.  If INFO > 0, then IFAIL contains the
            indices of the eigenvectors that failed to converge.
            If JOBZ = MagmaNoVec, then IFAIL is not referenced.

    @param[out]
    info    INTEGER
      -     = 0:  successful exit
      -     < 0:  if INFO = -i, the i-th argument had an illegal value
      -     > 0:  if INFO = i, then i eigenvectors failed to converge.
                  Their indices are stored in array IFAIL.

    @ingroup magma_zheev_driver
    ********************************************************************/
extern "C" magma_int_t
magma_zheevx_gpu(magma_vec_t jobz, magma_range_t range, magma_uplo_t uplo, magma_int_t n,
                 magmaDoubleComplex *dA, magma_int_t ldda, double vl, double vu,
                 magma_int_t il, magma_int_t iu, double abstol, magma_int_t *m,
                 double *w, magmaDoubleComplex *dZ, magma_int_t lddz,
                 magmaDoubleComplex *wA, magma_int_t ldwa,
                 magmaDoubleComplex *wZ, magma_int_t ldwz,
                 magmaDoubleComplex *work, magma_int_t lwork,
                 double *rwork, magma_int_t *iwork, magma_int_t *ifail, magma_int_t *info)
{
    const char* uplo_  = lapack_uplo_const( uplo  );
    const char* jobz_  = lapack_vec_const( jobz  );
    const char* range_ = lapack_range_const( range );
    
    magma_int_t ione = 1;
    
    const char* order_;
    magma_int_t indd, inde;
    magma_int_t imax;
    magma_int_t lopt, itmp1, indee;
    magma_int_t lower, wantz;
    magma_int_t i, j, jj, i__1;
    magma_int_t alleig, valeig, indeig;
    magma_int_t iscale, indibl;
    magma_int_t indiwk, indisp, indtau;
    magma_int_t indrwk, indwrk;
    magma_int_t llwork, nsplit;
    magma_int_t lquery;
    magma_int_t iinfo;
    double safmin;
    double bignum;
    double smlnum;
    double eps, tmp1;
    double anrm;
    double sigma, d__1;
    double rmin, rmax;
    
    double *dwork;
    
    /* Function Body */
    lower  = (uplo  == MagmaLower);
    wantz  = (jobz  == MagmaVec);
    alleig = (range == MagmaRangeAll);
    valeig = (range == MagmaRangeV);
    indeig = (range == MagmaRangeI);
    lquery = (lwork == -1);
    
    *info = 0;
    if (! (wantz || (jobz == MagmaNoVec))) {
        *info = -1;
    } else if (! (alleig || valeig || indeig)) {
        *info = -2;
    } else if (! (lower || (uplo == MagmaUpper))) {
        *info = -3;
    } else if (n < 0) {
        *info = -4;
    } else if (ldda < max(1,n)) {
        *info = -6;
    } else if (lddz < 1 || (wantz && lddz < n)) {
        *info = -15;
    } else if (ldwa < max(1,n)) {
        *info = -17;
    } else if (ldwz < 1 || (wantz && ldwz < n)) {
        *info = -19;
    } else {
        if (valeig) {
            if (n > 0 && vu <= vl) {
                *info = -8;
            }
        } else if (indeig) {
            if (il < 1 || il > max(1,n)) {
                *info = -9;
            } else if (iu < min(n,il) || iu > n) {
                *info = -10;
            }
        }
    }
    
    magma_int_t nb = magma_get_zhetrd_nb(n);
    
    lopt = n * (nb + 1);
    
    work[0] = MAGMA_Z_MAKE( lopt, 0 );
    
    if (lwork < lopt && ! lquery) {
        *info = -21;
    }
    
    if (*info != 0) {
        magma_xerbla( __func__, -(*info));
        return *info;
    } else if (lquery) {
        return *info;
    }
    
    *m = 0;
    /* Check if matrix is very small then just call LAPACK on CPU, no need for GPU */
    if (n <= 128) {
        #ifdef ENABLE_DEBUG
        printf("--------------------------------------------------------------\n");
        printf("  warning matrix too small N=%d NB=%d, calling lapack on CPU  \n", (int) n, (int) nb);
        printf("--------------------------------------------------------------\n");
        #endif
        magmaDoubleComplex *a;
        magma_zmalloc_cpu( &a, n*n );
        magma_zgetmatrix(n, n, dA, ldda, a, n);
        lapackf77_zheevx(jobz_, range_, uplo_,
                         &n, a, &n, &vl, &vu, &il, &iu, &abstol, m,
                         w, wZ, &ldwz, work, &lwork,
                         rwork, iwork, ifail, info);
        magma_zsetmatrix( n,  n,  a,    n, dA, ldda);
        magma_zsetmatrix( n, *m, wZ, ldwz, dZ, lddz);
        magma_free_cpu(a);
        return *info;
    }

    if (MAGMA_SUCCESS != magma_dmalloc( &dwork, n )) {
        fprintf (stderr, "!!!! device memory allocation error (magma_zheevx_gpu)\n");
        *info = MAGMA_ERR_DEVICE_ALLOC;
        return *info;
    }
    
    --w;
    --work;
    --rwork;
    --iwork;
    --ifail;
    
    /* Get machine constants. */
    safmin = lapackf77_dlamch("Safe minimum");
    eps = lapackf77_dlamch("Precision");
    smlnum = safmin / eps;
    bignum = 1. / smlnum;
    rmin = magma_dsqrt(smlnum);
    rmax = magma_dsqrt(bignum);
    
    /* Scale matrix to allowable range, if necessary. */
    anrm = magmablas_zlanhe(MagmaMaxNorm, uplo, n, dA, ldda, dwork);
    iscale = 0;
    sigma  = 1;
    if (anrm > 0. && anrm < rmin) {
        iscale = 1;
        sigma = rmin / anrm;
    } else if (anrm > rmax) {
        iscale = 1;
        sigma = rmax / anrm;
    }
    if (iscale == 1) {
        d__1 = 1.;
        magmablas_zlascl(uplo, 0, 0, 1., sigma, n, n, dA,
                         ldda, info);
        
        if (abstol > 0.) {
            abstol *= sigma;
        }
        if (valeig) {
            vl *= sigma;
            vu *= sigma;
        }
    }
    
    /* Call ZHETRD to reduce Hermitian matrix to tridiagonal form. */
    indd = 1;
    inde = indd + n;
    indrwk = inde + n;
    indtau = 1;
    indwrk = indtau + n;
    llwork = lwork - indwrk + 1;
    
#ifdef FAST_HEMV
    magma_zhetrd2_gpu(uplo, n, dA, ldda, &rwork[indd], &rwork[inde],
                      &work[indtau], wA, ldwa, &work[indwrk], llwork, dZ, lddz*n, &iinfo);
#else
    magma_zhetrd_gpu (uplo, n, dA, ldda, &rwork[indd], &rwork[inde],
                      &work[indtau], wA, ldwa, &work[indwrk], llwork, &iinfo);
#endif

    lopt = n + (magma_int_t)MAGMA_Z_REAL(work[indwrk]);
    
    /* If all eigenvalues are desired and ABSTOL is less than or equal to
       zero, then call DSTERF or ZUNGTR and ZSTEQR.  If this fails for
       some eigenvalue, then try DSTEBZ. */
    if ((alleig || (indeig && il == 1 && iu == n)) && abstol <= 0.) {
        blasf77_dcopy(&n, &rwork[indd], &ione, &w[1], &ione);
        indee = indrwk + 2*n;
        if (! wantz) {
            i__1 = n - 1;
            blasf77_dcopy(&i__1, &rwork[inde], &ione, &rwork[indee], &ione);
            lapackf77_dsterf(&n, &w[1], &rwork[indee], info);
        }
        else {
            lapackf77_zlacpy("A", &n, &n, wA, &ldwa, wZ, &ldwz);
            lapackf77_zungtr(uplo_, &n, wZ, &ldwz, &work[indtau], &work[indwrk], &llwork, &iinfo);
            i__1 = n - 1;
            blasf77_dcopy(&i__1, &rwork[inde], &ione, &rwork[indee], &ione);
            lapackf77_zsteqr(jobz_, &n, &w[1], &rwork[indee], wZ, &ldwz, &rwork[indrwk], info);
            if (*info == 0) {
                for (i = 1; i <= n; ++i) {
                    ifail[i] = 0;
                }
                magma_zsetmatrix( n, n, wZ, ldwz, dZ, lddz );
            }
        }
        if (*info == 0) {
            *m = n;
        }
    }
    
    /* Otherwise, call DSTEBZ and, if eigenvectors are desired, ZSTEIN. */
    if (*m == 0) {
        *info = 0;
        if (wantz) {
            order_ = "B";
        } else {
            order_ = "E";
        }
        indibl = 1;
        indisp = indibl + n;
        indiwk = indisp + n;

        lapackf77_dstebz(range_, order_, &n, &vl, &vu, &il, &iu, &abstol, &rwork[indd], &rwork[inde], m,
                         &nsplit, &w[1], &iwork[indibl], &iwork[indisp], &rwork[indrwk], &iwork[indiwk], info);
        
        if (wantz) {
            
            lapackf77_zstein(&n, &rwork[indd], &rwork[inde], m, &w[1], &iwork[indibl], &iwork[indisp],
                             wZ, &ldwz, &rwork[indrwk], &iwork[indiwk], &ifail[1], info);
            
            magma_zsetmatrix( n, *m, wZ, ldwz, dZ, lddz );
            
            /* Apply unitary matrix used in reduction to tridiagonal
               form to eigenvectors returned by ZSTEIN. */
            magma_zunmtr_gpu(MagmaLeft, uplo, MagmaNoTrans, n, *m, dA, ldda, &work[indtau],
                             dZ, lddz, wA, ldwa, &iinfo);
        }
    }
    /* If matrix was scaled, then rescale eigenvalues appropriately. */
    if (iscale == 1) {
        if (*info == 0) {
            imax = *m;
        } else {
            imax = *info - 1;
        }
        d__1 = 1. / sigma;
        blasf77_dscal(&imax, &d__1, &w[1], &ione);
    }
    
    /* If eigenvalues are not in order, then sort them, along with
       eigenvectors. */
    if (wantz) {
        for (j = 1; j <= *m-1; ++j) {
            i = 0;
            tmp1 = w[j];
            for (jj = j + 1; jj <= *m; ++jj) {
                if (w[jj] < tmp1) {
                    i = jj;
                    tmp1 = w[jj];
                }
            }
            
            if (i != 0) {
                itmp1 = iwork[indibl + i - 1];
                w[i] = w[j];
                iwork[indibl + i - 1] = iwork[indibl + j - 1];
                w[j] = tmp1;
                iwork[indibl + j - 1] = itmp1;
                magma_zswap(n, dZ + (i-1)*lddz, ione, dZ + (j-1)*lddz, ione);
                if (*info != 0) {
                    itmp1 = ifail[i];
                    ifail[i] = ifail[j];
                    ifail[j] = itmp1;
                }
            }
        }
    }
    
    /* Set WORK[0] to optimal complex workspace size. */
    work[1] = MAGMA_Z_MAKE( lopt, 0 );
    
    return *info;
    
} /* magma_zheevx_gpu */
Beispiel #14
0
/**
    Purpose
    -------
    ZHEEVD_2STAGE computes all eigenvalues and, optionally, eigenvectors of a
    complex Hermitian matrix A. It uses a two-stage algorithm for the tridiagonalization.
    If eigenvectors are desired, it uses a divide and conquer algorithm.

    The divide and conquer algorithm makes very mild assumptions about
    floating point arithmetic. It will work on machines with a guard
    digit in add/subtract, or on those binary machines without guard
    digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
    Cray-2. It could conceivably fail on hexadecimal or decimal machines
    without guard digits, but we know of none.

    Arguments
    ---------
    @param[in]
    nrgpu   INTEGER
            Number of GPUs to use.

    @param[in]
    jobz    magma_vec_t
      -     = MagmaNoVec:  Compute eigenvalues only;
      -     = MagmaVec:    Compute eigenvalues and eigenvectors.

    @param[in]
    range   magma_range_t
      -     = MagmaRangeAll: all eigenvalues will be found.
      -     = MagmaRangeV:   all eigenvalues in the half-open interval (VL,VU]
                   will be found.
      -     = MagmaRangeI:   the IL-th through IU-th eigenvalues will be found.

    @param[in]
    uplo    magma_uplo_t
      -     = MagmaUpper:  Upper triangle of A is stored;
      -     = MagmaLower:  Lower triangle of A is stored.

    @param[in]
    n       INTEGER
            The order of the matrix A.  N >= 0.

    @param[in,out]
    A       COMPLEX_16 array, dimension (LDA, N)
            On entry, the Hermitian matrix A.  If UPLO = MagmaUpper, the
            leading N-by-N upper triangular part of A contains the
            upper triangular part of the matrix A.  If UPLO = MagmaLower,
            the leading N-by-N lower triangular part of A contains
            the lower triangular part of the matrix A.
            On exit, if JOBZ = MagmaVec, then if INFO = 0, the first m columns
            of A contains the required
            orthonormal eigenvectors of the matrix A.
            If JOBZ = MagmaNoVec, then on exit the lower triangle (if UPLO=MagmaLower)
            or the upper triangle (if UPLO=MagmaUpper) of A, including the
            diagonal, is destroyed.

    @param[in]
    lda     INTEGER
            The leading dimension of the array A.  LDA >= max(1,N).

    @param[in]
    vl      DOUBLE PRECISION
    @param[in]
    vu      DOUBLE PRECISION
            If RANGE=MagmaRangeV, the lower and upper bounds of the interval to
            be searched for eigenvalues. VL < VU.
            Not referenced if RANGE = MagmaRangeAll or MagmaRangeI.

    @param[in]
    il      INTEGER
    @param[in]
    iu      INTEGER
            If RANGE=MagmaRangeI, the indices (in ascending order) of the
            smallest and largest eigenvalues to be returned.
            1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
            Not referenced if RANGE = MagmaRangeAll or MagmaRangeV.

    @param[out]
    m       INTEGER
            The total number of eigenvalues found.  0 <= M <= N.
            If RANGE = MagmaRangeAll, M = N, and if RANGE = MagmaRangeI, M = IU-IL+1.

    @param[out]
    w       DOUBLE PRECISION array, dimension (N)
            If INFO = 0, the required m eigenvalues in ascending order.

    @param[out]
    work    (workspace) COMPLEX_16 array, dimension (MAX(1,LWORK))
            On exit, if INFO = 0, WORK[0] returns the optimal LWORK.

    @param[in]
    lwork   INTEGER
            The length of the array WORK.
            If N <= 1,                      LWORK >= 1.
            If JOBZ = MagmaNoVec and N > 1, LWORK >= LQ2 + N + N*NB.
            If JOBZ = MagmaVec   and N > 1, LWORK >= LQ2 + 2*N + N**2.
            where LQ2 is the size needed to store the Q2 matrix
            and is returned by magma_bulge_get_lq2.
    \n
            If LWORK = -1, then a workspace query is assumed; the routine
            only calculates the optimal sizes of the WORK, RWORK and
            IWORK arrays, returns these values as the first entries of
            the WORK, RWORK and IWORK arrays, and no error message
            related to LWORK or LRWORK or LIWORK is issued by XERBLA.

    @param[out]
    rwork   (workspace) DOUBLE PRECISION array,
                                           dimension (LRWORK)
            On exit, if INFO = 0, RWORK[0] returns the optimal LRWORK.

    @param[in]
    lrwork  INTEGER
            The dimension of the array RWORK.
            If N <= 1,                      LRWORK >= 1.
            If JOBZ = MagmaNoVec and N > 1, LRWORK >= N.
            If JOBZ = MagmaVec   and N > 1, LRWORK >= 1 + 5*N + 2*N**2.
    \n
            If LRWORK = -1, then a workspace query is assumed; the
            routine only calculates the optimal sizes of the WORK, RWORK
            and IWORK arrays, returns these values as the first entries
            of the WORK, RWORK and IWORK arrays, and no error message
            related to LWORK or LRWORK or LIWORK is issued by XERBLA.

    @param[out]
    iwork   (workspace) INTEGER array, dimension (MAX(1,LIWORK))
            On exit, if INFO = 0, IWORK[0] returns the optimal LIWORK.

    @param[in]
    liwork  INTEGER
            The dimension of the array IWORK.
            If N <= 1,                      LIWORK >= 1.
            If JOBZ = MagmaNoVec and N > 1, LIWORK >= 1.
            If JOBZ = MagmaVec   and N > 1, LIWORK >= 3 + 5*N.
    \n
            If LIWORK = -1, then a workspace query is assumed; the
            routine only calculates the optimal sizes of the WORK, RWORK
            and IWORK arrays, returns these values as the first entries
            of the WORK, RWORK and IWORK arrays, and no error message
            related to LWORK or LRWORK or LIWORK is issued by XERBLA.

    @param[out]
    info    INTEGER
      -     = 0:  successful exit
      -     < 0:  if INFO = -i, the i-th argument had an illegal value
      -     > 0:  if INFO = i and JOBZ = MagmaNoVec, then the algorithm failed
                  to converge; i off-diagonal elements of an intermediate
                  tridiagonal form did not converge to zero;
                  if INFO = i and JOBZ = MagmaVec, then the algorithm failed
                  to compute an eigenvalue while working on the submatrix
                  lying in rows and columns INFO/(N+1) through
                  mod(INFO,N+1).

    Further Details
    ---------------
    Based on contributions by
       Jeff Rutter, Computer Science Division, University of California
       at Berkeley, USA

    Modified description of INFO. Sven, 16 Feb 05.

    @ingroup magma_zheev_driver
    ********************************************************************/
extern "C" magma_int_t
magma_zheevdx_2stage_m(magma_int_t nrgpu, magma_vec_t jobz, magma_range_t range, magma_uplo_t uplo,
                       magma_int_t n,
                       magmaDoubleComplex *A, magma_int_t lda,
                       double vl, double vu, magma_int_t il, magma_int_t iu,
                       magma_int_t *m, double *w,
                       magmaDoubleComplex *work, magma_int_t lwork,
                       double *rwork, magma_int_t lrwork,
                       magma_int_t *iwork, magma_int_t liwork,
                       magma_int_t *info)
{
    #define A( i_,j_) (A  + (i_) + (j_)*lda)
    #define A2(i_,j_) (A2 + (i_) + (j_)*lda2)
    
    const char* uplo_  = lapack_uplo_const( uplo  );
    const char* jobz_  = lapack_vec_const( jobz  );
    magmaDoubleComplex c_one  = MAGMA_Z_ONE;
    double d_one = 1.;
    magma_int_t ione = 1;
    magma_int_t izero = 0;

    double d__1;

    double eps;
    double anrm;
    magma_int_t imax;
    double rmin, rmax;
    double sigma;
    //magma_int_t iinfo;
    magma_int_t lwmin, lrwmin, liwmin;
    magma_int_t lower;
    magma_int_t wantz;
    magma_int_t iscale;
    double safmin;
    double bignum;
    double smlnum;
    magma_int_t lquery;
    magma_int_t alleig, valeig, indeig;
    magma_int_t len;

    /* determine the number of threads */
    magma_int_t parallel_threads = magma_get_parallel_numthreads();

    wantz = (jobz == MagmaVec);
    lower = (uplo == MagmaLower);

    alleig = (range == MagmaRangeAll);
    valeig = (range == MagmaRangeV);
    indeig = (range == MagmaRangeI);

    lquery = (lwork == -1 || lrwork == -1 || liwork == -1);

    *info = 0;
    if (! (wantz || (jobz == MagmaNoVec))) {
        *info = -1;
    } else if (! (alleig || valeig || indeig)) {
        *info = -2;
    } else if (! (lower || (uplo == MagmaUpper))) {
        *info = -3;
    } else if (n < 0) {
        *info = -4;
    } else if (lda < max(1,n)) {
        *info = -6;
    } else {
        if (valeig) {
            if (n > 0 && vu <= vl) {
                *info = -8;
            }
        } else if (indeig) {
            if (il < 1 || il > max(1,n)) {
                *info = -9;
            } else if (iu < min(n,il) || iu > n) {
                *info = -10;
            }
        }
    }

    magma_int_t nb = magma_get_zbulge_nb(n, parallel_threads);
    magma_int_t Vblksiz = magma_zbulge_get_Vblksiz(n, nb, parallel_threads);

    magma_int_t ldt = Vblksiz;
    magma_int_t ldv = nb + Vblksiz;
    magma_int_t blkcnt = magma_bulge_get_blkcnt(n, nb, Vblksiz);
    magma_int_t lq2 = magma_zbulge_get_lq2(n, parallel_threads);

    if (wantz) {
        lwmin  = lq2 + 2*n + n*n;
        lrwmin = 1 + 5*n + 2*n*n;
        liwmin = 5*n + 3;
    } else {
        lwmin  = lq2 + n + n*nb;
        lrwmin = n;
        liwmin = 1;
    }

    // multiply by 1+eps (in Double!) to ensure length gets rounded up,
    // if it cannot be exactly represented in floating point.
    real_Double_t one_eps = 1. + lapackf77_dlamch("Epsilon");
    work[0]  = MAGMA_Z_MAKE( lwmin * one_eps, 0.);  // round up
    rwork[0] = lrwmin * one_eps;
    iwork[0] = liwmin;

    if ((lwork < lwmin) && !lquery) {
        *info = -14;
    } else if ((lrwork < lrwmin) && ! lquery) {
        *info = -16;
    } else if ((liwork < liwmin) && ! lquery) {
        *info = -18;
    }

    if (*info != 0) {
        magma_xerbla( __func__, -(*info) );
        return *info;
    }
    else if (lquery) {
        return *info;
    }

    /* Quick return if possible */
    if (n == 0) {
        return *info;
    }

    if (n == 1) {
        w[0] = MAGMA_Z_REAL(A[0]);
        if (wantz) {
            A[0] = MAGMA_Z_ONE;
        }
        return *info;
    }

    magma_device_t orig_dev;
    magma_getdevice( &orig_dev );
    
    timer_printf("using %d parallel_threads\n", (int) parallel_threads);

    /* Check if matrix is very small then just call LAPACK on CPU, no need for GPU */
    magma_int_t ntiles = n/nb;
    if ( ( ntiles < 2 ) || ( n <= 128 ) ) {
        #ifdef ENABLE_DEBUG
        printf("--------------------------------------------------------------\n");
        printf("  warning matrix too small N=%d NB=%d, calling lapack on CPU  \n", (int) n, (int) nb);
        printf("--------------------------------------------------------------\n");
        #endif
        lapackf77_zheevd(jobz_, uplo_, &n,
                         A, &lda, w,
                         work, &lwork,
                         #if defined(PRECISION_z) || defined(PRECISION_c)
                         rwork, &lrwork,
                         #endif
                         iwork, &liwork,
                         info);
        *m = n;
        return *info;
    }
    
    /* Get machine constants. */
    safmin = lapackf77_dlamch("Safe minimum");
    eps = lapackf77_dlamch("Precision");
    smlnum = safmin / eps;
    bignum = 1. / smlnum;
    rmin = magma_dsqrt(smlnum);
    rmax = magma_dsqrt(bignum);

    /* Scale matrix to allowable range, if necessary. */
    anrm = lapackf77_zlanhe("M", uplo_, &n, A, &lda, rwork);
    iscale = 0;
    if (anrm > 0. && anrm < rmin) {
        iscale = 1;
        sigma = rmin / anrm;
    } else if (anrm > rmax) {
        iscale = 1;
        sigma = rmax / anrm;
    }
    if (iscale == 1) {
        lapackf77_zlascl(uplo_, &izero, &izero, &d_one, &sigma, &n, &n, A,
                         &lda, info);
    }

    magma_int_t indT2   = 0;
    magma_int_t indTAU2 = indT2  + blkcnt*ldt*Vblksiz;
    magma_int_t indV2   = indTAU2+ blkcnt*Vblksiz;
    magma_int_t indtau1 = indV2  + blkcnt*ldv*Vblksiz;
    magma_int_t indwrk  = indtau1+ n;
    magma_int_t indwk2  = indwrk + n*n;
    magma_int_t llwork = lwork - indwrk;
    magma_int_t llwrk2 = lwork - indwk2;
    magma_int_t inde = 0;
    magma_int_t indrwk = inde + n;
    magma_int_t llrwk = lrwork - indrwk;

    magma_timer_t time=0, time_total=0, time_alloc=0, time_dist=0, time_band=0;
    timer_start( time_total );

#ifdef HE2HB_SINGLEGPU
    magmaDoubleComplex *dT1;
    if (MAGMA_SUCCESS != magma_zmalloc( &dT1, n*nb)) {
        *info = MAGMA_ERR_DEVICE_ALLOC;
        return *info;
    }
    timer_start( time_band );
    magma_zhetrd_he2hb(uplo, n, nb, A, lda, &work[indtau1], &work[indwrk], llwork, dT1, info);
    timer_stop( time_band );
    timer_printf( "    1 GPU seq code time zhetrd_he2hb only = %7.4f\n", time_band );
    magma_free(dT1);
#else
    magma_int_t nstream = max(3,nrgpu+2);
    magma_queue_t streams[MagmaMaxGPUs][20];
    magmaDoubleComplex *da[MagmaMaxGPUs], *dT1[MagmaMaxGPUs];
    magma_int_t ldda = ((n+31)/32)*32;

    magma_int_t ver = 0;
    magma_int_t distblk = max(256, 4*nb);

    #ifdef ENABLE_DEBUG
    printf("voici ngpu %d distblk %d NB %d nstream %d version %d \n ", nrgpu, distblk, nb, nstream, ver);
    #endif

    timer_start( time_alloc );
    for( magma_int_t dev = 0; dev < nrgpu; ++dev ) {
        magma_int_t mlocal = ((n / distblk) / nrgpu + 1) * distblk;
        magma_setdevice( dev );
        // TODO check malloc
        magma_zmalloc(&da[dev], ldda*mlocal );
        magma_zmalloc(&dT1[dev], (n*nb) );
        for( int i = 0; i < nstream; ++i ) {
            magma_queue_create( &streams[dev][i] );
        }
    }
    timer_stop( time_alloc );
    
    timer_start( time_dist );
    magma_zsetmatrix_1D_col_bcyclic( n, n, A, lda, da, ldda, nrgpu, distblk );
    magma_setdevice(0);
    timer_stop( time_dist );

    timer_start( time_band );
    if (ver == 30) {
        magma_zhetrd_he2hb_mgpu_spec(uplo, n, nb, A, lda, &work[indtau1], &work[indwrk], llwork, da, ldda, dT1, nb, nrgpu, distblk, streams, nstream, info);
    } else {
        magma_zhetrd_he2hb_mgpu(uplo, n, nb, A, lda, &work[indtau1], &work[indwrk], llwork, da, ldda, dT1, nb, nrgpu, distblk, streams, nstream, info);
    }
    timer_stop( time_band );
    timer_printf("    time alloc %7.4f, ditribution %7.4f, zhetrd_he2hb only = %7.4f\n", time_alloc, time_dist, time_band );

    for( magma_int_t dev = 0; dev < nrgpu; ++dev ) {
        magma_setdevice( dev );
        magma_free( da[dev] );
        magma_free( dT1[dev] );
        for( int i = 0; i < nstream; ++i ) {
            magma_queue_destroy( streams[dev][i] );
        }
    }
#endif // not HE2HB_SINGLEGPU

    timer_stop( time_total );
    timer_printf( "    time zhetrd_he2hb_mgpu = %6.2f\n", time_total );
    timer_start( time_total );
    timer_start( time );

    /* copy the input matrix into WORK(INDWRK) with band storage */
    /* PAY ATTENTION THAT work[indwrk] should be able to be of size lda2*n which it should be checked in any future modification of lwork.*/
    magma_int_t lda2 = 2*nb; //nb+1+(nb-1);
    magmaDoubleComplex* A2 = &work[indwrk];
    memset(A2, 0, n*lda2*sizeof(magmaDoubleComplex));

    for (magma_int_t j = 0; j < n-nb; j++) {
        len = nb+1;
        blasf77_zcopy( &len, A(j,j), &ione, A2(0,j), &ione );
        memset(A(j,j), 0, (nb+1)*sizeof(magmaDoubleComplex));
        *A(nb+j,j) = c_one;
    }
    for (magma_int_t j = 0; j < nb; j++) {
        len = nb-j;
        blasf77_zcopy( &len, A(j+n-nb,j+n-nb), &ione, A2(0,j+n-nb), &ione );
        memset(A(j+n-nb,j+n-nb), 0, (nb-j)*sizeof(magmaDoubleComplex));
    }

    timer_stop( time );
    timer_printf( "    time zhetrd_convert = %6.2f\n", time );
    timer_start( time );

    magma_zhetrd_hb2st(uplo, n, nb, Vblksiz, A2, lda2, w, &rwork[inde], &work[indV2], ldv, &work[indTAU2], wantz, &work[indT2], ldt);

    timer_stop( time );
    timer_stop( time_total );
    timer_printf( "    time zhetrd_hb2st = %6.2f\n", time );
    timer_printf( "  time zhetrd = %6.2f\n", time_total );

    /* For eigenvalues only, call DSTERF.  For eigenvectors, first call
       ZSTEDC to generate the eigenvector matrix, WORK(INDWRK), of the
       tridiagonal matrix, then call ZUNMTR to multiply it to the Householder
       transformations represented as Householder vectors in A. */
    if (! wantz) {
        timer_start( time );

        lapackf77_dsterf(&n, w, &rwork[inde], info);
        magma_dmove_eig(range, n, w, &il, &iu, vl, vu, m);

        timer_stop( time );
        timer_printf( "  time dstedc = %6.2f\n", time );
    }
    else {
        timer_start( time_total );
        timer_start( time );

        magma_zstedx_m(nrgpu, range, n, vl, vu, il, iu, w, &rwork[inde],
                       &work[indwrk], n, &rwork[indrwk],
                       llrwk, iwork, liwork, info);

        timer_stop( time );
        timer_printf( "  time zstedx_m = %6.2f\n", time );
        timer_start( time );

        magma_dmove_eig(range, n, w, &il, &iu, vl, vu, m);
/*
        magmaDoubleComplex *dZ;
        magma_int_t lddz = n;

        if (MAGMA_SUCCESS != magma_zmalloc( &dZ, *m*lddz)) {
            *info = MAGMA_ERR_DEVICE_ALLOC;
            return *info;
        }

        magma_zbulge_back(uplo, n, nb, *m, Vblksiz, &work[indwrk + n * (il-1)], n, dZ, lddz,
                          &work[indV2], ldv, &work[indTAU2], &work[indT2], ldt, info);

        magma_zgetmatrix( n, *m, dZ, lddz, &work[indwrk], n);

        magma_free(dZ);

*/

        magma_zbulge_back_m(nrgpu, uplo, n, nb, *m, Vblksiz, &work[indwrk + n * (il-1)], n,
                            &work[indV2], ldv, &work[indTAU2], &work[indT2], ldt, info);

        timer_stop( time );
        timer_printf( "    time zbulge_back_m = %6.2f\n", time );
        timer_start( time );

        magma_zunmqr_m(nrgpu, MagmaLeft, MagmaNoTrans, n-nb, *m, n-nb, A+nb, lda, &work[indtau1],
                       &work[indwrk + n * (il-1) + nb], n, &work[indwk2], llwrk2, info);

        lapackf77_zlacpy("A", &n, m, &work[indwrk  + n * (il-1)], &n, A, &lda);

        timer_stop( time );
        timer_stop( time_total );
        timer_printf( "    time zunmqr_m + copy = %6.2f\n", time );
        timer_printf( "  time eigenvectors backtransf. = %6.2f\n", time_total );
    }

    /* If matrix was scaled, then rescale eigenvalues appropriately. */
    if (iscale == 1) {
        if (*info == 0) {
            imax = n;
        } else {
            imax = *info - 1;
        }
        d__1 = 1. / sigma;
        blasf77_dscal(&imax, &d__1, w, &ione);
    }

    work[0]  = MAGMA_Z_MAKE( lwmin * one_eps, 0.);  // round up
    rwork[0] = lrwmin * one_eps;
    iwork[0] = liwmin;

    magma_setdevice( orig_dev );
    
    return *info;
} /* magma_zheevdx_2stage_m */
/* ////////////////////////////////////////////////////////////////////////////
   -- Testing dsygvdx
*/
int main( int argc, char** argv)
{

    TESTING_INIT();

    real_Double_t gpu_time;

    double *h_A, *h_R, *h_B, *h_S, *h_work;

    #if defined(PRECISION_z) || defined(PRECISION_c)
    double *rwork;
    magma_int_t lrwork;
    #endif

    /* Matrix size */
    double *w1, *w2, result[2]={0,0};
    magma_int_t *iwork;
    magma_int_t N, n2, info, lwork, liwork;
    double c_zero    = MAGMA_D_ZERO;
    double c_one     = MAGMA_D_ONE;
    double c_neg_one = MAGMA_D_NEG_ONE;
    magma_int_t ione     = 1;
    magma_int_t ISEED[4] = {0,0,0,1};
    magma_int_t status = 0;

    magma_opts opts;
    parse_opts( argc, argv, &opts );
    
    double tol    = opts.tolerance * lapackf77_dlamch("E");
    double tolulp = opts.tolerance * lapackf77_dlamch("P");

    magma_range_t range = MagmaRangeAll;
    if (opts.fraction != 1)
        range = MagmaRangeI;

    if ( opts.check && opts.jobz == MagmaNoVec ) {
        fprintf( stderr, "checking results requires vectors; setting jobz=V (option -JV)\n" );
        opts.jobz = MagmaVec;
    }

    printf("using: itype = %d, jobz = %s, range = %s, uplo = %s, opts.check = %d, fraction = %6.4f\n",
           (int) opts.itype, lapack_vec_const(opts.jobz), lapack_range_const(range), lapack_uplo_const(opts.uplo),
           (int) opts.check, opts.fraction);

    printf("    N     M   GPU Time (sec)\n");
    printf("============================\n");
    magma_int_t threads = magma_get_parallel_numthreads();
    for( int itest = 0; itest < opts.ntest; ++itest ) {
        for( int iter = 0; iter < opts.niter; ++iter ) {
            N = opts.nsize[itest];
            n2     = N*N;
            #if defined(PRECISION_z) || defined(PRECISION_c)
            lwork  = magma_dbulge_get_lq2(N, threads) + 2*N + N*N;
            lrwork = 1 + 5*N +2*N*N;
            #else
            lwork  = magma_dbulge_get_lq2(N, threads) + 1 + 6*N + 2*N*N;
            #endif
            liwork = 3 + 5*N;

            /* Allocate host memory for the matrix */
            TESTING_MALLOC_CPU( h_A,    double, n2 );
            TESTING_MALLOC_CPU( h_B,    double, n2 );
            TESTING_MALLOC_CPU( w1,     double, N );
            TESTING_MALLOC_CPU( w2,     double, N );
            TESTING_MALLOC_CPU( iwork,  magma_int_t, liwork );
            
            TESTING_MALLOC_PIN( h_R,    double, n2 );
            TESTING_MALLOC_PIN( h_S,    double, n2 );
            TESTING_MALLOC_PIN( h_work, double, lwork );
            #if defined(PRECISION_z) || defined(PRECISION_c)
            TESTING_MALLOC_PIN( rwork,  double, lrwork);
            #endif

            /* Initialize the matrix */
            lapackf77_dlarnv( &ione, ISEED, &n2, h_A );
            lapackf77_dlarnv( &ione, ISEED, &n2, h_B );
            magma_dmake_hpd( N, h_B, N );
            magma_dmake_symmetric( N, h_A, N );

            magma_int_t m1 = 0;
            double vl = 0;
            double vu = 0;
            magma_int_t il = 0;
            magma_int_t iu = 0;

            if (range == MagmaRangeI) {
                il = 1;
                iu = (int) (opts.fraction*N);
            }

            // ==================================================================
            // Warmup using MAGMA
            // ==================================================================
            if (opts.warmup) {
                lapackf77_dlacpy( MagmaUpperLowerStr, &N, &N, h_A, &N, h_R, &N );
                lapackf77_dlacpy( MagmaUpperLowerStr, &N, &N, h_B, &N, h_S, &N );

                magma_dsygvdx_2stage(opts.itype, opts.jobz, range, opts.uplo,
                                     N, h_R, N, h_S, N, vl, vu, il, iu, &m1, w1,
                                     h_work, lwork,
                                     #if defined(PRECISION_z) || defined(PRECISION_c)
                                     rwork, lrwork,
                                     #endif
                                     iwork, liwork,
                                     &info);
            }
            // ===================================================================
            // Performs operation using MAGMA
            // ===================================================================
            lapackf77_dlacpy( MagmaUpperLowerStr, &N, &N, h_A, &N, h_R, &N );
            lapackf77_dlacpy( MagmaUpperLowerStr, &N, &N, h_B, &N, h_S, &N );

            gpu_time = magma_wtime();
            magma_dsygvdx_2stage(opts.itype, opts.jobz, range, opts.uplo,
                                 N, h_R, N, h_S, N, vl, vu, il, iu, &m1, w1,
                                 h_work, lwork,
                                 #if defined(PRECISION_z) || defined(PRECISION_c)
                                 rwork, lrwork,
                                 #endif
                                 iwork, liwork,
                                 &info);
            gpu_time = magma_wtime() - gpu_time;


            if ( opts.check ) {
                /* =====================================================================
                   Check the results following the LAPACK's [zc]hegvdx routine.
                   A x = lambda B x is solved
                   and the following 3 tests computed:
                   (1)    | A Z - B Z D | / ( |A||Z| N )  (itype = 1)
                   | A B Z - Z D | / ( |A||Z| N )  (itype = 2)
                   | B A Z - Z D | / ( |A||Z| N )  (itype = 3)
                   (2)    | S(with V) - S(w/o V) | / | S |
                   =================================================================== */
                #if defined(PRECISION_d) || defined(PRECISION_s)
                double *rwork = h_work + N*N;
                #endif
                double temp1, temp2;

                result[0] = 1.;
                result[0] /= lapackf77_dlansy("1", lapack_uplo_const(opts.uplo), &N, h_A, &N, rwork);
                result[0] /= lapackf77_dlange("1", &N, &m1, h_R, &N, rwork);

                if (opts.itype == 1) {
                    blasf77_dsymm("L", lapack_uplo_const(opts.uplo), &N, &m1, &c_one, h_A, &N, h_R, &N, &c_zero, h_work, &N);
                    for(int i=0; i<m1; ++i)
                        blasf77_dscal(&N, &w1[i], &h_R[i*N], &ione);
                    blasf77_dsymm("L", lapack_uplo_const(opts.uplo), &N, &m1, &c_neg_one, h_B, &N, h_R, &N, &c_one, h_work, &N);
                    result[0] *= lapackf77_dlange("1", &N, &m1, h_work, &N, rwork)/N;
                }
                else if (opts.itype == 2) {
                    blasf77_dsymm("L", lapack_uplo_const(opts.uplo), &N, &m1, &c_one, h_B, &N, h_R, &N, &c_zero, h_work, &N);
                    for(int i=0; i<m1; ++i)
                        blasf77_dscal(&N, &w1[i], &h_R[i*N], &ione);
                    blasf77_dsymm("L", lapack_uplo_const(opts.uplo), &N, &m1, &c_one, h_A, &N, h_work, &N, &c_neg_one, h_R, &N);
                    result[0] *= lapackf77_dlange("1", &N, &m1, h_R, &N, rwork)/N;
                }
                else if (opts.itype == 3) {
                    blasf77_dsymm("L", lapack_uplo_const(opts.uplo), &N, &m1, &c_one, h_A, &N, h_R, &N, &c_zero, h_work, &N);
                    for(int i=0; i<m1; ++i)
                        blasf77_dscal(&N, &w1[i], &h_R[i*N], &ione);
                    blasf77_dsymm("L", lapack_uplo_const(opts.uplo), &N, &m1, &c_one, h_B, &N, h_work, &N, &c_neg_one, h_R, &N);
                    result[0] *= lapackf77_dlange("1", &N, &m1, h_R, &N, rwork)/N;
                }

                lapackf77_dlacpy( MagmaUpperLowerStr, &N, &N, h_A, &N, h_R, &N );
                lapackf77_dlacpy( MagmaUpperLowerStr, &N, &N, h_B, &N, h_S, &N );

                magma_int_t m2 = m1;
                lapackf77_dsygvd(&opts.itype, "N", lapack_uplo_const(opts.uplo), &N,
                              h_R, &N, h_S, &N, w2,
                              h_work, &lwork,
                              #if defined(PRECISION_z) || defined(PRECISION_c)
                              rwork, &lrwork,
                              #endif
                              iwork, &liwork,
                              &info);

                temp1 = temp2 = 0;
                for(int j=0; j<m2; j++) {
                    temp1 = max(temp1, fabs(w1[j]));
                    temp1 = max(temp1, fabs(w2[j]));
                    temp2 = max(temp2, fabs(w1[j]-w2[j]));
                }
                result[1] = temp2 / (((double)m2)*temp1);
            }


            /* =====================================================================
               Print execution time
               =================================================================== */
            printf("%5d %5d   %7.2f\n",
                   (int) N, (int) m1, gpu_time);
            if ( opts.check ) {
                printf("Testing the eigenvalues and eigenvectors for correctness:\n");
                if (opts.itype==1) {
                    printf("(1)    | A Z - B Z D | / (|A| |Z| N) = %8.2e   %s\n",   result[0], (result[0] < tol    ? "ok" : "failed"));
                }
                else if (opts.itype==2) {
                    printf("(1)    | A B Z - Z D | / (|A| |Z| N) = %8.2e   %s\n",   result[0], (result[0] < tol    ? "ok" : "failed"));
                }
                else if (opts.itype==3) {
                    printf("(1)    | B A Z - Z D | / (|A| |Z| N) = %8.2e   %s\n",   result[0], (result[0] < tol    ? "ok" : "failed"));
                }
                printf(    "(2)    | D(w/ Z) - D(w/o Z) | / |D|  = %8.2e   %s\n\n", result[1], (result[1] < tolulp ? "ok" : "failed"));
                status += ! (result[0] < tol && result[1] < tolulp);
            }

            TESTING_FREE_CPU( h_A   );
            TESTING_FREE_CPU( h_B   );
            TESTING_FREE_CPU( w1    );
            TESTING_FREE_CPU( w2    );
            TESTING_FREE_CPU( iwork );
            
            TESTING_FREE_PIN( h_R );
            TESTING_FREE_PIN( h_S );
            TESTING_FREE_PIN( h_work );
            #if defined(PRECISION_z) || defined(PRECISION_c)
            TESTING_FREE_PIN( rwork );
            #endif
            fflush( stdout );
        }
        if ( opts.niter > 1 ) {
            printf( "\n" );
        }
    }

    /* Shutdown */
    TESTING_FINALIZE();
    return status;
}
Beispiel #16
0
/**
    Purpose
    -------
    ZHEEVDX_GPU computes selected eigenvalues and, optionally, eigenvectors
    of a complex Hermitian matrix A. Eigenvalues and eigenvectors can
    be selected by specifying either a range of values or a range of
    indices for the desired eigenvalues.
    If eigenvectors are desired, it uses a divide and conquer algorithm.

    The divide and conquer algorithm makes very mild assumptions about
    floating point arithmetic. It will work on machines with a guard
    digit in add/subtract, or on those binary machines without guard
    digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
    Cray-2. It could conceivably fail on hexadecimal or decimal machines
    without guard digits, but we know of none.

    Arguments
    ---------
    @param[in]
    jobz    magma_vec_t
      -     = MagmaNoVec:  Compute eigenvalues only;
      -     = MagmaVec:    Compute eigenvalues and eigenvectors.

    @param[in]
    range   magma_range_t
      -     = MagmaRangeAll: all eigenvalues will be found.
      -     = MagmaRangeV:   all eigenvalues in the half-open interval (VL,VU]
                   will be found.
      -     = MagmaRangeI:   the IL-th through IU-th eigenvalues will be found.

    @param[in]
    uplo    magma_uplo_t
      -     = MagmaUpper:  Upper triangle of A is stored;
      -     = MagmaLower:  Lower triangle of A is stored.

    @param[in]
    n       INTEGER
            The order of the matrix A.  N >= 0.

    @param[in,out]
    dA      COMPLEX_16 array on the GPU,
            dimension (LDDA, N).
            On entry, the Hermitian matrix A.  If UPLO = MagmaUpper, the
            leading N-by-N upper triangular part of A contains the
            upper triangular part of the matrix A.  If UPLO = MagmaLower,
            the leading N-by-N lower triangular part of A contains
            the lower triangular part of the matrix A.
            On exit, if JOBZ = MagmaVec, then if INFO = 0, the first mout columns
            of A contains the required
            orthonormal eigenvectors of the matrix A.
            If JOBZ = MagmaNoVec, then on exit the lower triangle (if UPLO=MagmaLower)
            or the upper triangle (if UPLO=MagmaUpper) of A, including the
            diagonal, is destroyed.

    @param[in]
    ldda    INTEGER
            The leading dimension of the array DA.  LDDA >= max(1,N).

    @param[in]
    vl      DOUBLE PRECISION
    @param[in]
    vu      DOUBLE PRECISION
            If RANGE=MagmaRangeV, the lower and upper bounds of the interval to
            be searched for eigenvalues. VL < VU.
            Not referenced if RANGE = MagmaRangeAll or MagmaRangeI.

    @param[in]
    il      INTEGER
    @param[in]
    iu      INTEGER
            If RANGE=MagmaRangeI, the indices (in ascending order) of the
            smallest and largest eigenvalues to be returned.
            1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
            Not referenced if RANGE = MagmaRangeAll or MagmaRangeV.

    @param[out]
    mout    INTEGER
            The total number of eigenvalues found.  0 <= MOUT <= N.
            If RANGE = MagmaRangeAll, MOUT = N, and if RANGE = MagmaRangeI, MOUT = IU-IL+1.

    @param[out]
    w       DOUBLE PRECISION array, dimension (N)
            If INFO = 0, the required mout eigenvalues in ascending order.

    @param
    wA      (workspace) COMPLEX_16 array, dimension (LDWA, N)

    @param[in]
    ldwa    INTEGER
            The leading dimension of the array wA.  LDWA >= max(1,N).

    @param[out]
    work    (workspace) COMPLEX_16 array, dimension (MAX(1,LWORK))
            On exit, if INFO = 0, WORK[0] returns the optimal LWORK.

    @param[in]
    lwork   INTEGER
            The length of the array WORK.
            If N <= 1,                      LWORK >= 1.
            If JOBZ = MagmaNoVec and N > 1, LWORK >= N + N*NB.
            If JOBZ = MagmaVec   and N > 1, LWORK >= max( N + N*NB, 2*N + N**2 ).
            NB can be obtained through magma_get_zhetrd_nb(N).
    \n
            If LWORK = -1, then a workspace query is assumed; the routine
            only calculates the optimal sizes of the WORK, RWORK and
            IWORK arrays, returns these values as the first entries of
            the WORK, RWORK and IWORK arrays, and no error message
            related to LWORK or LRWORK or LIWORK is issued by XERBLA.

    @param[out]
    rwork   (workspace) DOUBLE PRECISION array, dimension (LRWORK)
            On exit, if INFO = 0, RWORK[0] returns the optimal LRWORK.

    @param[in]
    lrwork  INTEGER
            The dimension of the array RWORK.
            If N <= 1,                      LRWORK >= 1.
            If JOBZ = MagmaNoVec and N > 1, LRWORK >= N.
            If JOBZ = MagmaVec   and N > 1, LRWORK >= 1 + 5*N + 2*N**2.
    \n
            If LRWORK = -1, then a workspace query is assumed; the
            routine only calculates the optimal sizes of the WORK, RWORK
            and IWORK arrays, returns these values as the first entries
            of the WORK, RWORK and IWORK arrays, and no error message
            related to LWORK or LRWORK or LIWORK is issued by XERBLA.

    @param[out]
    iwork   (workspace) INTEGER array, dimension (MAX(1,LIWORK))
            On exit, if INFO = 0, IWORK[0] returns the optimal LIWORK.

    @param[in]
    liwork  INTEGER
            The dimension of the array IWORK.
            If N <= 1,                      LIWORK >= 1.
            If JOBZ = MagmaNoVec and N > 1, LIWORK >= 1.
            If JOBZ = MagmaVec   and N > 1, LIWORK >= 3 + 5*N.
    \n
            If LIWORK = -1, then a workspace query is assumed; the
            routine only calculates the optimal sizes of the WORK, RWORK
            and IWORK arrays, returns these values as the first entries
            of the WORK, RWORK and IWORK arrays, and no error message
            related to LWORK or LRWORK or LIWORK is issued by XERBLA.

    @param[out]
    info    INTEGER
      -     = 0:  successful exit
      -     < 0:  if INFO = -i, the i-th argument had an illegal value
      -     > 0:  if INFO = i and JOBZ = MagmaNoVec, then the algorithm failed
                  to converge; i off-diagonal elements of an intermediate
                  tridiagonal form did not converge to zero;
                  if INFO = i and JOBZ = MagmaVec, then the algorithm failed
                  to compute an eigenvalue while working on the submatrix
                  lying in rows and columns INFO/(N+1) through
                  mod(INFO,N+1).

    Further Details
    ---------------
    Based on contributions by
       Jeff Rutter, Computer Science Division, University of California
       at Berkeley, USA

    Modified description of INFO. Sven, 16 Feb 05.

    @ingroup magma_zheev_driver
    ********************************************************************/
extern "C" magma_int_t
magma_zheevdx_gpu(
    magma_vec_t jobz, magma_range_t range, magma_uplo_t uplo,
    magma_int_t n,
    magmaDoubleComplex_ptr dA, magma_int_t ldda,
    double vl, double vu, magma_int_t il, magma_int_t iu,
    magma_int_t *mout, double *w,
    magmaDoubleComplex *wA,  magma_int_t ldwa,
    magmaDoubleComplex *work, magma_int_t lwork,
    #ifdef COMPLEX
    double *rwork, magma_int_t lrwork,
    #endif
    magma_int_t *iwork, magma_int_t liwork,
    magma_int_t *info)
{
    const char* uplo_  = lapack_uplo_const( uplo  );
    const char* jobz_  = lapack_vec_const( jobz  );
    magma_int_t ione = 1;

    double d__1;

    double eps;
    magma_int_t inde;
    double anrm;
    magma_int_t imax;
    double rmin, rmax;
    double sigma;
    magma_int_t iinfo, lwmin;
    magma_int_t lower;
    magma_int_t llrwk;
    magma_int_t wantz;
    //magma_int_t indwk2;
    magma_int_t iscale;
    double safmin;
    double bignum;
    magma_int_t indtau;
    magma_int_t indrwk, indwrk, liwmin;
    magma_int_t lrwmin, llwork;
    double smlnum;
    magma_int_t lquery;
    magma_int_t alleig, valeig, indeig;

    magmaDouble_ptr dwork;
    magmaDoubleComplex_ptr dC;
    magma_int_t lddc = ldda;

    wantz = (jobz == MagmaVec);
    lower = (uplo == MagmaLower);

    alleig = (range == MagmaRangeAll);
    valeig = (range == MagmaRangeV);
    indeig = (range == MagmaRangeI);

    lquery = (lwork == -1 || lrwork == -1 || liwork == -1);

    *info = 0;
    if (! (wantz || (jobz == MagmaNoVec))) {
        *info = -1;
    } else if (! (alleig || valeig || indeig)) {
        *info = -2;
    } else if (! (lower || (uplo == MagmaUpper))) {
        *info = -3;
    } else if (n < 0) {
        *info = -4;
    } else if (ldda < max(1,n)) {
        *info = -6;
    } else if (ldwa < max(1,n)) {
        *info = -14;
    } else {
        if (valeig) {
            if (n > 0 && vu <= vl) {
                *info = -8;
            }
        } else if (indeig) {
            if (il < 1 || il > max(1,n)) {
                *info = -9;
            } else if (iu < min(n,il) || iu > n) {
                *info = -10;
            }
        }
    }

    magma_int_t nb = magma_get_zhetrd_nb( n );
    if ( n <= 1 ) {
        lwmin  = 1;
        lrwmin = 1;
        liwmin = 1;
    }
    else if ( wantz ) {
        lwmin  = max( n + n*nb, 2*n + n*n );
        lrwmin = 1 + 5*n + 2*n*n;
        liwmin = 3 + 5*n;
    }
    else {
        lwmin  = n + n*nb;
        lrwmin = n;
        liwmin = 1;
    }
    
    // multiply by 1+eps (in Double!) to ensure length gets rounded up,
    // if it cannot be exactly represented in floating point.
    real_Double_t one_eps = 1. + lapackf77_dlamch("Epsilon");
    work[0]  = MAGMA_Z_MAKE( lwmin * one_eps, 0 );
    rwork[0] = lrwmin * one_eps;
    iwork[0] = liwmin;

    if ((lwork < lwmin) && !lquery) {
        *info = -16;
    } else if ((lrwork < lrwmin) && ! lquery) {
        *info = -18;
    } else if ((liwork < liwmin) && ! lquery) {
        *info = -20;
    }

    if (*info != 0) {
        magma_xerbla( __func__, -(*info) );
        return *info;
    }
    else if (lquery) {
        return *info;
    }

    /* If matrix is very small, then just call LAPACK on CPU, no need for GPU */
    if (n <= 128) {
        magma_int_t lda = n;
        magmaDoubleComplex *A;
        magma_zmalloc_cpu( &A, lda*n );
        magma_zgetmatrix( n, n, dA, ldda, A, lda );
        lapackf77_zheevd( jobz_, uplo_,
                          &n, A, &lda,
                          w, work, &lwork,
                          rwork, &lrwork,
                          iwork, &liwork, info );
        magma_zsetmatrix( n, n, A, lda, dA, ldda );
        magma_free_cpu( A );
        *mout = n;
        return *info;
    }

    magma_queue_t stream;
    magma_queue_create( &stream );

    // dC and dwork are never used together, so use one buffer for both;
    // unfortunately they're different types (complex and double).
    // (this is easier in dsyevd_gpu where everything is double.)
    // zhetrd2_gpu requires ldda*ceildiv(n,64) + 2*ldda*nb, in double-complex.
    // zunmtr_gpu  requires lddc*n,                         in double-complex.
    // zlanhe      requires n, in double.
    magma_int_t ldwork = max( ldda*ceildiv(n,64) + 2*ldda*nb, lddc*n );
    magma_int_t ldwork_real = max( ldwork*2, n );
    if ( wantz ) {
        // zstedx requrise 3n^2/2, in double
        ldwork_real = max( ldwork_real, 3*n*(n/2 + 1) );
    }
    if (MAGMA_SUCCESS != magma_dmalloc( &dwork, ldwork_real )) {
        *info = MAGMA_ERR_DEVICE_ALLOC;
        return *info;
    }
    dC = (magmaDoubleComplex*) dwork;

    /* Get machine constants. */
    safmin = lapackf77_dlamch("Safe minimum");
    eps    = lapackf77_dlamch("Precision");
    smlnum = safmin / eps;
    bignum = 1. / smlnum;
    rmin = magma_dsqrt( smlnum );
    rmax = magma_dsqrt( bignum );

    /* Scale matrix to allowable range, if necessary. */
    anrm = magmablas_zlanhe( MagmaMaxNorm, uplo, n, dA, ldda, dwork );
    iscale = 0;
    sigma  = 1;
    if (anrm > 0. && anrm < rmin) {
        iscale = 1;
        sigma = rmin / anrm;
    } else if (anrm > rmax) {
        iscale = 1;
        sigma = rmax / anrm;
    }
    if (iscale == 1) {
        magmablas_zlascl( uplo, 0, 0, 1., sigma, n, n, dA, ldda, info );
    }

    /* Call ZHETRD to reduce Hermitian matrix to tridiagonal form. */
    // zhetrd rwork: e (n)
    // zstedx rwork: e (n) + llrwk (1 + 4*N + 2*N**2)  ==>  1 + 5n + 2n^2
    inde   = 0;
    indrwk = inde + n;
    llrwk  = lrwork - indrwk;

    // zhetrd work: tau (n) + llwork (n*nb)  ==>  n + n*nb
    // zstedx work: tau (n) + z (n^2)
    // zunmtr work: tau (n) + z (n^2) + llwrk2 (n or n*nb)  ==>  2n + n^2, or n + n*nb + n^2
    indtau = 0;
    indwrk = indtau + n;
    //indwk2 = indwrk + n*n;
    llwork = lwork - indwrk;
    //llwrk2 = lwork - indwk2;

    magma_timer_t time=0;
    timer_start( time );

#ifdef FAST_HEMV
    magma_zhetrd2_gpu( uplo, n, dA, ldda, w, &rwork[inde],
                       &work[indtau], wA, ldwa, &work[indwrk], llwork,
                       dC, ldwork, &iinfo );
#else
    magma_zhetrd_gpu ( uplo, n, dA, ldda, w, &rwork[inde],
                       &work[indtau], wA, ldwa, &work[indwrk], llwork,
                       &iinfo );
#endif

    timer_stop( time );
    timer_printf( "time zhetrd_gpu = %6.2f\n", time );

    /* For eigenvalues only, call DSTERF.  For eigenvectors, first call
       ZSTEDC to generate the eigenvector matrix, WORK(INDWRK), of the
       tridiagonal matrix, then call ZUNMTR to multiply it to the Householder
       transformations represented as Householder vectors in A. */
    if (! wantz) {
        lapackf77_dsterf( &n, w, &rwork[inde], info );

        magma_dmove_eig( range, n, w, &il, &iu, vl, vu, mout );
    }
    else {
        timer_start( time );

        magma_zstedx( range, n, vl, vu, il, iu, w, &rwork[inde],
                      &work[indwrk], n, &rwork[indrwk],
                      llrwk, iwork, liwork, dwork, info );

        timer_stop( time );
        timer_printf( "time zstedx = %6.2f\n", time );
        timer_start( time );

        magma_dmove_eig( range, n, w, &il, &iu, vl, vu, mout );

        magma_zsetmatrix( n, *mout, &work[indwrk + n * (il-1) ], n, dC, lddc );

        magma_zunmtr_gpu( MagmaLeft, uplo, MagmaNoTrans, n, *mout, dA, ldda, &work[indtau],
                          dC, lddc, wA, ldwa, &iinfo );

        magma_zcopymatrix( n, *mout, dC, lddc, dA, ldda );

        timer_stop( time );
        timer_printf( "time zunmtr_gpu + copy = %6.2f\n", time );
    }

    /* If matrix was scaled, then rescale eigenvalues appropriately. */
    if (iscale == 1) {
        if (*info == 0) {
            imax = n;
        } else {
            imax = *info - 1;
        }
        d__1 = 1. / sigma;
        blasf77_dscal( &imax, &d__1, w, &ione );
    }

    work[0]  = MAGMA_Z_MAKE( lwmin * one_eps, 0 );  // round up
    rwork[0] = lrwmin * one_eps;
    iwork[0] = liwmin;

    magma_queue_destroy( stream );
    magma_free( dwork );

    return *info;
} /* magma_zheevdx_gpu */
/*------------------------------------------------------------
 *  Check the reduction 
 */
static magma_int_t check_reduction(magma_uplo_t uplo, magma_int_t N, magma_int_t bw, double *A, double *D, magma_int_t LDA, double *Q, double eps )
{
    double c_one     = MAGMA_D_ONE;
    double c_neg_one = MAGMA_D_NEG_ONE;
    double *TEMP, *Residual;
    double *work;
    double Anorm, Rnorm, result;
    magma_int_t info_reduction;
    magma_int_t i;
    magma_int_t ione=1;

    magma_dmalloc_cpu( &TEMP, N*N );
    magma_dmalloc_cpu( &Residual, N*N );
    magma_dmalloc_cpu( &work, N );
    
    /* Compute TEMP =  Q * LAMBDA */
    lapackf77_dlacpy("A", &N, &N, Q, &LDA, TEMP, &N);        
    for (i = 0; i < N; i++) {
        blasf77_dscal(&N, &D[i], &(TEMP[i*N]), &ione);
    }
    /* Compute Residual = A - Q * LAMBDA * Q^H */
    /* A is Hermetian but both upper and lower 
     * are assumed valable here for checking 
     * otherwise it need to be symetrized before 
     * checking.
     */ 
    lapackf77_dlacpy("A", &N, &N, A, &LDA, Residual, &N);        
    blasf77_dgemm("N", "C", &N, &N, &N, &c_neg_one, TEMP, &N, Q, &LDA, &c_one, Residual,     &N);

    // since A has been generated by larnv and we did not symmetrize, 
    // so only the uplo portion of A should be equal to Q*LAMBDA*Q^H 
    // for that Rnorm use dlansy instead of dlange
    Rnorm = lapackf77_dlansy("1", lapack_uplo_const(uplo), &N, Residual, &N, work);
    Anorm = lapackf77_dlansy("1", lapack_uplo_const(uplo), &N, A,        &LDA, work);

    result = Rnorm / ( Anorm * N * eps);
    printf("  %12.2e", result );
    //if ( uplo == MagmaLower ) {
    //    printf(" ======================================================\n");
    //    printf(" ||A-Q*LAMBDA*Q'||_oo/(||A||_oo.N.eps) : %15.3E \n",  result );
    //    printf(" ======================================================\n");
    //} else { 
    //    printf(" ======================================================\n");
    //    printf(" ||A-Q'*LAMBDA*Q||_oo/(||A||_oo.N.eps) : %15.3E \n",  result );
    //    printf(" ======================================================\n");
    //}

    if ( isnan(result) || isinf(result) || (result > 60.0) ) {
        //printf("-- Reduction is suspicious ! \n");
        info_reduction = 1;
    }
    else {
        //printf("-- Reduction is CORRECT ! \n");
        info_reduction = 0;
    }

    magma_free_cpu(TEMP);
    magma_free_cpu(Residual);
    magma_free_cpu(work);

    return info_reduction;
}
Beispiel #18
0
/**
    Purpose
    -------
    DLATRD2 reduces NB rows and columns of a real symmetric matrix A to
    symmetric tridiagonal form by an orthogonal similarity
    transformation Q' * A * Q, and returns the matrices V and W which are
    needed to apply the transformation to the unreduced part of A.

    If UPLO = MagmaUpper, DLATRD reduces the last NB rows and columns of a
    matrix, of which the upper triangle is supplied;
    if UPLO = MagmaLower, DLATRD reduces the first NB rows and columns of a
    matrix, of which the lower triangle is supplied.

    This is an auxiliary routine called by DSYTRD2_GPU. It uses an
    accelerated HEMV that needs extra memory.

    Arguments
    ---------
    @param[in]
    uplo    magma_uplo_t
            Specifies whether the upper or lower triangular part of the
            symmetric matrix A is stored:
      -     = MagmaUpper: Upper triangular
      -     = MagmaLower: Lower triangular

    @param[in]
    n       INTEGER
            The order of the matrix A.

    @param[in]
    nb      INTEGER
            The number of rows and columns to be reduced.

    @param[in,out]
    A       DOUBLE_PRECISION array, dimension (LDA,N)
            On entry, the symmetric matrix A.  If UPLO = MagmaUpper, the leading
            n-by-n upper triangular part of A contains the upper
            triangular part of the matrix A, and the strictly lower
            triangular part of A is not referenced.  If UPLO = MagmaLower, the
            leading n-by-n lower triangular part of A contains the lower
            triangular part of the matrix A, and the strictly upper
            triangular part of A is not referenced.
            On exit:
      -     if UPLO = MagmaUpper, the last NB columns have been reduced to
              tridiagonal form, with the diagonal elements overwriting
              the diagonal elements of A; the elements above the diagonal
              with the array TAU, represent the orthogonal matrix Q as a
              product of elementary reflectors;
      -     if UPLO = MagmaLower, the first NB columns have been reduced to
              tridiagonal form, with the diagonal elements overwriting
              the diagonal elements of A; the elements below the diagonal
              with the array TAU, represent the  orthogonal matrix Q as a
              product of elementary reflectors.
            See Further Details.

    @param[in]
    lda     INTEGER
            The leading dimension of the array A.  LDA >= (1,N).

    @param[out]
    e       DOUBLE_PRECISION array, dimension (N-1)
            If UPLO = MagmaUpper, E(n-nb:n-1) contains the superdiagonal
            elements of the last NB columns of the reduced matrix;
            if UPLO = MagmaLower, E(1:nb) contains the subdiagonal elements of
            the first NB columns of the reduced matrix.

    @param[out]
    tau     DOUBLE_PRECISION array, dimension (N-1)
            The scalar factors of the elementary reflectors, stored in
            TAU(n-nb:n-1) if UPLO = MagmaUpper, and in TAU(1:nb) if UPLO = MagmaLower.
            See Further Details.

    @param[out]
    W       DOUBLE_PRECISION array, dimension (LDW,NB)
            The n-by-nb matrix W required to update the unreduced part
            of A.

    @param[in]
    ldw     INTEGER
            The leading dimension of the array W. LDW >= max(1,N).
    
    @param
    dA      TODO: dimension (ldda, n) ??
    
    @param
    ldda    TODO: ldda >= n ??
    
    @param
    dW      TODO: dimension (lddw, 2*nb) ??
    
    @param
    lddw    TODO: lddw >= n ??
    
    @param
    dwork   TODO: dimension (ldwork) ??
    
    @param
    ldwork  TODO: ldwork >= ceil(n/64)*ldda ??

    Further Details
    ---------------
    If UPLO = MagmaUpper, the matrix Q is represented as a product of elementary
    reflectors

        Q = H(n) H(n-1) . . . H(n-nb+1).

    Each H(i) has the form

        H(i) = I - tau * v * v'

    where tau is a real scalar, and v is a real vector with
    v(i:n) = 0 and v(i-1) = 1; v(1:i-1) is stored on exit in A(1:i-1,i),
    and tau in TAU(i-1).

    If UPLO = MagmaLower, the matrix Q is represented as a product of elementary
    reflectors

        Q = H(1) H(2) . . . H(nb).

    Each H(i) has the form

        H(i) = I - tau * v * v'

    where tau is a real scalar, and v is a real vector with
    v(1:i) = 0 and v(i+1) = 1; v(i+1:n) is stored on exit in A(i+1:n,i),
    and tau in TAU(i).

    The elements of the vectors v together form the n-by-nb matrix V
    which is needed, with W, to apply the transformation to the unreduced
    part of the matrix, using a symmetric rank-2k update of the form:
    A := A - V*W' - W*V'.

    The contents of A on exit are illustrated by the following examples
    with n = 5 and nb = 2:

    if UPLO = MagmaUpper:                       if UPLO = MagmaLower:

        (  a   a   a   v4  v5 )              (  d                  )
        (      a   a   v4  v5 )              (  1   d              )
        (          a   1   v5 )              (  v1  1   a          )
        (              d   1  )              (  v1  v2  a   a      )
        (                  d  )              (  v1  v2  a   a   a  )

    where d denotes a diagonal element of the reduced matrix, a denotes
    an element of the original matrix that is unchanged, and vi denotes
    an element of the vector defining H(i).

    @ingroup magma_dsyev_aux
    ********************************************************************/
extern "C" magma_int_t
magma_dlatrd2(
    magma_uplo_t uplo, magma_int_t n, magma_int_t nb,
    double *A,  magma_int_t lda,
    double *e, double *tau,
    double *W,  magma_int_t ldw,
    magmaDouble_ptr dA, magma_int_t ldda,
    magmaDouble_ptr dW, magma_int_t lddw,
    magmaDouble_ptr dwork, magma_int_t ldwork)
{
    #define A(i_, j_) (A + (i_) + (j_)*lda)
    #define W(i_, j_) (W + (i_) + (j_)*ldw)
    
    #define dA(i_, j_) (dA + (i_) + (j_)*ldda)
    #define dW(i_, j_) (dW + (i_) + (j_)*lddw)

    const double c_neg_one = MAGMA_D_NEG_ONE;
    const double c_one     = MAGMA_D_ONE;
    const double c_zero    = MAGMA_D_ZERO;
    const magma_int_t ione = 1;

    double alpha, value;
    magma_int_t i, i_n, i_1, iw;

    /* Check arguments */
    magma_int_t info = 0;
    if ( uplo != MagmaLower && uplo != MagmaUpper ) {
        info = -1;
    } else if ( n < 0 ) {
        info = -2;
    } else if ( nb < 1 ) {
        info = -3;
    } else if ( lda < max(1,n) ) {
        info = -5;
    } else if ( ldw < max(1,n) ) {
        info = -9;
    } else if ( ldda < max(1,n) ) {
        info = -11;
    } else if ( lddw < max(1,n) ) {
        info = -13;
    } else if ( ldwork < ldda*ceildiv(n,64) ) {
        info = -15;
    }
    
    if (info != 0) {
        magma_xerbla( __func__, -(info) );
        return info;
    }
    
    /* Quick return if possible */
    if (n == 0) {
        return info;
    }

    magma_queue_t stream;
    magma_queue_create( &stream );
    
    double *f;
    magma_dmalloc_cpu( &f, n );
    if ( f == NULL ) {
        info = MAGMA_ERR_HOST_ALLOC;
        return info;
    }
    
    if (uplo == MagmaUpper) {
        /* Reduce last NB columns of upper triangle */
        for (i = n-1; i >= n - nb; --i) {
            i_1 = i + 1;
            i_n = n - i - 1;
            
            iw = i - n + nb;
            if (i < n-1) {
                /* Update A(1:i,i) */
                #if defined(PRECISION_z) || defined(PRECISION_c)
                lapackf77_dlacgv( &i_n, W(i, iw+1), &ldw );
                #endif
                blasf77_dgemv( "No transpose", &i_1, &i_n, &c_neg_one, A(0, i+1), &lda,
                               W(i, iw+1), &ldw, &c_one, A(0, i), &ione );
                #if defined(PRECISION_z) || defined(PRECISION_c)
                lapackf77_dlacgv( &i_n, W(i, iw+1), &ldw );
                lapackf77_dlacgv( &i_n, A(i, i+1),  &lda );
                #endif
                blasf77_dgemv( "No transpose", &i_1, &i_n, &c_neg_one, W(0, iw+1), &ldw,
                               A(i, i+1), &lda, &c_one, A(0, i), &ione );
                #if defined(PRECISION_z) || defined(PRECISION_c)
                lapackf77_dlacgv( &i_n, A(i, i+1), &lda );
                #endif
            }
            if (i > 0) {
                /* Generate elementary reflector H(i) to annihilate A(1:i-2,i) */
                alpha = *A(i-1, i);
                
                lapackf77_dlarfg( &i, &alpha, A(0, i), &ione, &tau[i - 1] );
                
                e[i-1] = MAGMA_D_REAL( alpha );
                *A(i-1,i) = MAGMA_D_ONE;
                
                /* Compute W(1:i-1,i) */
                // 1. Send the block reflector  A(0:n-i-1,i) to the GPU
                magma_dsetvector_async( i, A(0, i), 1, dA(0, i), 1, stream );
                
                magmablas_dsymv_work( MagmaUpper, i, c_one, dA(0, 0), ldda,
                                      dA(0, i), ione, c_zero, dW(0, iw), ione,
                                      dwork, ldwork, stream );
                
                // 2. Start getting the result back (asynchronously)
                magma_dgetmatrix_async( i, 1,
                                        dW(0, iw), lddw,
                                        W(0, iw),  ldw, stream );
                
                if (i < n-1) {
                    blasf77_dgemv( MagmaConjTransStr, &i, &i_n, &c_one, W(0, iw+1), &ldw,
                                   A(0, i), &ione, &c_zero, W(i+1, iw), &ione );
                }
                
                // 3. Here we need dsymv result W(0, iw)
                magma_queue_sync( stream );
                
                if (i < n-1) {
                    blasf77_dgemv( "No transpose", &i, &i_n, &c_neg_one, A(0, i+1), &lda,
                                   W(i+1, iw), &ione, &c_one, W(0, iw), &ione );
                    
                    blasf77_dgemv( MagmaConjTransStr, &i, &i_n, &c_one, A(0, i+1), &lda,
                                   A(0, i), &ione, &c_zero, W(i+1, iw), &ione );
                    
                    blasf77_dgemv( "No transpose", &i, &i_n, &c_neg_one, W(0, iw+1), &ldw,
                                   W(i+1, iw), &ione, &c_one, W(0, iw), &ione );
                }
                
                blasf77_dscal( &i, &tau[i - 1], W(0, iw), &ione );
                
                value = magma_cblas_ddot( i, W(0,iw), ione, A(0,i), ione );
                alpha = tau[i - 1] * -0.5f * value;
                blasf77_daxpy( &i, &alpha, A(0, i), &ione,
                               W(0, iw), &ione );
            }
        }
    }
    else {
        /*  Reduce first NB columns of lower triangle */
        for (i = 0; i < nb; ++i) {
            /* Update A(i:n,i) */
            i_n = n - i;
            #if defined(PRECISION_z) || defined(PRECISION_c)
            lapackf77_dlacgv( &i, W(i, 0), &ldw );
            #endif
            blasf77_dgemv( "No transpose", &i_n, &i, &c_neg_one, A(i, 0), &lda,
                           W(i, 0), &ldw, &c_one, A(i, i), &ione );
            #if defined(PRECISION_z) || defined(PRECISION_c)
            lapackf77_dlacgv( &i, W(i, 0), &ldw );
            lapackf77_dlacgv( &i, A(i, 0), &lda );
            #endif
            blasf77_dgemv( "No transpose", &i_n, &i, &c_neg_one, W(i, 0), &ldw,
                           A(i, 0), &lda, &c_one, A(i, i), &ione );
            #if defined(PRECISION_z) || defined(PRECISION_c)
            lapackf77_dlacgv( &i, A(i, 0), &lda );
            #endif
            
            if (i < n-1) {
                /* Generate elementary reflector H(i) to annihilate A(i+2:n,i) */
                i_n = n - i - 1;
                alpha = *A(i+1, i);
                lapackf77_dlarfg( &i_n, &alpha, A(min(i+2,n-1), i), &ione, &tau[i] );
                e[i] = MAGMA_D_REAL( alpha );
                *A(i+1,i) = MAGMA_D_ONE;
                
                /* Compute W(i+1:n,i) */
                // 1. Send the block reflector  A(i+1:n,i) to the GPU
                magma_dsetvector_async( i_n, A(i+1, i), 1, dA(i+1, i), 1, stream );
                
                magmablas_dsymv_work( MagmaLower, i_n, c_one, dA(i+1, i+1), ldda,
                                      dA(i+1, i), ione, c_zero, dW(i+1, i), ione,
                                      dwork, ldwork, stream );
                
                // 2. Start getting the result back (asynchronously)
                magma_dgetmatrix_async( i_n, 1,
                                        dW(i+1, i), lddw,
                                        W(i+1, i),  ldw, stream );
                
                blasf77_dgemv( MagmaConjTransStr, &i_n, &i, &c_one, W(i+1, 0), &ldw,
                               A(i+1, i), &ione, &c_zero, W(0, i), &ione );
                
                blasf77_dgemv( "No transpose", &i_n, &i, &c_neg_one, A(i+1, 0), &lda,
                               W(0, i), &ione, &c_zero, f, &ione );
                
                blasf77_dgemv( MagmaConjTransStr, &i_n, &i, &c_one, A(i+1, 0), &lda,
                               A(i+1, i), &ione, &c_zero, W(0, i), &ione );
                
                // 3. Here we need dsymv result W(i+1, i)
                magma_queue_sync( stream );
                
                if (i != 0)
                    blasf77_daxpy( &i_n, &c_one, f, &ione, W(i+1, i), &ione );
                
                blasf77_dgemv( "No transpose", &i_n, &i, &c_neg_one, W(i+1, 0), &ldw,
                               W(0, i), &ione, &c_one, W(i+1, i), &ione );
                blasf77_dscal( &i_n, &tau[i], W(i+1,i), &ione );
                
                value = magma_cblas_ddot( i_n, W(i+1,i), ione, A(i+1,i), ione );
                alpha = tau[i] * -0.5f * value;
                blasf77_daxpy( &i_n, &alpha, A(i+1, i), &ione, W(i+1,i), &ione );
            }
        }
    }

    magma_free_cpu( f );
    magma_queue_destroy( stream );

    return info;
} /* magma_dlatrd */
Beispiel #19
0
extern "C" magma_int_t
magma_zheevdx(char jobz, char range, char uplo,
              magma_int_t n,
              magmaDoubleComplex *a, magma_int_t lda,
              double vl, double vu, magma_int_t il, magma_int_t iu,
              magma_int_t *m, double *w,
              magmaDoubleComplex *work, magma_int_t lwork,
              double *rwork, magma_int_t lrwork,
              magma_int_t *iwork, magma_int_t liwork,
              magma_int_t *info)
{
/*  -- MAGMA (version 1.4.1) --
       Univ. of Tennessee, Knoxville
       Univ. of California, Berkeley
       Univ. of Colorado, Denver
       December 2013

    Purpose
    =======
    ZHEEVDX computes selected eigenvalues and, optionally, eigenvectors
    of a complex Hermitian matrix A. Eigenvalues and eigenvectors can
    be selected by specifying either a range of values or a range of
    indices for the desired eigenvalues.
    If eigenvectors are desired, it uses a divide and conquer algorithm.

    The divide and conquer algorithm makes very mild assumptions about
    floating point arithmetic. It will work on machines with a guard
    digit in add/subtract, or on those binary machines without guard
    digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
    Cray-2. It could conceivably fail on hexadecimal or decimal machines
    without guard digits, but we know of none.

    Arguments
    =========
    JOBZ    (input) CHARACTER*1
            = 'N':  Compute eigenvalues only;
            = 'V':  Compute eigenvalues and eigenvectors.

    RANGE   (input) CHARACTER*1
            = 'A': all eigenvalues will be found.
            = 'V': all eigenvalues in the half-open interval (VL,VU]
                   will be found.
            = 'I': the IL-th through IU-th eigenvalues will be found.

    UPLO    (input) CHARACTER*1
            = 'U':  Upper triangle of A is stored;
            = 'L':  Lower triangle of A is stored.

    N       (input) INTEGER
            The order of the matrix A.  N >= 0.

    A       (input/output) COMPLEX_16 array, dimension (LDA, N)
            On entry, the Hermitian matrix A.  If UPLO = 'U', the
            leading N-by-N upper triangular part of A contains the
            upper triangular part of the matrix A.  If UPLO = 'L',
            the leading N-by-N lower triangular part of A contains
            the lower triangular part of the matrix A.
            On exit, if JOBZ = 'V', then if INFO = 0, the first m columns
            of A contains the required
            orthonormal eigenvectors of the matrix A.
            If JOBZ = 'N', then on exit the lower triangle (if UPLO='L')
            or the upper triangle (if UPLO='U') of A, including the
            diagonal, is destroyed.

    LDA     (input) INTEGER
            The leading dimension of the array A.  LDA >= max(1,N).

    VL      (input) DOUBLE PRECISION
    VU      (input) DOUBLE PRECISION
            If RANGE='V', the lower and upper bounds of the interval to
            be searched for eigenvalues. VL < VU.
            Not referenced if RANGE = 'A' or 'I'.

    IL      (input) INTEGER
    IU      (input) INTEGER
            If RANGE='I', the indices (in ascending order) of the
            smallest and largest eigenvalues to be returned.
            1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
            Not referenced if RANGE = 'A' or 'V'.

    M       (output) INTEGER
            The total number of eigenvalues found.  0 <= M <= N.
            If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.

    W       (output) DOUBLE PRECISION array, dimension (N)
            If INFO = 0, the required m eigenvalues in ascending order.

    WORK    (workspace/output) COMPLEX_16 array, dimension (MAX(1,LWORK))
            On exit, if INFO = 0, WORK[0] returns the optimal LWORK.

    LWORK   (input) INTEGER
            The length of the array WORK.
            If N <= 1,                LWORK >= 1.
            If JOBZ  = 'N' and N > 1, LWORK >= N + N*NB.
            If JOBZ  = 'V' and N > 1, LWORK >= max( N + N*NB, 2*N + N**2 ).
            NB can be obtained through magma_get_zhetrd_nb(N).

            If LWORK = -1, then a workspace query is assumed; the routine
            only calculates the optimal sizes of the WORK, RWORK and
            IWORK arrays, returns these values as the first entries of
            the WORK, RWORK and IWORK arrays, and no error message
            related to LWORK or LRWORK or LIWORK is issued by XERBLA.

    RWORK   (workspace/output) DOUBLE PRECISION array,
                                           dimension (LRWORK)
            On exit, if INFO = 0, RWORK[0] returns the optimal LRWORK.

    LRWORK  (input) INTEGER
            The dimension of the array RWORK.
            If N <= 1,                LRWORK >= 1.
            If JOBZ  = 'N' and N > 1, LRWORK >= N.
            If JOBZ  = 'V' and N > 1, LRWORK >= 1 + 5*N + 2*N**2.

            If LRWORK = -1, then a workspace query is assumed; the
            routine only calculates the optimal sizes of the WORK, RWORK
            and IWORK arrays, returns these values as the first entries
            of the WORK, RWORK and IWORK arrays, and no error message
            related to LWORK or LRWORK or LIWORK is issued by XERBLA.

    IWORK   (workspace/output) INTEGER array, dimension (MAX(1,LIWORK))
            On exit, if INFO = 0, IWORK[0] returns the optimal LIWORK.

    LIWORK  (input) INTEGER
            The dimension of the array IWORK.
            If N <= 1,                LIWORK >= 1.
            If JOBZ  = 'N' and N > 1, LIWORK >= 1.
            If JOBZ  = 'V' and N > 1, LIWORK >= 3 + 5*N.

            If LIWORK = -1, then a workspace query is assumed; the
            routine only calculates the optimal sizes of the WORK, RWORK
            and IWORK arrays, returns these values as the first entries
            of the WORK, RWORK and IWORK arrays, and no error message
            related to LWORK or LRWORK or LIWORK is issued by XERBLA.

    INFO    (output) INTEGER
            = 0:  successful exit
            < 0:  if INFO = -i, the i-th argument had an illegal value
            > 0:  if INFO = i and JOBZ = 'N', then the algorithm failed
                  to converge; i off-diagonal elements of an intermediate
                  tridiagonal form did not converge to zero;
                  if INFO = i and JOBZ = 'V', then the algorithm failed
                  to compute an eigenvalue while working on the submatrix
                  lying in rows and columns INFO/(N+1) through
                  mod(INFO,N+1).

    Further Details
    ===============
    Based on contributions by
       Jeff Rutter, Computer Science Division, University of California
       at Berkeley, USA

    Modified description of INFO. Sven, 16 Feb 05.
    =====================================================================   */

    char uplo_[2] = {uplo, 0};
    char jobz_[2] = {jobz, 0};
    char range_[2] = {range, 0};
    magma_int_t ione = 1;
    magma_int_t izero = 0;
    double d_one = 1.;

    double d__1;

    double eps;
    magma_int_t inde;
    double anrm;
    magma_int_t imax;
    double rmin, rmax;
    double sigma;
    magma_int_t iinfo, lwmin;
    magma_int_t lower;
    magma_int_t llrwk;
    magma_int_t wantz;
    magma_int_t indwk2, llwrk2;
    magma_int_t iscale;
    double safmin;
    double bignum;
    magma_int_t indtau;
    magma_int_t indrwk, indwrk, liwmin;
    magma_int_t lrwmin, llwork;
    double smlnum;
    magma_int_t lquery;
    magma_int_t alleig, valeig, indeig;

    double* dwork;

    wantz = lapackf77_lsame(jobz_, MagmaVecStr);
    lower = lapackf77_lsame(uplo_, MagmaLowerStr);

    alleig = lapackf77_lsame( range_, "A" );
    valeig = lapackf77_lsame( range_, "V" );
    indeig = lapackf77_lsame( range_, "I" );

    lquery = lwork == -1 || lrwork == -1 || liwork == -1;

    *info = 0;
    if (! (wantz || lapackf77_lsame(jobz_, MagmaNoVecStr))) {
        *info = -1;
    } else if (! (alleig || valeig || indeig)) {
        *info = -2;
    } else if (! (lower || lapackf77_lsame(uplo_, MagmaUpperStr))) {
        *info = -3;
    } else if (n < 0) {
        *info = -4;
    } else if (lda < max(1,n)) {
        *info = -6;
    } else {
        if (valeig) {
            if (n > 0 && vu <= vl) {
                *info = -8;
            }
        } else if (indeig) {
            if (il < 1 || il > max(1,n)) {
                *info = -9;
            } else if (iu < min(n,il) || iu > n) {
                *info = -10;
            }
        }
    }

    magma_int_t nb = magma_get_zhetrd_nb( n );
    if ( n <= 1 ) {
        lwmin  = 1;
        lrwmin = 1;
        liwmin = 1;
    }
    else if ( wantz ) {
        lwmin  = max( n + n*nb, 2*n + n*n );
        lrwmin = 1 + 5*n + 2*n*n;
        liwmin = 3 + 5*n;
    }
    else {
        lwmin  = n + n*nb;
        lrwmin = n;
        liwmin = 1;
    }
    // multiply by 1+eps to ensure length gets rounded up,
    // if it cannot be exactly represented in floating point.
    work[0]  = MAGMA_Z_MAKE( lwmin * (1. + lapackf77_dlamch("Epsilon")), 0.);
    rwork[0] = lrwmin * (1. + lapackf77_dlamch("Epsilon"));
    iwork[0] = liwmin;

    if ((lwork < lwmin) && !lquery) {
        *info = -14;
    } else if ((lrwork < lrwmin) && ! lquery) {
        *info = -16;
    } else if ((liwork < liwmin) && ! lquery) {
        *info = -18;
    }

    if (*info != 0) {
        magma_xerbla( __func__, -(*info) );
        return *info;
    }
    else if (lquery) {
        return *info;
    }

    /* Quick return if possible */
    if (n == 0) {
        return *info;
    }

    if (n == 1) {
        w[0] = MAGMA_Z_REAL(a[0]);
        if (wantz) {
            a[0] = MAGMA_Z_ONE;
        }
        return *info;
    }
    /* Check if matrix is very small then just call LAPACK on CPU, no need for GPU */
    if (n <= 128){
        #ifdef ENABLE_DEBUG
        printf("--------------------------------------------------------------\n");
        printf("  warning matrix too small N=%d NB=%d, calling lapack on CPU  \n", (int) n, (int) nb);
        printf("--------------------------------------------------------------\n");
        #endif
        lapackf77_zheevd(jobz_, uplo_,
                         &n, a, &lda,
                         w, work, &lwork,
#if defined(PRECISION_z) || defined(PRECISION_c)
                         rwork, &lrwork, 
#endif  
                         iwork, &liwork, info);
        return *info;
    }
    /* Get machine constants. */
    safmin = lapackf77_dlamch("Safe minimum");
    eps    = lapackf77_dlamch("Precision");
    smlnum = safmin / eps;
    bignum = 1. / smlnum;
    rmin = magma_dsqrt(smlnum);
    rmax = magma_dsqrt(bignum);

    /* Scale matrix to allowable range, if necessary. */
    anrm = lapackf77_zlanhe("M", uplo_, &n, a, &lda, rwork);
    iscale = 0;
    if (anrm > 0. && anrm < rmin) {
        iscale = 1;
        sigma = rmin / anrm;
    } else if (anrm > rmax) {
        iscale = 1;
        sigma = rmax / anrm;
    }
    if (iscale == 1) {
        lapackf77_zlascl(uplo_, &izero, &izero, &d_one, &sigma, &n, &n, a,
                         &lda, info);
    }

    /* Call ZHETRD to reduce Hermitian matrix to tridiagonal form. */
    // zhetrd rwork: e (n)
    // zstedx rwork: e (n) + llrwk (1 + 4*N + 2*N**2)  ==>  1 + 5n + 2n^2
    inde   = 0;
    indrwk = inde + n;
    llrwk  = lrwork - indrwk;

    // zhetrd work: tau (n) + llwork (n*nb)  ==>  n + n*nb
    // zstedx work: tau (n) + z (n^2)
    // zunmtr work: tau (n) + z (n^2) + llwrk2 (n or n*nb)  ==>  2n + n^2, or n + n*nb + n^2
    indtau = 0;
    indwrk = indtau + n;
    indwk2 = indwrk + n*n;
    llwork = lwork - indwrk;
    llwrk2 = lwork - indwk2;

//
#ifdef ENABLE_TIMER
    magma_timestr_t start, end;
    start = get_current_time();
#endif

    magma_zhetrd(uplo_[0], n, a, lda, w, &rwork[inde],
                 &work[indtau], &work[indwrk], llwork, &iinfo);

#ifdef ENABLE_TIMER
    end = get_current_time();
    printf("time zhetrd = %6.2f\n", GetTimerValue(start,end)/1000.);
#endif

    /* For eigenvalues only, call DSTERF.  For eigenvectors, first call
     ZSTEDC to generate the eigenvector matrix, WORK(INDWRK), of the
     tridiagonal matrix, then call ZUNMTR to multiply it to the Householder
     transformations represented as Householder vectors in A. */
    if (! wantz) {
        lapackf77_dsterf(&n, w, &rwork[inde], info);

        magma_dmove_eig(range, n, w, &il, &iu, vl, vu, m);

    } else {

#ifdef ENABLE_TIMER
        start = get_current_time();
#endif

        if (MAGMA_SUCCESS != magma_dmalloc( &dwork, 3*n*(n/2 + 1) )) {
            *info = MAGMA_ERR_DEVICE_ALLOC;
            return *info;
        }

        magma_zstedx(range, n, vl, vu, il, iu, w, &rwork[inde],
                     &work[indwrk], n, &rwork[indrwk],
                     llrwk, iwork, liwork, dwork, info);

        magma_free( dwork );

#ifdef ENABLE_TIMER
        end = get_current_time();
        printf("time zstedx = %6.2f\n", GetTimerValue(start,end)/1000.);
        start = get_current_time();
#endif

        magma_dmove_eig(range, n, w, &il, &iu, vl, vu, m);

        magma_zunmtr(MagmaLeft, uplo, MagmaNoTrans, n, *m, a, lda, &work[indtau],
                     &work[indwrk + n * (il-1) ], n, &work[indwk2], llwrk2, &iinfo);

        lapackf77_zlacpy("A", &n, m, &work[indwrk + n * (il-1)] , &n, a, &lda);

#ifdef ENABLE_TIMER
        end = get_current_time();
        printf("time zunmtr + copy = %6.2f\n", GetTimerValue(start,end)/1000.);
#endif

    }

    /* If matrix was scaled, then rescale eigenvalues appropriately. */
    if (iscale == 1) {
        if (*info == 0) {
            imax = n;
        } else {
            imax = *info - 1;
        }
        d__1 = 1. / sigma;
        blasf77_dscal(&imax, &d__1, w, &ione);
    }

    work[0]  = MAGMA_Z_MAKE( lwmin * (1. + lapackf77_dlamch("Epsilon")), 0.);  // round up
    rwork[0] = lrwmin * (1. + lapackf77_dlamch("Epsilon"));
    iwork[0] = liwmin;

    return *info;
} /* magma_zheevdx */
Beispiel #20
0
magma_int_t magma_zlatrsd(
    magma_uplo_t uplo, magma_trans_t trans, magma_diag_t diag, magma_bool_t normin,
    magma_int_t n, const magmaDoubleComplex *A, magma_int_t lda,
    magmaDoubleComplex lambda,
    magmaDoubleComplex *x,
    double *scale, double *cnorm,
    magma_int_t *info)
{
#define A(i,j) (A + (i) + (j)*lda)

    /* constants */
    const magma_int_t ione = 1;
    const double d_half = 0.5;
    const magmaDoubleComplex c_zero = MAGMA_Z_ZERO;
    const magmaDoubleComplex c_one  = MAGMA_Z_ONE;

    /* System generated locals */
    magma_int_t len;
    magmaDoubleComplex ztmp;

    /* Local variables */
    magma_int_t i, j;
    double xj, rec, tjj;
    magma_int_t jinc;
    double xbnd;
    magma_int_t imax;
    double tmax;
    magmaDoubleComplex tjjs;
    double xmax, grow;

    double tscal;
    magmaDoubleComplex uscal;
    magma_int_t jlast;
    magmaDoubleComplex csumj;

    double bignum;
    magma_int_t jfirst;
    double smlnum;

    /* Function Body */
    *info = 0;
    magma_int_t upper  = (uplo  == MagmaUpper);
    magma_int_t notran = (trans == MagmaNoTrans);
    magma_int_t nounit = (diag  == MagmaNonUnit);

    /* Test the input parameters. */
    if ( ! upper && uplo != MagmaLower ) {
        *info = -1;
    }
    else if (! notran &&
             trans != MagmaTrans &&
             trans != MagmaConjTrans) {
        *info = -2;
    }
    else if ( ! nounit && diag != MagmaUnit ) {
        *info = -3;
    }
    else if ( ! (normin == MagmaTrue) &&
              ! (normin == MagmaFalse) ) {
        *info = -4;
    }
    else if ( n < 0 ) {
        *info = -5;
    }
    else if ( lda < max(1,n) ) {
        *info = -7;
    }
    if ( *info != 0 ) {
        magma_xerbla( __func__, -(*info) );
        return *info;
    }

    /* Quick return if possible */
    if ( n == 0 ) {
        return *info;
    }

    /* Determine machine dependent parameters to control overflow. */
    smlnum = lapackf77_dlamch( "Safe minimum" );
    bignum = 1. / smlnum;
    lapackf77_dlabad( &smlnum, &bignum );
    smlnum /= lapackf77_dlamch( "Precision" );
    bignum = 1. / smlnum;
    *scale = 1.;

    if ( normin == MagmaFalse ) {
        /* Compute the 1-norm of each column, not including the diagonal. */
        if ( upper ) {
            /* A is upper triangular. */
            cnorm[0] = 0.;
            for( j = 1; j < n; ++j ) {
                cnorm[j] = magma_cblas_dzasum( j, A(0,j), ione );
            }
        }
        else {
            /* A is lower triangular. */
            for( j = 0; j < n-1; ++j ) {
                cnorm[j] = magma_cblas_dzasum( n-(j+1), A(j+1,j), ione );
            }
            cnorm[n-1] = 0.;
        }
    }

    /* Scale the column norms by TSCAL if the maximum element in CNORM is */
    /* greater than BIGNUM/2. */
    imax = blasf77_idamax( &n, &cnorm[0], &ione ) - 1;
    tmax = cnorm[imax];
    if ( tmax <= bignum * 0.5 ) {
        tscal = 1.;
    }
    else {
        tscal = 0.5 / (smlnum * tmax);
        blasf77_dscal( &n, &tscal, &cnorm[0], &ione );
    }

    /* ================================================================= */
    /* Compute a bound on the computed solution vector to see if the */
    /* Level 2 BLAS routine ZTRSV can be used. */
    xmax = 0.;
    for( j = 0; j < n; ++j ) {
        xmax = max( xmax, 0.5*MAGMA_Z_ABS1( x[j] ));
    }
    xbnd = xmax;

    if ( notran ) {
        /* ---------------------------------------- */
        /* Compute the growth in A * x = b. */
        if ( upper ) {
            jfirst = n-1;
            jlast  = 0;
            jinc   = -1;
        }
        else {
            jfirst = 0;
            jlast  = n;
            jinc   = 1;
        }

        if ( tscal != 1. ) {
            grow = 0.;
            goto L60;
        }

        /* A is non-unit triangular. */
        /* Compute GROW = 1/G(j) and XBND = 1/M(j). */
        /* Initially, G(0) = max{x(i), i=1,...,n}. */
        grow = 0.5 / max( xbnd, smlnum );
        xbnd = grow;
        for( j = jfirst; (jinc < 0 ? j >= jlast : j < jlast); j += jinc ) {
            /* Exit the loop if the growth factor is too small. */
            if ( grow <= smlnum ) {
                goto L60;
            }

            if ( nounit ) {
                tjjs = *A(j,j) - lambda;
            }
            else {
                tjjs = c_one - lambda;
            }
            tjj = MAGMA_Z_ABS1( tjjs );

            if ( tjj >= smlnum ) {
                /* M(j) = G(j-1) / abs(A(j,j)) */
                xbnd = min( xbnd, min(1.,tjj)*grow );
            }
            else {
                /* M(j) could overflow, set XBND to 0. */
                xbnd = 0.;
            }

            if ( tjj + cnorm[j] >= smlnum ) {
                /* G(j) = G(j-1)*( 1 + CNORM(j) / abs(A(j,j)) ) */
                grow *= (tjj / (tjj + cnorm[j]));
            }
            else {
                /* G(j) could overflow, set GROW to 0. */
                grow = 0.;
            }
        }
        grow = xbnd;
L60:
        ;
    }
    else {
        /* ---------------------------------------- */
        /* Compute the growth in A**T * x = b  or  A**H * x = b. */
        if ( upper ) {
            jfirst = 0;
            jlast  = n;
            jinc   = 1;
        }
        else {
            jfirst = n-1;
            jlast  = 0;
            jinc   = -1;
        }

        if ( tscal != 1. ) {
            grow = 0.;
            goto L90;
        }

        /* A is non-unit triangular. */
        /* Compute GROW = 1/G(j) and XBND = 1/M(j). */
        /* Initially, M(0) = max{x(i), i=1,...,n}. */
        grow = 0.5 / max( xbnd, smlnum );
        xbnd = grow;
        for( j = jfirst; (jinc < 0 ? j >= jlast : j < jlast); j += jinc ) {
            /* Exit the loop if the growth factor is too small. */
            if ( grow <= smlnum ) {
                goto L90;
            }

            /* G(j) = max( G(j-1), M(j-1)*( 1 + CNORM(j) ) ) */
            xj = 1. + cnorm[j];
            grow = min( grow, xbnd / xj );

            if ( nounit ) {
                tjjs = *A(j,j) - lambda;
            }
            else {
                tjjs = c_one - lambda;
            }
            tjj = MAGMA_Z_ABS1( tjjs );

            if ( tjj >= smlnum ) {
                /* M(j) = M(j-1)*( 1 + CNORM(j) ) / abs(A(j,j)) */
                if ( xj > tjj ) {
                    xbnd *= (tjj / xj);
                }
            }
            else {
                /* M(j) could overflow, set XBND to 0. */
                xbnd = 0.;
            }
        }
        grow = min( grow, xbnd );
L90:
        ;
    }
        
    /* ================================================================= */
    /* Due to modified diagonal, we can't use regular BLAS ztrsv. */
    
    /* Use a Level 1 BLAS solve, scaling intermediate results. */
    if ( xmax > bignum * 0.5 ) {
        /* Scale X so that its components are less than or equal to */
        /* BIGNUM in absolute value. */
        *scale = (bignum * 0.5) / xmax;
        blasf77_zdscal( &n, scale, &x[0], &ione );
        xmax = bignum;
    }
    else {
        xmax *= 2.;
    }

    if ( notran ) {
        /* ---------------------------------------- */
        /* Solve A * x = b */
        for( j = jfirst; (jinc < 0 ? j >= jlast : j < jlast); j += jinc ) {
            /* Compute x(j) = b(j) / A(j,j), scaling x if necessary. */
            xj = MAGMA_Z_ABS1( x[j] );
            if ( nounit ) {
                tjjs = (*A(j,j) - lambda ) * tscal;
            }
            else {
                tjjs = (c_one - lambda) * tscal;
                if ( tscal == 1. ) {
                    goto L110;
                }
            }
            tjj = MAGMA_Z_ABS1( tjjs );
            if ( tjj > smlnum ) {
                /* abs(A(j,j)) > SMLNUM: */
                if ( tjj < 1. ) {
                    if ( xj > tjj * bignum ) {
                        /* Scale x by 1/b(j). */
                        rec = 1. / xj;
                        blasf77_zdscal( &n, &rec, &x[0], &ione );
                        *scale *= rec;
                        xmax *= rec;
                    }
                }
                x[j] = x[j] / tjjs;
                xj   = MAGMA_Z_ABS1( x[j] );
            }
            else if ( tjj > 0. ) {
                /* 0 < abs(A(j,j)) <= SMLNUM: */
                if ( xj > tjj * bignum ) {
                    /* Scale x by (1/abs(x(j)))*abs(A(j,j))*BIGNUM */
                    /* to avoid overflow when dividing by A(j,j). */
                    rec = (tjj * bignum) / xj;
                    if ( cnorm[j] > 1. ) {
                        /* Scale by 1/CNORM(j) to avoid overflow when */
                        /* multiplying x(j) times column j. */
                        rec /= cnorm[j];
                    }
                    blasf77_zdscal( &n, &rec, &x[0], &ione );
                    *scale *= rec;
                    xmax *= rec;
                }
                x[j] = x[j] / tjjs;
                xj   = MAGMA_Z_ABS1( x[j] );
            }
            else {
                /* A(j,j) = 0:  Set x(1:n) = 0, x(j) = 1, and */
                /* scale = 0, and compute a solution to A*x = 0. */
                for( i = 0; i < n; ++i ) {
                    x[i] = c_zero;
                }
                x[j]   = c_one;
                xj     = 1.;
                *scale = 0.;
                xmax   = 0.;
            }
L110:

            /* Scale x if necessary to avoid overflow when adding a */
            /* multiple of column j of A. */
            if ( xj > 1. ) {
                rec = 1. / xj;
                if ( cnorm[j] > (bignum - xmax) * rec ) {
                    /* Scale x by 1/(2*abs(x(j))). */
                    rec *= 0.5;
                    blasf77_zdscal( &n, &rec, &x[0], &ione );
                    *scale *= rec;
                }
            }
            else if ( xj * cnorm[j] > bignum - xmax ) {
                /* Scale x by 1/2. */
                blasf77_zdscal( &n, &d_half, &x[0], &ione );
                *scale *= 0.5;
            }

            if ( upper ) {
                if ( j > 0 ) {
                    /* Compute the update */
                    /* x(1:j-1) := x(1:j-1) - x(j) * A(1:j-1,j) */
                    len = j;
                    ztmp = -tscal * x[j];
                    blasf77_zaxpy( &len, &ztmp, A(0,j), &ione, &x[0], &ione );
                    i = blasf77_izamax( &len, &x[0], &ione ) - 1;
                    xmax = MAGMA_Z_ABS1( x[i] );
                }
            }
            else {
                if ( j < n-1 ) {
                    /* Compute the update */
                    /* x(j+1:n) := x(j+1:n) - x(j) * A(j+1:n,j) */
                    len = n - (j+1);
                    ztmp = -tscal * x[j];
                    blasf77_zaxpy( &len, &ztmp, A(j+1,j), &ione, &x[j + 1], &ione );
                    i = j + blasf77_izamax( &len, &x[j + 1], &ione );
                    xmax = MAGMA_Z_ABS1( x[i] );
                }
            }
        }
    }
    else if ( trans == MagmaTrans ) {
        /* ---------------------------------------- */
        /* Solve A**T * x = b */
        for( j = jfirst; (jinc < 0 ? j >= jlast : j < jlast); j += jinc ) {
            /* Compute x(j) = b(j) - sum A(k,j)*x(k). */
            /*                       k<>j             */
            xj = MAGMA_Z_ABS1( x[j] );
            uscal = MAGMA_Z_MAKE( tscal, 0. );
            rec = 1. / max( xmax, 1. );
            if ( cnorm[j] > (bignum - xj) * rec ) {
                /* If x(j) could overflow, scale x by 1/(2*XMAX). */
                rec *= 0.5;
                if ( nounit ) {
                    tjjs = (*A(j,j) - lambda) * tscal;
                }
                else {
                    tjjs = (c_one - lambda) * tscal;
                }
                tjj = MAGMA_Z_ABS1( tjjs );
                if ( tjj > 1. ) {
                    /* Divide by A(j,j) when scaling x if A(j,j) > 1. */
                    rec = min( 1., rec * tjj );
                    uscal = uscal / tjjs;
                }
                if ( rec < 1. ) {
                    blasf77_zdscal( &n, &rec, &x[0], &ione );
                    *scale *= rec;
                    xmax *= rec;
                }
            }

            csumj = c_zero;
            if ( uscal == c_one ) {
                /* If the scaling needed for A in the dot product is 1, */
                /* call ZDOTU to perform the dot product. */
                if ( upper ) {
                    csumj = magma_cblas_zdotu( j, A(0,j), ione, &x[0], ione );
                }
                else if ( j < n-1 ) {
                    csumj = magma_cblas_zdotu( n-(j+1), A(j+1,j), ione, &x[j+1], ione );
                }
            }
            else {
                /* Otherwise, use in-line code for the dot product. */
                if ( upper ) {
                    for( i = 0; i < j; ++i ) {
                        csumj += (*A(i,j) * uscal) * x[i];
                    }
                }
                else if ( j < n-1 ) {
                    for( i = j+1; i < n; ++i ) {
                        csumj += (*A(i,j) * uscal) * x[i];
                    }
                }
            }

            if ( uscal == MAGMA_Z_MAKE( tscal, 0. )) {
                /* Compute x(j) := ( x(j) - CSUMJ ) / A(j,j) if 1/A(j,j) */
                /* was not used to scale the dotproduct. */
                x[j] -= csumj;
                xj = MAGMA_Z_ABS1( x[j] );
                if ( nounit ) {
                    tjjs = (*A(j,j) - lambda) * tscal;
                }
                else {
                    tjjs = (c_one - lambda) * tscal;
                    if ( tscal == 1. ) {
                        goto L160;
                    }
                }

                /* Compute x(j) = x(j) / A(j,j), scaling if necessary. */
                tjj = MAGMA_Z_ABS1( tjjs );
                if ( tjj > smlnum ) {
                    /* abs(A(j,j)) > SMLNUM: */
                    if ( tjj < 1. ) {
                        if ( xj > tjj * bignum ) {
                            /* Scale X by 1/abs(x(j)). */
                            rec = 1. / xj;
                            blasf77_zdscal( &n, &rec, &x[0], &ione );
                            *scale *= rec;
                            xmax   *= rec;
                        }
                    }
                    x[j] = x[j] / tjjs;
                }
                else if ( tjj > 0. ) {
                    /* 0 < abs(A(j,j)) <= SMLNUM: */
                    if ( xj > tjj * bignum ) {
                        /* Scale x by (1/abs(x(j)))*abs(A(j,j))*BIGNUM. */
                        rec = (tjj * bignum) / xj;
                        blasf77_zdscal( &n, &rec, &x[0], &ione );
                        *scale *= rec;
                        xmax   *= rec;
                    }
                    x[j] = x[j] / tjjs;
                }
                else {
                    /* A(j,j) = 0:  Set x(1:n) = 0, x(j) = 1, and */
                    /* scale = 0 and compute a solution to A**T *x = 0. */
                    for( i = 0; i < n; ++i ) {
                        x[i] = c_zero;
                    }
                    x[j]   = c_one;
                    *scale = 0.;
                    xmax   = 0.;
                }
L160:
                ;
            }
            else {
                /* Compute x(j) := x(j) / A(j,j) - CSUMJ if the dot */
                /* product has already been divided by 1/A(j,j). */
                x[j] = (x[j] / tjjs) - csumj;
            }
            xmax = max( xmax, MAGMA_Z_ABS1( x[j] ));
        }
    }
    else {
        /* ---------------------------------------- */
        /* Solve A**H * x = b */
        for( j = jfirst; (jinc < 0 ? j >= jlast : j < jlast); j += jinc ) {
            /* Compute x(j) = b(j) - sum A(k,j)*x(k). */
            /*                       k<>j             */
            xj = MAGMA_Z_ABS1( x[j] );
            uscal = MAGMA_Z_MAKE( tscal, 0. );
            rec = 1. / max(xmax, 1.);
            if ( cnorm[j] > (bignum - xj) * rec ) {
                /* If x(j) could overflow, scale x by 1/(2*XMAX). */
                rec *= 0.5;
                if ( nounit ) {
                    tjjs = MAGMA_Z_CONJ( *A(j,j) - lambda ) * tscal;
                }
                else {
                    tjjs = (c_one - lambda) * tscal;
                }
                tjj = MAGMA_Z_ABS1( tjjs );
                if ( tjj > 1. ) {
                    /* Divide by A(j,j) when scaling x if A(j,j) > 1. */
                    rec = min( 1., rec * tjj );
                    uscal = uscal / tjjs;
                }
                if ( rec < 1. ) {
                    blasf77_zdscal( &n, &rec, &x[0], &ione );
                    *scale *= rec;
                    xmax   *= rec;
                }
            }

            csumj = c_zero;
            if ( uscal == c_one ) {
                /* If the scaling needed for A in the dot product is 1, */
                /* call ZDOTC to perform the dot product. */
                if ( upper ) {
                    csumj = magma_cblas_zdotc( j, A(0,j), ione, &x[0], ione );
                }
                else if ( j < n-1 ) {
                    csumj = magma_cblas_zdotc( n-(j+1), A(j+1,j), ione, &x[j+1], ione );
                }
            }
            else {
                /* Otherwise, use in-line code for the dot product. */
                if ( upper ) {
                    for( i = 0; i < j; ++i ) {
                        csumj += (MAGMA_Z_CONJ( *A(i,j) ) * uscal) * x[i];
                    }
                }
                else if ( j < n-1 ) {
                    for( i = j + 1; i < n; ++i ) {
                        csumj += (MAGMA_Z_CONJ( *A(i,j) ) * uscal) * x[i];
                    }
                }
            }

            if ( uscal == tscal ) {
                /* Compute x(j) := ( x(j) - CSUMJ ) / A(j,j) if 1/A(j,j) */
                /* was not used to scale the dotproduct. */
                x[j] -= csumj;
                xj = MAGMA_Z_ABS1( x[j] );
                if ( nounit ) {
                    tjjs = MAGMA_Z_CONJ( *A(j,j) - lambda ) * tscal;
                }
                else {
                    tjjs = (c_one - lambda) * tscal;
                    if ( tscal == 1. ) {
                        goto L210;
                    }
                }

                /* Compute x(j) = x(j) / A(j,j), scaling if necessary. */
                tjj = MAGMA_Z_ABS1( tjjs );
                if ( tjj > smlnum ) {
                    /* abs(A(j,j)) > SMLNUM: */
                    if ( tjj < 1. ) {
                        if ( xj > tjj * bignum ) {
                            /* Scale X by 1/abs(x(j)). */
                            rec = 1. / xj;
                            blasf77_zdscal( &n, &rec, &x[0], &ione );
                            *scale *= rec;
                            xmax   *= rec;
                        }
                    }
                    x[j] = x[j] / tjjs;
                }
                else if ( tjj > 0. ) {
                    /* 0 < abs(A(j,j)) <= SMLNUM: */
                    if ( xj > tjj * bignum ) {
                        /* Scale x by (1/abs(x(j)))*abs(A(j,j))*BIGNUM. */
                        rec = (tjj * bignum) / xj;
                        blasf77_zdscal( &n, &rec, &x[0], &ione );
                        *scale *= rec;
                        xmax   *= rec;
                    }
                    x[j] = x[j] / tjjs;
                }
                else {
                    /* A(j,j) = 0:  Set x(1:n) = 0, x(j) = 1, and */
                    /* scale = 0 and compute a solution to A**H *x = 0. */
                    for( i = 0; i < n; ++i ) {
                        x[i] = c_zero;
                    }
                    x[j] = c_one;
                    *scale = 0.;
                    xmax   = 0.;
                }
L210:
                ;
            }
            else {
                /* Compute x(j) := x(j) / A(j,j) - CSUMJ if the dot */
                /* product has already been divided by 1/A(j,j). */
                x[j] = (x[j] / tjjs) - csumj;
            }
            xmax = max( xmax, MAGMA_Z_ABS1( x[j] ));
        }
    }
    *scale /= tscal;
    
    /* Scale the column norms by 1/TSCAL for return. */
    if ( tscal != 1. ) {
        double d = 1. / tscal;
        blasf77_dscal( &n, &d, &cnorm[0], &ione );
    }

    return *info;
} /* end zlatrsd */
Beispiel #21
0
extern "C" magma_int_t
magma_zheevdx_2stage(char jobz, char range, char uplo,
                     magma_int_t n,
                     magmaDoubleComplex *a, magma_int_t lda,
                     double vl, double vu, magma_int_t il, magma_int_t iu,
                     magma_int_t *m, double *w,
                     magmaDoubleComplex *work, magma_int_t lwork,
                     double *rwork, magma_int_t lrwork,
                     magma_int_t *iwork, magma_int_t liwork,
                     magma_int_t *info)
{
/*  -- MAGMA (version 1.4.0) --
       Univ. of Tennessee, Knoxville
       Univ. of California, Berkeley
       Univ. of Colorado, Denver
       August 2013

    Purpose
    =======
    ZHEEVD_2STAGE computes all eigenvalues and, optionally, eigenvectors of a
    complex Hermitian matrix A. It uses a two-stage algorithm for the tridiagonalization.
    If eigenvectors are desired, it uses a divide and conquer algorithm.

    The divide and conquer algorithm makes very mild assumptions about
    floating point arithmetic. It will work on machines with a guard
    digit in add/subtract, or on those binary machines without guard
    digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
    Cray-2. It could conceivably fail on hexadecimal or decimal machines
    without guard digits, but we know of none.

    Arguments
    =========
    JOBZ    (input) CHARACTER*1
            = 'N':  Compute eigenvalues only;
            = 'V':  Compute eigenvalues and eigenvectors.

    RANGE   (input) CHARACTER*1
            = 'A': all eigenvalues will be found.
            = 'V': all eigenvalues in the half-open interval (VL,VU]
                   will be found.
            = 'I': the IL-th through IU-th eigenvalues will be found.

    UPLO    (input) CHARACTER*1
            = 'U':  Upper triangle of A is stored;
            = 'L':  Lower triangle of A is stored.

    N       (input) INTEGER
            The order of the matrix A.  N >= 0.

    A       (input/output) COMPLEX_16 array, dimension (LDA, N)
            On entry, the Hermitian matrix A.  If UPLO = 'U', the
            leading N-by-N upper triangular part of A contains the
            upper triangular part of the matrix A.  If UPLO = 'L',
            the leading N-by-N lower triangular part of A contains
            the lower triangular part of the matrix A.
            On exit, if JOBZ = 'V', then if INFO = 0, the first m columns
            of A contains the required
            orthonormal eigenvectors of the matrix A.
            If JOBZ = 'N', then on exit the lower triangle (if UPLO='L')
            or the upper triangle (if UPLO='U') of A, including the
            diagonal, is destroyed.

    LDA     (input) INTEGER
            The leading dimension of the array A.  LDA >= max(1,N).

    VL      (input) DOUBLE PRECISION
    VU      (input) DOUBLE PRECISION
            If RANGE='V', the lower and upper bounds of the interval to
            be searched for eigenvalues. VL < VU.
            Not referenced if RANGE = 'A' or 'I'.

    IL      (input) INTEGER
    IU      (input) INTEGER
            If RANGE='I', the indices (in ascending order) of the
            smallest and largest eigenvalues to be returned.
            1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
            Not referenced if RANGE = 'A' or 'V'.

    M       (output) INTEGER
            The total number of eigenvalues found.  0 <= M <= N.
            If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.

    W       (output) DOUBLE PRECISION array, dimension (N)
            If INFO = 0, the required m eigenvalues in ascending order.

    WORK    (workspace/output) COMPLEX_16 array, dimension (MAX(1,LWORK))
            On exit, if INFO = 0, WORK(1) returns the optimal LWORK.

    LWORK   (input) INTEGER
            The length of the array WORK.
            If N <= 1,                LWORK >= 1.
            If JOBZ  = 'N' and N > 1, LWORK >= LQ2 + N * (NB + 1).
            If JOBZ  = 'V' and N > 1, LWORK >= LQ2 + 2*N + N**2.
                                      where LQ2 is the size needed to store
                                      the Q2 matrix and is returned by
                                      MAGMA_BULGE_GET_LQ2.

            If LWORK = -1, then a workspace query is assumed; the routine
            only calculates the optimal sizes of the WORK, RWORK and
            IWORK arrays, returns these values as the first entries of
            the WORK, RWORK and IWORK arrays, and no error message
            related to LWORK or LRWORK or LIWORK is issued by XERBLA.

    RWORK   (workspace/output) DOUBLE PRECISION array,
                                           dimension (LRWORK)
            On exit, if INFO = 0, RWORK(1) returns the optimal LRWORK.

    LRWORK  (input) INTEGER
            The dimension of the array RWORK.
            If N <= 1,                LRWORK >= 1.
            If JOBZ  = 'N' and N > 1, LRWORK >= N.
            If JOBZ  = 'V' and N > 1, LRWORK >= 1 + 5*N + 2*N**2.

            If LRWORK = -1, then a workspace query is assumed; the
            routine only calculates the optimal sizes of the WORK, RWORK
            and IWORK arrays, returns these values as the first entries
            of the WORK, RWORK and IWORK arrays, and no error message
            related to LWORK or LRWORK or LIWORK is issued by XERBLA.

    IWORK   (workspace/output) INTEGER array, dimension (MAX(1,LIWORK))
            On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.

    LIWORK  (input) INTEGER
            The dimension of the array IWORK.
            If N <= 1,                LIWORK >= 1.
            If JOBZ  = 'N' and N > 1, LIWORK >= 1.
            If JOBZ  = 'V' and N > 1, LIWORK >= 3 + 5*N.

            If LIWORK = -1, then a workspace query is assumed; the
            routine only calculates the optimal sizes of the WORK, RWORK
            and IWORK arrays, returns these values as the first entries
            of the WORK, RWORK and IWORK arrays, and no error message
            related to LWORK or LRWORK or LIWORK is issued by XERBLA.

    INFO    (output) INTEGER
            = 0:  successful exit
            < 0:  if INFO = -i, the i-th argument had an illegal value
            > 0:  if INFO = i and JOBZ = 'N', then the algorithm failed
                  to converge; i off-diagonal elements of an intermediate
                  tridiagonal form did not converge to zero;
                  if INFO = i and JOBZ = 'V', then the algorithm failed
                  to compute an eigenvalue while working on the submatrix
                  lying in rows and columns INFO/(N+1) through
                  mod(INFO,N+1).

    Further Details
    ===============
    Based on contributions by
       Jeff Rutter, Computer Science Division, University of California
       at Berkeley, USA

    Modified description of INFO. Sven, 16 Feb 05.
    =====================================================================   */

    char uplo_[2] = {uplo, 0};
    char jobz_[2] = {jobz, 0};
    char range_[2] = {range, 0};
    magmaDoubleComplex c_one  = MAGMA_Z_ONE;
    magma_int_t ione = 1;
    magma_int_t izero = 0;
    double d_one = 1.;

    double d__1;

    double eps;
    double anrm;
    magma_int_t imax;
    double rmin, rmax;
    double sigma;
    //magma_int_t iinfo;
    magma_int_t lwmin, lrwmin, liwmin;
    magma_int_t lower;
    magma_int_t wantz;
    magma_int_t iscale;
    double safmin;
    double bignum;
    double smlnum;
    magma_int_t lquery;
    magma_int_t alleig, valeig, indeig;

    double* dwork;

    /* determine the number of threads */
    magma_int_t threads = magma_get_numthreads();
    magma_setlapack_numthreads(threads);

    wantz = lapackf77_lsame(jobz_, MagmaVecStr);
    lower = lapackf77_lsame(uplo_, MagmaLowerStr);

    alleig = lapackf77_lsame( range_, "A" );
    valeig = lapackf77_lsame( range_, "V" );
    indeig = lapackf77_lsame( range_, "I" );

    lquery = lwork == -1 || lrwork == -1 || liwork == -1;

    *info = 0;
    if (! (wantz || lapackf77_lsame(jobz_, MagmaNoVecStr))) {
        *info = -1;
    } else if (! (alleig || valeig || indeig)) {
        *info = -2;
    } else if (! (lower || lapackf77_lsame(uplo_, MagmaUpperStr))) {
        *info = -3;
    } else if (n < 0) {
        *info = -4;
    } else if (lda < max(1,n)) {
        *info = -6;
    } else {
        if (valeig) {
            if (n > 0 && vu <= vl) {
                *info = -8;
            }
        } else if (indeig) {
            if (il < 1 || il > max(1,n)) {
                *info = -9;
            } else if (iu < min(n,il) || iu > n) {
                *info = -10;
            }
        }
    }

    magma_int_t nb = magma_get_zbulge_nb(n,threads);
    magma_int_t Vblksiz = magma_zbulge_get_Vblksiz(n, nb, threads);

    magma_int_t ldt = Vblksiz;
    magma_int_t ldv = nb + Vblksiz;
    magma_int_t blkcnt = magma_bulge_get_blkcnt(n, nb, Vblksiz);
    magma_int_t lq2 = magma_zbulge_get_lq2(n, threads);

    if (wantz) {
        lwmin = lq2 + 2 * n + n * n;
        lrwmin = 1 + 5 * n + 2 * n * n;
        liwmin = 5 * n + 3;
    } else {
        lwmin = lq2 + n * (nb + 1);
        lrwmin = n;
        liwmin = 1;
    }

    work[0]  = MAGMA_Z_MAKE( lwmin * (1. + lapackf77_dlamch("Epsilon")), 0.);  // round up
    rwork[0] = lrwmin * (1. + lapackf77_dlamch("Epsilon"));
    iwork[0] = liwmin;

    if ((lwork < lwmin) && !lquery) {
        *info = -14;
    } else if ((lrwork < lrwmin) && ! lquery) {
        *info = -16;
    } else if ((liwork < liwmin) && ! lquery) {
        *info = -18;
    }

    if (*info != 0) {
        magma_xerbla( __func__, -(*info) );
        return *info;
    }
    else if (lquery) {
        return *info;
    }

    /* Quick return if possible */
    if (n == 0) {
        return *info;
    }

    if (n == 1) {
        w[0] = MAGMA_Z_REAL(a[0]);
        if (wantz) {
            a[0] = MAGMA_Z_ONE;
        }
        return *info;
    }


#ifdef ENABLE_TIMER
    printf("using %d threads\n", threads);
#endif

    /* Check if matrix is very small then just call LAPACK on CPU, no need for GPU */
    magma_int_t ntiles = n/nb;
    if( ( ntiles < 2 ) || ( n <= 128 ) ){
        #ifdef ENABLE_DEBUG
        printf("--------------------------------------------------------------\n");
        printf("  warning matrix too small N=%d NB=%d, calling lapack on CPU  \n", (int) n, (int) nb);
        printf("--------------------------------------------------------------\n");
        #endif
        lapackf77_zheevd(jobz_, &uplo, &n, 
                        a, &lda, w, 
                        work, &lwork, 
#if defined(PRECISION_z) || defined(PRECISION_c)
                        rwork, &lrwork, 
#endif  
                        iwork, &liwork, 
                        info);
        *m = n; 
        return *info;
    }

    /* Get machine constants. */
    safmin = lapackf77_dlamch("Safe minimum");
    eps = lapackf77_dlamch("Precision");
    smlnum = safmin / eps;
    bignum = 1. / smlnum;
    rmin = magma_dsqrt(smlnum);
    rmax = magma_dsqrt(bignum);

    /* Scale matrix to allowable range, if necessary. */
    anrm = lapackf77_zlanhe("M", uplo_, &n, a, &lda, rwork);
    iscale = 0;
    if (anrm > 0. && anrm < rmin) {
        iscale = 1;
        sigma = rmin / anrm;
    } else if (anrm > rmax) {
        iscale = 1;
        sigma = rmax / anrm;
    }
    if (iscale == 1) {
        lapackf77_zlascl(uplo_, &izero, &izero, &d_one, &sigma, &n, &n, a,
                         &lda, info);
    }

    magma_int_t indT2   = 0;
    magma_int_t indTAU2 = indT2  + blkcnt*ldt*Vblksiz;
    magma_int_t indV2   = indTAU2+ blkcnt*Vblksiz;
    magma_int_t indtau1 = indV2  + blkcnt*ldv*Vblksiz;
    magma_int_t indwrk  = indtau1+ n;
    //magma_int_t indwk2  = indwrk + n * n;
    magma_int_t llwork = lwork - indwrk;
    //magma_int_t llwrk2 = lwork - indwk2;
    magma_int_t inde = 0;
    magma_int_t indrwk = inde + n;
    magma_int_t llrwk = lrwork - indrwk;

#ifdef ENABLE_TIMER
    magma_timestr_t start, st1, st2, end;
    start = get_current_time();
#endif

    magmaDoubleComplex *dT1;
    if (MAGMA_SUCCESS != magma_zmalloc( &dT1, n*nb)) {
        *info = MAGMA_ERR_DEVICE_ALLOC;
        return *info;
    }
    magma_zhetrd_he2hb(uplo, n, nb, a, lda, &work[indtau1], &work[indwrk], llwork, dT1, threads, info);

#ifdef ENABLE_TIMER
    st1 = get_current_time();
    printf("  time zhetrd_he2hb = %6.2f\n" , GetTimerValue(start,st1)/1000.);
#endif

    /* copy the input matrix into WORK(INDWRK) with band storage */
    /* PAY ATTENTION THAT work[indwrk] should be able to be of size lda2*n which it should be checked in any future modification of lwork.*/
    magma_int_t lda2 = 2*nb; //nb+1+(nb-1);
    magmaDoubleComplex* A2 = &work[indwrk];
    memset(A2 , 0, n*lda2*sizeof(magmaDoubleComplex));

    for (magma_int_t j = 0; j < n-nb; j++)
    {
        cblas_zcopy(nb+1, &a[j*(lda+1)], 1, &A2[j*lda2], 1);
        memset(&a[j*(lda+1)], 0, (nb+1)*sizeof(magmaDoubleComplex));
        a[nb + j*(lda+1)] = c_one;
    }
    for (magma_int_t j = 0; j < nb; j++)
    {
        cblas_zcopy(nb-j, &a[(j+n-nb)*(lda+1)], 1, &A2[(j+n-nb)*lda2], 1);
        memset(&a[(j+n-nb)*(lda+1)], 0, (nb-j)*sizeof(magmaDoubleComplex));
    }

#ifdef ENABLE_TIMER
    st2 = get_current_time();
    printf("  time zhetrd_convert = %6.2f\n" , GetTimerValue(st1,st2)/1000.);
#endif

    magma_zhetrd_hb2st(threads, uplo, n, nb, Vblksiz, A2, lda2, w, &rwork[inde], &work[indV2], ldv, &work[indTAU2], wantz, &work[indT2], ldt);

#ifdef ENABLE_TIMER
    end = get_current_time();
    printf("  time zhetrd_hb2st = %6.2f\n" , GetTimerValue(st2,end)/1000.);
    printf("  time zhetrd = %6.2f\n", GetTimerValue(start,end)/1000.);
#endif

    /* For eigenvalues only, call DSTERF.  For eigenvectors, first call
     ZSTEDC to generate the eigenvector matrix, WORK(INDWRK), of the
     tridiagonal matrix, then call ZUNMTR to multiply it to the Householder
     transformations represented as Householder vectors in A. */
    if (! wantz) {
#ifdef ENABLE_TIMER
        start = get_current_time();
#endif

        lapackf77_dsterf(&n, w, &rwork[inde], info);
        magma_dmove_eig(range, n, w, &il, &iu, vl, vu, m);

#ifdef ENABLE_TIMER
        end = get_current_time();
        printf("  time dstedc = %6.2f\n", GetTimerValue(start,end)/1000.);
#endif

    } else {

#ifdef ENABLE_TIMER
        start = get_current_time();
#endif

        if (MAGMA_SUCCESS != magma_dmalloc( &dwork, 3*n*(n/2 + 1) )) {
            *info = MAGMA_ERR_DEVICE_ALLOC;
            return *info;
        }

        magma_zstedx(range, n, vl, vu, il, iu, w, &rwork[inde],
                     &work[indwrk], n, &rwork[indrwk],
                     llrwk, iwork, liwork, dwork, info);

        magma_free( dwork );

#ifdef ENABLE_TIMER
        end = get_current_time();
        printf("  time zstedx = %6.2f\n", GetTimerValue(start,end)/1000.);
        start = get_current_time();
#endif
        magmaDoubleComplex *dZ;
        magma_int_t lddz = n;

        magmaDoubleComplex *da;
        magma_int_t ldda = n;

        magma_dmove_eig(range, n, w, &il, &iu, vl, vu, m);

        if (MAGMA_SUCCESS != magma_zmalloc( &dZ, *m*lddz)) {
            *info = MAGMA_ERR_DEVICE_ALLOC;
            return *info;
        }
        if (MAGMA_SUCCESS != magma_zmalloc( &da, n*ldda )) {
            *info = MAGMA_ERR_DEVICE_ALLOC;
            return *info;
        }

        magma_zbulge_back(threads, uplo, n, nb, *m, Vblksiz, &work[indwrk + n * (il-1)], n, dZ, lddz,
                          &work[indV2], ldv, &work[indTAU2], &work[indT2], ldt, info);

#ifdef ENABLE_TIMER
        st1 = get_current_time();
        printf("  time zbulge_back = %6.2f\n" , GetTimerValue(start,st1)/1000.);
#endif

        magma_zsetmatrix( n, n, a, lda, da, ldda );

        magma_zunmqr_gpu_2stages(MagmaLeft, MagmaNoTrans, n-nb, *m, n-nb, da+nb, ldda,
                                 dZ+nb, n, dT1, nb, info);

        magma_zgetmatrix( n, *m, dZ, lddz, a, lda );
        magma_free(dT1);
        magma_free(dZ);
        magma_free(da);

#ifdef ENABLE_TIMER
        end = get_current_time();
        printf("  time zunmqr + copy = %6.2f\n", GetTimerValue(st1,end)/1000.);
        printf("  time eigenvectors backtransf. = %6.2f\n" , GetTimerValue(start,end)/1000.);
#endif

    }

    /* If matrix was scaled, then rescale eigenvalues appropriately. */
    if (iscale == 1) {
        if (*info == 0) {
            imax = n;
        } else {
            imax = *info - 1;
        }
        d__1 = 1. / sigma;
        blasf77_dscal(&imax, &d__1, w, &ione);
    }

    work[0]  = MAGMA_Z_MAKE( lwmin * (1. + lapackf77_dlamch("Epsilon")), 0.);  // round up
    rwork[0] = lrwmin * (1. + lapackf77_dlamch("Epsilon"));
    iwork[0] = liwmin;

    return *info;
} /* magma_zheevdx_2stage */
Beispiel #22
0
/**
    Purpose
    -------
    ZHEEVR computes selected eigenvalues and, optionally, eigenvectors
    of a complex Hermitian matrix T.  Eigenvalues and eigenvectors can
    be selected by specifying either a range of values or a range of
    indices for the desired eigenvalues.

    Whenever possible, ZHEEVR calls ZSTEGR to compute the
    eigenspectrum using Relatively Robust Representations.  ZSTEGR
    computes eigenvalues by the dqds algorithm, while orthogonal
    eigenvectors are computed from various "good" L D L^T representations
    (also known as Relatively Robust Representations). Gram-Schmidt
    orthogonalization is avoided as far as possible. More specifically,
    the various steps of the algorithm are as follows. For the i-th
    unreduced block of T,
       1.  Compute T - sigma_i = L_i D_i L_i^T, such that L_i D_i L_i^T
            is a relatively robust representation,
       2.  Compute the eigenvalues, lambda_j, of L_i D_i L_i^T to high
           relative accuracy by the dqds algorithm,
       3.  If there is a cluster of close eigenvalues, "choose" sigma_i
           close to the cluster, and go to step (a),
       4.  Given the approximate eigenvalue lambda_j of L_i D_i L_i^T,
           compute the corresponding eigenvector by forming a
           rank-revealing twisted factorization.
    The desired accuracy of the output can be specified by the input
    parameter ABSTOL.

    For more details, see "A new O(n^2) algorithm for the symmetric
    tridiagonal eigenvalue/eigenvector problem", by Inderjit Dhillon,
    Computer Science Division Technical Report No. UCB//CSD-97-971,
    UC Berkeley, May 1997.


    Note 1 : ZHEEVR calls ZSTEGR when the full spectrum is requested
    on machines which conform to the ieee-754 floating point standard.
    ZHEEVR calls DSTEBZ and ZSTEIN on non-ieee machines and
    when partial spectrum requests are made.

    Normal execution of ZSTEGR may create NaNs and infinities and
    hence may abort due to a floating point exception in environments
    which do not handle NaNs and infinities in the ieee standard default
    manner.

    Arguments
    ---------
    @param[in]
    jobz    magma_vec_t
      -     = MagmaNoVec:  Compute eigenvalues only;
      -     = MagmaVec:    Compute eigenvalues and eigenvectors.

    @param[in]
    range   magma_range_t
      -     = MagmaRangeAll: all eigenvalues will be found.
      -     = MagmaRangeV:   all eigenvalues in the half-open interval (VL,VU]
                   will be found.
      -     = MagmaRangeI:   the IL-th through IU-th eigenvalues will be found.

    @param[in]
    uplo    magma_uplo_t
      -     = MagmaUpper:  Upper triangle of A is stored;
      -     = MagmaLower:  Lower triangle of A is stored.

    @param[in]
    n       INTEGER
            The order of the matrix A.  N >= 0.

    @param[in,out]
    A       COMPLEX_16 array, dimension (LDA, N)
            On entry, the Hermitian matrix A.  If UPLO = MagmaUpper, the
            leading N-by-N upper triangular part of A contains the
            upper triangular part of the matrix A.  If UPLO = MagmaLower,
            the leading N-by-N lower triangular part of A contains
            the lower triangular part of the matrix A.
            On exit, the lower triangle (if UPLO=MagmaLower) or the upper
            triangle (if UPLO=MagmaUpper) of A, including the diagonal, is
            destroyed.

    @param[in]
    lda     INTEGER
            The leading dimension of the array A.  LDA >= max(1,N).

    @param[in]
    vl      DOUBLE PRECISION
    @param[in]
    vu      DOUBLE PRECISION
            If RANGE=MagmaRangeV, the lower and upper bounds of the interval to
            be searched for eigenvalues. VL < VU.
            Not referenced if RANGE = MagmaRangeAll or MagmaRangeI.

    @param[in]
    il      INTEGER
    @param[in]
    iu      INTEGER
            If RANGE=MagmaRangeI, the indices (in ascending order) of the
            smallest and largest eigenvalues to be returned.
            1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
            Not referenced if RANGE = MagmaRangeAll or MagmaRangeV.

    @param[in]
    abstol  DOUBLE PRECISION
            The absolute error tolerance for the eigenvalues.
            An approximate eigenvalue is accepted as converged
            when it is determined to lie in an interval [a,b]
            of width less than or equal to

                    ABSTOL + EPS * max( |a|,|b| ),
    \n
            where EPS is the machine precision.  If ABSTOL is less than
            or equal to zero, then  EPS*|T|  will be used in its place,
            where |T| is the 1-norm of the tridiagonal matrix obtained
            by reducing A to tridiagonal form.
    \n
            See "Computing Small Singular Values of Bidiagonal Matrices
            with Guaranteed High Relative Accuracy," by Demmel and
            Kahan, LAPACK Working Note #3.
    \n
            If high relative accuracy is important, set ABSTOL to
            DLAMCH( 'Safe minimum' ).  Doing so will guarantee that
            eigenvalues are computed to high relative accuracy when
            possible in future releases.  The current code does not
            make any guarantees about high relative accuracy, but
            furutre releases will. See J. Barlow and J. Demmel,
            "Computing Accurate Eigensystems of Scaled Diagonally
            Dominant Matrices", LAPACK Working Note #7, for a discussion
            of which matrices define their eigenvalues to high relative
            accuracy.

    @param[out]
    m       INTEGER
            The total number of eigenvalues found.  0 <= M <= N.
            If RANGE = MagmaRangeAll, M = N, and if RANGE = MagmaRangeI, M = IU-IL+1.

    @param[out]
    w       DOUBLE PRECISION array, dimension (N)
            The first M elements contain the selected eigenvalues in
            ascending order.

    @param[out]
    Z       COMPLEX_16 array, dimension (LDZ, max(1,M))
            If JOBZ = MagmaVec, then if INFO = 0, the first M columns of Z
            contain the orthonormal eigenvectors of the matrix A
            corresponding to the selected eigenvalues, with the i-th
            column of Z holding the eigenvector associated with W(i).
            If JOBZ = MagmaNoVec, then Z is not referenced.
            Note: the user must ensure that at least max(1,M) columns are
            supplied in the array Z; if RANGE = MagmaRangeV, the exact value of M
            is not known in advance and an upper bound must be used.

    @param[in]
    ldz     INTEGER
            The leading dimension of the array Z.  LDZ >= 1, and if
            JOBZ = MagmaVec, LDZ >= max(1,N).

    @param[out]
    isuppz  INTEGER ARRAY, dimension ( 2*max(1,M) )
            The support of the eigenvectors in Z, i.e., the indices
            indicating the nonzero elements in Z. The i-th eigenvector
            is nonzero only in elements ISUPPZ( 2*i-1 ) through
            ISUPPZ( 2*i ).
            __Implemented only for__ RANGE = MagmaRangeAll or MagmaRangeI and IU - IL = N - 1

    @param[out]
    work    (workspace) COMPLEX_16 array, dimension (LWORK)
            On exit, if INFO = 0, WORK[0] returns the optimal LWORK.

    @param[in]
    lwork   INTEGER
            The length of the array WORK.  LWORK >= max(1,2*N).
            For optimal efficiency, LWORK >= (NB+1)*N,
            where NB is the max of the blocksize for ZHETRD and for
            ZUNMTR as returned by ILAENV.
    \n
            If LWORK = -1, then a workspace query is assumed; the routine
            only calculates the optimal size of the WORK array, returns
            this value as the first entry of the WORK array, and no error
            message related to LWORK is issued by XERBLA.

    @param[out]
    rwork   (workspace) DOUBLE PRECISION array, dimension (LRWORK)
            On exit, if INFO = 0, RWORK[0] returns the optimal
            (and minimal) LRWORK.

    @param[in]
    lrwork  INTEGER
            The length of the array RWORK.  LRWORK >= max(1,24*N).
    \n
            If LRWORK = -1, then a workspace query is assumed; the routine
            only calculates the optimal size of the RWORK array, returns
            this value as the first entry of the RWORK array, and no error
            message related to LRWORK is issued by XERBLA.

    @param[out]
    iwork   (workspace) INTEGER array, dimension (LIWORK)
            On exit, if INFO = 0, IWORK[0] returns the optimal
            (and minimal) LIWORK.

    @param[in]
    liwork  INTEGER
            The dimension of the array IWORK.  LIWORK >= max(1,10*N).
    \n
            If LIWORK = -1, then a workspace query is assumed; the
            routine only calculates the optimal size of the IWORK array,
            returns this value as the first entry of the IWORK array, and
            no error message related to LIWORK is issued by XERBLA.

    @param[out]
    info    INTEGER
      -     = 0:  successful exit
      -     < 0:  if INFO = -i, the i-th argument had an illegal value
      -     > 0:  Internal error

    Further Details
    ---------------
    Based on contributions by
       Inderjit Dhillon, IBM Almaden, USA
       Osni Marques, LBNL/NERSC, USA
       Ken Stanley, Computer Science Division, University of
         California at Berkeley, USA

    @ingroup magma_zheev_driver
    ********************************************************************/
extern "C" magma_int_t
magma_zheevr(
    magma_vec_t jobz, magma_range_t range, magma_uplo_t uplo, magma_int_t n,
    magmaDoubleComplex *A, magma_int_t lda,
    double vl, double vu,
    magma_int_t il, magma_int_t iu, double abstol, magma_int_t *m,
    double *w,
    magmaDoubleComplex *Z, magma_int_t ldz,
    magma_int_t *isuppz,
    magmaDoubleComplex *work, magma_int_t lwork,
    double *rwork, magma_int_t lrwork,
    magma_int_t *iwork, magma_int_t liwork,
    magma_int_t *info)
{
    /* Constants */
    const magma_int_t izero = 0;
    const magma_int_t ione  = 1;
    const float szero = 0.;
    const float sone  = 1.;
    
    /* Local variables */
    const char* uplo_  = lapack_uplo_const( uplo  );
    const char* jobz_  = lapack_vec_const( jobz  );
    const char* range_ = lapack_range_const( range );
    
    magma_int_t indrd, indre;
    magma_int_t imax;
    magma_int_t lopt, itmp1, indree, indrdd;
    magma_int_t tryrac;
    magma_int_t i, j, jj, i__1;
    magma_int_t iscale, indibl, indifl;
    magma_int_t indiwo, indisp, indtau;
    magma_int_t indrwk, indwk;
    magma_int_t llwork, llrwork, nsplit;
    magma_int_t ieeeok;
    magma_int_t iinfo;
    magma_int_t lwmin, lrwmin, liwmin;
    double safmin;
    double bignum;
    double smlnum;
    double eps, tmp1;
    double anrm;
    double sigma, d__1;
    double rmin, rmax;
    
    bool lower  = (uplo == MagmaLower);
    bool wantz  = (jobz == MagmaVec);
    bool alleig = (range == MagmaRangeAll);
    bool valeig = (range == MagmaRangeV);
    bool indeig = (range == MagmaRangeI);
    bool lquery = (lwork == -1 || lrwork == -1 || liwork == -1);
    
    *info = 0;
    if (! (wantz || (jobz == MagmaNoVec))) {
        *info = -1;
    } else if (! (alleig || valeig || indeig)) {
        *info = -2;
    } else if (! (lower || (uplo == MagmaUpper))) {
        *info = -3;
    } else if (n < 0) {
        *info = -4;
    } else if (lda < max(1,n)) {
        *info = -6;
    } else if (ldz < 1 || (wantz && ldz < n)) {
        *info = -15;
    } else {
        if (valeig) {
            if (n > 0 && vu <= vl) {
                *info = -8;
            }
        } else if (indeig) {
            if (il < 1 || il > max(1,n)) {
                *info = -9;
            } else if (iu < min(n,il) || iu > n) {
                *info = -10;
            }
        }
    }
    
    magma_int_t nb = magma_get_zhetrd_nb(n);
    
    lwmin =  n * (nb + 1);
    lrwmin = 24 * n;
    liwmin = 10 * n;
    
    work[0] = magma_zmake_lwork( lwmin );
    rwork[0] = magma_dmake_lwork( lrwmin );
    iwork[0] = liwmin;
    
    if (lwork < lwmin && ! lquery) {
        *info = -18;
    } else if ((lrwork < lrwmin) && ! lquery) {
        *info = -20;
    } else if ((liwork < liwmin) && ! lquery) {
        *info = -22;
    }
    
    if (*info != 0) {
        magma_xerbla(__func__, -(*info));
        return *info;
    } else if (lquery) {
        return *info;
    }
    
    *m = 0;
    /* Check if matrix is very small then just call LAPACK on CPU, no need for GPU */
    if (n <= 128) {
        #ifdef ENABLE_DEBUG
        printf("--------------------------------------------------------------\n");
        printf("  warning matrix too small N=%d NB=%d, calling lapack on CPU  \n", (int) n, (int) nb);
        printf("--------------------------------------------------------------\n");
        #endif
        lapackf77_zheevr(jobz_, range_, uplo_,
                         &n, A, &lda, &vl, &vu, &il, &iu, &abstol, m,
                         w, Z, &ldz, isuppz, work, &lwork,
                         rwork, &lrwork, iwork, &liwork, info);
        return *info;
    }
    
    --w;
    --work;
    --rwork;
    --iwork;
    --isuppz;
    
    /* Get machine constants. */
    safmin = lapackf77_dlamch("Safe minimum");
    eps = lapackf77_dlamch("Precision");
    smlnum = safmin / eps;
    bignum = 1. / smlnum;
    rmin = magma_dsqrt(smlnum);
    rmax = magma_dsqrt(bignum);
    
    /* Scale matrix to allowable range, if necessary. */
    anrm = lapackf77_zlanhe("M", uplo_, &n, A, &lda, &rwork[1]);
    iscale = 0;
    if (anrm > 0. && anrm < rmin) {
        iscale = 1;
        sigma = rmin / anrm;
    } else if (anrm > rmax) {
        iscale = 1;
        sigma = rmax / anrm;
    }
    if (iscale == 1) {
        d__1 = 1.;
        lapackf77_zlascl(uplo_, &izero, &izero, &d__1, &sigma, &n, &n, A,
                         &lda, info);
        
        if (abstol > 0.) {
            abstol *= sigma;
        }
        if (valeig) {
            vl *= sigma;
            vu *= sigma;
        }
    }
    
    /* Call ZHETRD to reduce Hermitian matrix to tridiagonal form. */
    indtau = 1;
    indwk = indtau + n;
    
    indre = 1;
    indrd = indre + n;
    indree = indrd + n;
    indrdd = indree + n;
    indrwk = indrdd + n;
    llwork = lwork - indwk + 1;
    llrwork = lrwork - indrwk + 1;
    
    indifl = 1;
    indibl = indifl + n;
    indisp = indibl + n;
    indiwo = indisp + n;
    
    magma_zhetrd(uplo, n, A, lda, &rwork[indrd], &rwork[indre], &work[indtau], &work[indwk], llwork, &iinfo);
    
    lopt = n + (magma_int_t)MAGMA_Z_REAL(work[indwk]);
    
    /* If all eigenvalues are desired and ABSTOL is less than or equal to
       zero, then call DSTERF
       or ZUNGTR and ZSTEQR.  If this fails for
       some eigenvalue, then try DSTEBZ. */
    ieeeok = lapackf77_ieeeck( &ione, &szero, &sone);
    
    /* If only the eigenvalues are required call DSTERF for all or DSTEBZ for a part */
    if (! wantz) {
        blasf77_dcopy(&n, &rwork[indrd], &ione, &w[1], &ione);
        i__1 = n - 1;
        if (alleig || (indeig && il == 1 && iu == n)) {
            lapackf77_dsterf(&n, &w[1], &rwork[indre], info);
            *m = n;
        } else {
            lapackf77_dstebz(range_, "E", &n, &vl, &vu, &il, &iu, &abstol,
                             &rwork[indrd], &rwork[indre], m,
                             &nsplit, &w[1], &iwork[indibl], &iwork[indisp],
                             &rwork[indrwk], &iwork[indiwo], info);
        }
        
        /* Otherwise call ZSTEMR if infinite and NaN arithmetic is supported */
    }
    else if (ieeeok == 1) {
        i__1 = n - 1;
        
        blasf77_dcopy(&i__1, &rwork[indre], &ione, &rwork[indree], &ione);
        blasf77_dcopy(&n, &rwork[indrd], &ione, &rwork[indrdd], &ione);
        
        if (abstol < 2*n*eps)
            tryrac = 1;
        else
            tryrac = 0;
        
        lapackf77_zstemr(jobz_, range_, &n, &rwork[indrdd], &rwork[indree], &vl, &vu, &il,
                         &iu, m, &w[1], Z, &ldz, &n, &isuppz[1], &tryrac, &rwork[indrwk],
                         &llrwork, &iwork[1], &liwork, info);
        
        if (*info == 0 && wantz) {
            magma_zunmtr(MagmaLeft, uplo, MagmaNoTrans, n, *m, A, lda, &work[indtau],
                         Z, ldz, &work[indwk], llwork, &iinfo);
        }
    }
    
    
    /* Call DSTEBZ and ZSTEIN if infinite and NaN arithmetic is not supported or ZSTEMR didn't converge. */
    if (wantz && (ieeeok == 0 || *info != 0)) {
        *info = 0;
        
        lapackf77_dstebz(range_, "B", &n, &vl, &vu, &il, &iu, &abstol, &rwork[indrd], &rwork[indre], m,
                         &nsplit, &w[1], &iwork[indibl], &iwork[indisp], &rwork[indrwk], &iwork[indiwo], info);
        
        lapackf77_zstein(&n, &rwork[indrd], &rwork[indre], m, &w[1], &iwork[indibl], &iwork[indisp],
                         Z, &ldz, &rwork[indrwk], &iwork[indiwo], &iwork[indifl], info);
        
        /* Apply unitary matrix used in reduction to tridiagonal
           form to eigenvectors returned by ZSTEIN. */
        magma_zunmtr(MagmaLeft, uplo, MagmaNoTrans, n, *m, A, lda, &work[indtau],
                     Z, ldz, &work[indwk], llwork, &iinfo);
    }
    
    /* If matrix was scaled, then rescale eigenvalues appropriately. */
    if (iscale == 1) {
        if (*info == 0) {
            imax = *m;
        } else {
            imax = *info - 1;
        }
        d__1 = 1. / sigma;
        blasf77_dscal(&imax, &d__1, &w[1], &ione);
    }
    
    /* If eigenvalues are not in order, then sort them, along with
       eigenvectors. */
    if (wantz) {
        for (j = 1; j <= *m-1; ++j) {
            i = 0;
            tmp1 = w[j];
            for (jj = j + 1; jj <= *m; ++jj) {
                if (w[jj] < tmp1) {
                    i = jj;
                    tmp1 = w[jj];
                }
            }
            
            if (i != 0) {
                itmp1 = iwork[indibl + i - 1];
                w[i] = w[j];
                iwork[indibl + i - 1] = iwork[indibl + j - 1];
                w[j] = tmp1;
                iwork[indibl + j - 1] = itmp1;
                blasf77_zswap(&n, Z + (i-1)*ldz, &ione, Z + (j-1)*ldz, &ione);
            }
        }
    }
    
    /* Set WORK[0] to optimal complex workspace size. */
    work[1] = magma_zmake_lwork( lopt );
    rwork[1] = magma_dmake_lwork( lrwmin );
    iwork[1] = liwmin;
    
    return *info;
} /* magma_zheevr */
Beispiel #23
0
extern "C" magma_int_t
magma_dsyevd(
    magma_vec_t jobz, magma_uplo_t uplo,
    magma_int_t n,
    double *a, magma_int_t lda,
    double *w,
    double *work, magma_int_t lwork,
    magma_int_t *iwork, magma_int_t liwork,
    magma_queue_t queue,
    magma_int_t *info)
{
/*  -- MAGMA (version 1.3.0) --
       Univ. of Tennessee, Knoxville
       Univ. of California, Berkeley
       Univ. of Colorado, Denver
       @date November 2014

    Purpose
    =======
    DSYEVD computes all eigenvalues and, optionally, eigenvectors of
    a real symmetric matrix A.  If eigenvectors are desired, it uses a
    divide and conquer algorithm.

    The divide and conquer algorithm makes very mild assumptions about
    floating point arithmetic. It will work on machines with a guard
    digit in add/subtract, or on those binary machines without guard
    digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
    Cray-2. It could conceivably fail on hexadecimal or decimal machines
    without guard digits, but we know of none.

    Arguments
    =========
    JOBZ    (input) CHARACTER*1
            = 'N':  Compute eigenvalues only;
            = 'V':  Compute eigenvalues and eigenvectors.

    UPLO    (input) CHARACTER*1
            = 'U':  Upper triangle of A is stored;
            = 'L':  Lower triangle of A is stored.

    N       (input) INTEGER
            The order of the matrix A.  N >= 0.

    A       (input/output) DOUBLE_PRECISION array, dimension (LDA, N)
            On entry, the symmetric matrix A.  If UPLO = 'U', the
            leading N-by-N upper triangular part of A contains the
            upper triangular part of the matrix A.  If UPLO = 'L',
            the leading N-by-N lower triangular part of A contains
            the lower triangular part of the matrix A.
            On exit, if JOBZ = 'V', then if INFO = 0, A contains the
            orthonormal eigenvectors of the matrix A.
            If JOBZ = 'N', then on exit the lower triangle (if UPLO='L')
            or the upper triangle (if UPLO='U') of A, including the
            diagonal, is destroyed.

    LDA     (input) INTEGER
            The leading dimension of the array A.  LDA >= max(1,N).

    W       (output) DOUBLE PRECISION array, dimension (N)
            If INFO = 0, the eigenvalues in ascending order.

    WORK    (workspace/output) DOUBLE_PRECISION array, dimension (MAX(1,LWORK))
            On exit, if INFO = 0, WORK[0] returns the optimal LWORK.

    LWORK   (input) INTEGER
            The length of the array WORK.
            If N <= 1,                LWORK >= 1.
            If JOBZ  = 'N' and N > 1, LWORK >= 2*N + N*NB.
            If JOBZ  = 'V' and N > 1, LWORK >= max( 2*N + N*NB, 1 + 6*N + 2*N**2 ).
            NB can be obtained through magma_get_dsytrd_nb(N).

            If LWORK = -1, then a workspace query is assumed; the routine
            only calculates the optimal sizes of the WORK and IWORK
            arrays, returns these values as the first entries of the WORK
            and IWORK arrays, and no error message related to LWORK or
            LIWORK is issued by XERBLA.

    IWORK   (workspace/output) INTEGER array, dimension (MAX(1,LIWORK))
            On exit, if INFO = 0, IWORK[0] returns the optimal LIWORK.

    LIWORK  (input) INTEGER
            The dimension of the array IWORK.
            If N <= 1,                LIWORK >= 1.
            If JOBZ  = 'N' and N > 1, LIWORK >= 1.
            If JOBZ  = 'V' and N > 1, LIWORK >= 3 + 5*N.

            If LIWORK = -1, then a workspace query is assumed; the
            routine only calculates the optimal sizes of the WORK and
            IWORK arrays, returns these values as the first entries of
            the WORK and IWORK arrays, and no error message related to
            LWORK or LIWORK is issued by XERBLA.

    INFO    (output) INTEGER
            = 0:  successful exit
            < 0:  if INFO = -i, the i-th argument had an illegal value
            > 0:  if INFO = i and JOBZ = 'N', then the algorithm failed
                  to converge; i off-diagonal elements of an intermediate
                  tridiagonal form did not converge to zero;
                  if INFO = i and JOBZ = 'V', then the algorithm failed
                  to compute an eigenvalue while working on the submatrix
                  lying in rows and columns INFO/(N+1) through
                  mod(INFO,N+1).

    Further Details
    ===============
    Based on contributions by
       Jeff Rutter, Computer Science Division, University of California
       at Berkeley, USA

    Modified description of INFO. Sven, 16 Feb 05.
    =====================================================================   */

    const char* uplo_ = lapack_uplo_const( uplo );
    const char* jobz_ = lapack_vec_const( jobz );
    magma_int_t ione = 1;
    magma_int_t izero = 0;
    double d_one = 1.;
    
    double d__1;

    double eps;
    magma_int_t inde;
    double anrm;
    double rmin, rmax;
    double sigma;
    magma_int_t iinfo, lwmin;
    magma_int_t lower;
    magma_int_t wantz;
    magma_int_t indwk2, llwrk2;
    magma_int_t iscale;
    double safmin;
    double bignum;
    magma_int_t indtau;
    magma_int_t indwrk, liwmin;
    magma_int_t llwork;
    double smlnum;
    magma_int_t lquery;

    magmaDouble_ptr dwork;

    wantz = (jobz == MagmaVec);
    lower = (uplo == MagmaLower);
    lquery = (lwork == -1 || liwork == -1);

    *info = 0;
    if (! (wantz || (jobz == MagmaNoVec))) {
        *info = -1;
    } else if (! (lower || (uplo == MagmaUpper))) {
        *info = -2;
    } else if (n < 0) {
        *info = -3;
    } else if (lda < max(1,n)) {
        *info = -5;
    }

    magma_int_t nb = magma_get_dsytrd_nb( n );
    if ( n <= 1 ) {
        lwmin  = 1;
        liwmin = 1;
    }
    else if ( wantz ) {
        lwmin  = max( 2*n + n*nb, 1 + 6*n + 2*n*n );
        liwmin = 3 + 5*n;
    }
    else {
        lwmin  = 2*n + n*nb;
        liwmin = 1;
    }
    // multiply by 1+eps to ensure length gets rounded up,
    // if it cannot be exactly represented in floating point.
    double one_eps = 1. + lapackf77_dlamch("Epsilon");
    work[0]  = lwmin * one_eps;
    iwork[0] = liwmin;

    if ((lwork < lwmin) && !lquery) {
        *info = -8;
    } else if ((liwork < liwmin) && ! lquery) {
        *info = -10;
    }

    if (*info != 0) {
        magma_xerbla( __func__, -(*info) );
        return *info;
    }
    else if (lquery) {
        return *info;
    }

    /* Quick return if possible */
    if (n == 0) {
        return *info;
    }

    if (n == 1) {
        w[0] = a[0];
        if (wantz) {
            a[0] = 1.;
        }
        return *info;
    }

    /* Check if matrix is very small then just call LAPACK on CPU, no need for GPU */
    if (n <= 128) {
        #ifdef ENABLE_DEBUG
        printf("--------------------------------------------------------------\n");
        printf("  warning matrix too small N=%d NB=%d, calling lapack on CPU  \n", (int) n, (int) nb);
        printf("--------------------------------------------------------------\n");
        #endif
        lapackf77_dsyevd(jobz_, uplo_,
                         &n, a, &lda,
                         w, work, &lwork,
                         iwork, &liwork, info);
        return *info;
    }

    /* Get machine constants. */
    safmin = lapackf77_dlamch("Safe minimum");
    eps    = lapackf77_dlamch("Precision");
    smlnum = safmin / eps;
    bignum = 1. / smlnum;
    rmin = magma_dsqrt(smlnum);
    rmax = magma_dsqrt(bignum);

    /* Scale matrix to allowable range, if necessary. */
    anrm = lapackf77_dlansy("M", uplo_, &n, a, &lda, work );
    iscale = 0;
    if (anrm > 0. && anrm < rmin) {
        iscale = 1;
        sigma = rmin / anrm;
    } else if (anrm > rmax) {
        iscale = 1;
        sigma = rmax / anrm;
    }
    if (iscale == 1) {
        lapackf77_dlascl(uplo_, &izero, &izero, &d_one, &sigma, &n, &n, a,
                &lda, info);
    }

    /* Call DSYTRD to reduce symmetric matrix to tridiagonal form. */
    // dsytrd work: e (n) + tau (n) + llwork (n*nb)  ==>  2n + n*nb
    // dstedx work: e (n) + tau (n) + z (n*n) + llwrk2 (1 + 4*n + n^2)  ==>  1 + 6n + 2n^2
    inde   = 0;
    indtau = inde   + n;
    indwrk = indtau + n;
    indwk2 = indwrk + n*n;
    llwork = lwork - indwrk;
    llwrk2 = lwork - indwk2;

    magma_timer_t time;
    timer_start( time );

    magma_dsytrd(uplo, n, a, lda, w, &work[inde],
                 &work[indtau], &work[indwrk], llwork, queue, &iinfo);
    
    timer_stop( time );
    timer_printf( "time dsytrd = %6.2f\n", time );

    /* For eigenvalues only, call DSTERF.  For eigenvectors, first call
       DSTEDC to generate the eigenvector matrix, WORK(INDWRK), of the
       tridiagonal matrix, then call DORMTR to multiply it to the Householder
       transformations represented as Householder vectors in A. */
    if (! wantz) {
        lapackf77_dsterf(&n, w, &work[inde], info);
    }
    else {
        timer_start( time );

        if (MAGMA_SUCCESS != magma_dmalloc( &dwork, 3*n*(n/2 + 1) )) {
            *info = MAGMA_ERR_DEVICE_ALLOC;
            return *info;
        }
        
        // TTT Possible bug for n < 128
        magma_dstedx(MagmaRangeAll, n, 0., 0., 0, 0, w, &work[inde],
                     &work[indwrk], n, &work[indwk2],
                     llwrk2, iwork, liwork, dwork, queue, info);
        
        magma_free( dwork );
        
        timer_stop( time );
        timer_printf( "time dstedx = %6.2f\n", time );
        timer_start( time );
        
        magma_dormtr(MagmaLeft, uplo, MagmaNoTrans, n, n, a, lda, &work[indtau],
                     &work[indwrk], n, &work[indwk2], llwrk2, queue, &iinfo);
        
        lapackf77_dlacpy("A", &n, &n, &work[indwrk], &n, a, &lda);

        timer_stop( time );
        timer_printf( "time dormtr + copy = %6.2f\n", time );
    }

    /* If matrix was scaled, then rescale eigenvalues appropriately. */
    if (iscale == 1) {
        d__1 = 1. / sigma;
        blasf77_dscal(&n, &d__1, w, &ione);
    }

    work[0]  = lwmin * one_eps;  // round up
    iwork[0] = liwmin;

    return *info;
} /* magma_dsyevd */
Beispiel #24
0
extern "C" magma_int_t
magma_dgeev(
    magma_vec_t jobvl, magma_vec_t jobvr, magma_int_t n,
    double *a, magma_int_t lda,
    double *WR, double *WI,
    double *vl, magma_int_t ldvl,
    double *vr, magma_int_t ldvr,
    double *work, magma_int_t lwork,
    magma_queue_t queue,
    magma_int_t *info)
{
/*  -- clMAGMA (version 1.3.0) --
       Univ. of Tennessee, Knoxville
       Univ. of California, Berkeley
       Univ. of Colorado, Denver
       @date November 2014

    Purpose
    =======
    DGEEV computes for an N-by-N real nonsymmetric matrix A, the
    eigenvalues and, optionally, the left and/or right eigenvectors.

    The right eigenvector v(j) of A satisfies
                     A * v(j) = lambda(j) * v(j)
    where lambda(j) is its eigenvalue.
    The left eigenvector u(j) of A satisfies
                  u(j)**T * A = lambda(j) * u(j)**T
    where u(j)**T denotes the transpose of u(j).

    The computed eigenvectors are normalized to have Euclidean norm
    equal to 1 and largest component real.

    Arguments
    =========
    JOBVL   (input) CHARACTER*1
            = 'N': left eigenvectors of A are not computed;
            = 'V': left eigenvectors of are computed.

    JOBVR   (input) CHARACTER*1
            = 'N': right eigenvectors of A are not computed;
            = 'V': right eigenvectors of A are computed.

    N       (input) INTEGER
            The order of the matrix A. N >= 0.

    A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
            On entry, the N-by-N matrix A.
            On exit, A has been overwritten.

    LDA     (input) INTEGER
            The leading dimension of the array A.  LDA >= max(1,N).

    WR      (output) DOUBLE PRECISION array, dimension (N)
    WI      (output) DOUBLE PRECISION array, dimension (N)
            WR and WI contain the real and imaginary parts,
            respectively, of the computed eigenvalues.  Complex
            conjugate pairs of eigenvalues appear consecutively
            with the eigenvalue having the positive imaginary part
            first.

    VL      (output) DOUBLE PRECISION array, dimension (LDVL,N)
            If JOBVL = 'V', the left eigenvectors u(j) are stored one
            after another in the columns of VL, in the same order
            as their eigenvalues.
            If JOBVL = 'N', VL is not referenced.
            u(j) = VL(:,j), the j-th column of VL.

    LDVL    (input) INTEGER
            The leading dimension of the array VL.  LDVL >= 1; if
            JOBVL = 'V', LDVL >= N.

    VR      (output) DOUBLE PRECISION array, dimension (LDVR,N)
            If JOBVR = 'V', the right eigenvectors v(j) are stored one
            after another in the columns of VR, in the same order
            as their eigenvalues.
            If JOBVR = 'N', VR is not referenced.
            v(j) = VR(:,j), the j-th column of VR.

    LDVR    (input) INTEGER
            The leading dimension of the array VR.  LDVR >= 1; if
            JOBVR = 'V', LDVR >= N.

    WORK    (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
            On exit, if INFO = 0, WORK(1) returns the optimal LWORK.

    LWORK   (input) INTEGER
            The dimension of the array WORK.  LWORK >= (1+nb)*N.

            If LWORK = -1, then a workspace query is assumed; the routine
            only calculates the optimal size of the WORK array, returns
            this value as the first entry of the WORK array, and no error
            message related to LWORK is issued by XERBLA.

    INFO    (output) INTEGER
            = 0:  successful exit
            < 0:  if INFO = -i, the i-th argument had an illegal value.
            > 0:  if INFO = i, the QR algorithm failed to compute all the
                  eigenvalues, and no eigenvectors have been computed;
                  elements and i+1:N of W contain eigenvalues which have
                  converged.
    =====================================================================    */

    magma_int_t ione = 1;
    magma_int_t c__1 = 1;
    magma_int_t c__0 = 0;
    magma_int_t c_n1 = -1;
    
    magma_int_t a_dim1, a_offset, vl_dim1, vl_offset, vr_dim1, vr_offset, i__1,
            i__2, i__3;
    double d__1, d__2;

    magma_int_t i__, k, ihi, ilo;
    double      r__, cs, sn, scl;
    double dum[1], eps;
    magma_int_t ibal;
    double anrm;
    magma_int_t ierr, itau, iwrk, nout;
    magma_int_t scalea;
    double cscale;
    double bignum;
    magma_int_t minwrk;
    magma_int_t wantvl;
    double smlnum;
    magma_int_t lquery, wantvr, select[1];

    magma_int_t nb = 0;
    magmaDouble_ptr dT;
    //magma_timestr_t start, end;

    const char* side_ = NULL;

    *info = 0;
    lquery = lwork == -1;
    wantvl = (jobvl == MagmaVec);
    wantvr = (jobvr == MagmaVec);
    if (! wantvl && jobvl != MagmaNoVec) {
        *info = -1;
    } else if (! wantvr && jobvr != MagmaNoVec) {
        *info = -2;
    } else if (n < 0) {
        *info = -3;
    } else if (lda < max(1,n)) {
        *info = -5;
    } else if ( (ldvl < 1) || (wantvl && (ldvl < n))) {
        *info = -9;
    } else if ( (ldvr < 1) || (wantvr && (ldvr < n))) {
        *info = -11;
    }

    /*  Compute workspace   */
    if (*info == 0) {

        nb = magma_get_dgehrd_nb(n);
        minwrk = (2+nb)*n;
        work[0] = (double) minwrk;
        
        if (lwork < minwrk && ! lquery) {
            *info = -13;
        }

    }

    if (*info != 0) {
        magma_xerbla( __func__, -(*info) );
        return *info;
    }
    else if (lquery) {
        return *info;
    }

    /* Quick return if possible */
    if (n == 0) {
        return *info;
    }
   
    // if eigenvectors are needed
#if defined(VERSION3)
    if (MAGMA_SUCCESS != magma_dmalloc( &dT, nb*n )) {
        *info = MAGMA_ERR_DEVICE_ALLOC;
        return *info;
    }
#endif

    // subtract row and col for 1-based indexing
    a_dim1   = lda;
    a_offset = 1 + a_dim1;
    a       -= a_offset;
    vl_dim1   = ldvl;
    vl_offset = 1 + vl_dim1;
    vl       -= vl_offset;
    vr_dim1   = ldvr;
    vr_offset = 1 + vr_dim1;
    vr       -= vr_offset;
    --work;

    /* Get machine constants */
    eps    = lapackf77_dlamch("P");
    smlnum = lapackf77_dlamch("S");
    bignum = 1. / smlnum;
    lapackf77_dlabad(&smlnum, &bignum);
    smlnum = magma_dsqrt(smlnum) / eps;
    bignum = 1. / smlnum;

    /* Scale A if max element outside range [SMLNUM,BIGNUM] */
    anrm = lapackf77_dlange("M", &n, &n, &a[a_offset], &lda, dum);
    scalea = 0;
    if (anrm > 0. && anrm < smlnum) {
        scalea = 1;
        cscale = smlnum;
    } else if (anrm > bignum) {
        scalea = 1;
        cscale = bignum;
    }
    if (scalea) {
        lapackf77_dlascl("G", &c__0, &c__0, &anrm, &cscale, &n, &n,
                &a[a_offset], &lda, &ierr);
    }

    /* Balance the matrix
       (Workspace: need N) */
    ibal = 1;
    lapackf77_dgebal("B", &n, &a[a_offset], &lda, &ilo, &ihi, &work[ibal], &ierr);

    /* Reduce to upper Hessenberg form
       (Workspace: need 3*N, prefer 2*N+N*NB) */
    itau = ibal + n;
    iwrk = itau + n;
    i__1 = lwork - iwrk + 1;

    //start = get_current_time();
#if defined(VERSION1)
    /*
     * Version 1 - LAPACK
     */
    lapackf77_dgehrd(&n, &ilo, &ihi, &a[a_offset], &lda,
                     &work[itau], &work[iwrk], &i__1, &ierr);
#elif defined(VERSION2)
    /*
     *  Version 2 - LAPACK consistent HRD
     */
    magma_dgehrd2(n, ilo, ihi, &a[a_offset], lda,
                  &work[itau], &work[iwrk], &i__1, &ierr);
#elif defined(VERSION3)
    /*
     * Version 3 - LAPACK consistent MAGMA HRD + matrices T stored,
     */
    magma_dgehrd(n, ilo, ihi, &a[a_offset], lda,
                 &work[itau], &work[iwrk], i__1, dT, 0, queue, &ierr);
#endif
    //end = get_current_time();
    //printf("    Time for dgehrd = %5.2f sec\n", GetTimerValue(start,end)/1000.);

    if (wantvl) {
      /*        Want left eigenvectors
                Copy Householder vectors to VL */
        side_ = "Left";
        lapackf77_dlacpy(MagmaLowerStr, &n, &n,
                         &a[a_offset], &lda, &vl[vl_offset], &ldvl);

        /*
         * Generate orthogonal matrix in VL
         *   (Workspace: need 3*N-1, prefer 2*N+(N-1)*NB)
         */
        i__1 = lwork - iwrk + 1;

        //start = get_current_time();
#if defined(VERSION1) || defined(VERSION2)
        /*
         * Version 1 & 2 - LAPACK
         */
        lapackf77_dorghr(&n, &ilo, &ihi, &vl[vl_offset], &ldvl,
                         &work[itau], &work[iwrk], &i__1, &ierr);
#elif defined(VERSION3)
        /*
         * Version 3 - LAPACK consistent MAGMA HRD + matrices T stored
         */
        magma_dorghr(n, ilo, ihi, &vl[vl_offset], ldvl, &work[itau],
                     dT, 0, nb, queue, &ierr);
#endif
        //end = get_current_time();
        //printf("    Time for dorghr = %5.2f sec\n", GetTimerValue(start,end)/1000.);

        /*
         * Perform QR iteration, accumulating Schur vectors in VL
         *   (Workspace: need N+1, prefer N+HSWORK (see comments) )
         */
        iwrk = itau;
        i__1 = lwork - iwrk + 1;
        lapackf77_dhseqr("S", "V", &n, &ilo, &ihi, &a[a_offset], &lda, WR, WI,
                         &vl[vl_offset], &ldvl, &work[iwrk], &i__1, info);

        if (wantvr) {
          /* Want left and right eigenvectors
             Copy Schur vectors to VR */
            side_ = "Both";
            lapackf77_dlacpy("F", &n, &n, &vl[vl_offset], &ldvl, &vr[vr_offset], &ldvr);
        }

    } else if (wantvr) {
        /*  Want right eigenvectors
            Copy Householder vectors to VR */
        side_ = "Right";
        lapackf77_dlacpy("L", &n, &n, &a[a_offset], &lda, &vr[vr_offset], &ldvr);

        /*
         * Generate orthogonal matrix in VR
         *   (Workspace: need 3*N-1, prefer 2*N+(N-1)*NB)
         */
        i__1 = lwork - iwrk + 1;
        //start = get_current_time();
#if defined(VERSION1) || defined(VERSION2)
        /*
         * Version 1 & 2 - LAPACK
         */
        lapackf77_dorghr(&n, &ilo, &ihi, &vr[vr_offset], &ldvr,
                         &work[itau], &work[iwrk], &i__1, &ierr);
#elif defined(VERSION3)
        /*
         * Version 3 - LAPACK consistent MAGMA HRD + matrices T stored
         */
        magma_dorghr(n, ilo, ihi, &vr[vr_offset], ldvr,
                     &work[itau], dT, 0, nb, queue, &ierr);
#endif
        //end = get_current_time();
        //printf("    Time for dorghr = %5.2f sec\n", GetTimerValue(start,end)/1000.);

        /*
         * Perform QR iteration, accumulating Schur vectors in VR
         *   (Workspace: need N+1, prefer N+HSWORK (see comments) )
         */
        iwrk = itau;
        i__1 = lwork - iwrk + 1;
        lapackf77_dhseqr("S", "V", &n, &ilo, &ihi, &a[a_offset], &lda, WR, WI,
                &vr[vr_offset], &ldvr, &work[iwrk], &i__1, info);
    } else {
        /*
         * Compute eigenvalues only
         *   (Workspace: need N+1, prefer N+HSWORK (see comments) )
         */
        iwrk = itau;
        i__1 = lwork - iwrk + 1;
        lapackf77_dhseqr("E", "N", &n, &ilo, &ihi, &a[a_offset], &lda, WR, WI,
                &vr[vr_offset], &ldvr, &work[iwrk], &i__1, info);
    }

    /* If INFO > 0 from DHSEQR, then quit */
    if (*info > 0) {
        fprintf(stderr, "DHSEQR returned with info = %d\n", (int) *info);
        goto L50;
    }

    if (wantvl || wantvr) {
        /*
         * Compute left and/or right eigenvectors
         *   (Workspace: need 4*N)
         */
        lapackf77_dtrevc(side_, "B", select, &n, &a[a_offset], &lda, &vl[vl_offset], &ldvl,
                &vr[vr_offset], &ldvr, &n, &nout, &work[iwrk], &ierr);
    }

    if (wantvl) {
        /*
         * Undo balancing of left eigenvectors
         *   (Workspace: need N)
         */
        lapackf77_dgebak("B", "L", &n, &ilo, &ihi,
                         &work[ibal], &n, &vl[vl_offset], &ldvl, &ierr);

        /* Normalize left eigenvectors and make largest component real */
        for (i__ = 1; i__ <= n; ++i__) {
            if ( WI[i__-1] == 0.) {
                scl = magma_cblas_dnrm2(n, &vl[i__ * vl_dim1 + 1], 1);
                scl = 1. / scl;
                blasf77_dscal( &n, &scl, &vl[i__ * vl_dim1 + 1], &ione );
            } else if (WI[i__-1] > 0.) {
                d__1 = magma_cblas_dnrm2(n, &vl[ i__      * vl_dim1 + 1], 1);
                d__2 = magma_cblas_dnrm2(n, &vl[(i__ + 1) * vl_dim1 + 1], 1);
                scl = lapackf77_dlapy2(&d__1, &d__2);
                scl = 1. / scl;
                blasf77_dscal( &n, &scl, &vl[ i__      * vl_dim1 + 1], &ione );
                blasf77_dscal( &n, &scl, &vl[(i__ + 1) * vl_dim1 + 1], &ione );
                i__2 = n;
                for (k = 1; k <= i__2; ++k) {
                    /* Computing 2nd power */
                    d__1 = vl[k + i__ * vl_dim1];
                    /* Computing 2nd power */
                    d__2 = vl[k + (i__ + 1) * vl_dim1];
                    work[iwrk + k - 1] = d__1 * d__1 + d__2 * d__2;
                }
                /* Comment:
                   Fortran BLAS does not have to add 1
                   C       BLAS must add one to cblas_idamax */
                k = blasf77_idamax( &n, &work[iwrk], &ione );  //+1;
                lapackf77_dlartg(&vl[k +  i__      * vl_dim1],
                                 &vl[k + (i__ + 1) * vl_dim1], &cs, &sn, &r__);
                blasf77_drot( &n, &vl[ i__      * vl_dim1 + 1], &ione,
                                  &vl[(i__ + 1) * vl_dim1 + 1], &ione, &cs, &sn );
                vl[k + (i__ + 1) * vl_dim1] = 0.;
            }
        }
    }

    if (wantvr) {
        /*
         * Undo balancing of right eigenvectors
         *   (Workspace: need N)
         */
        lapackf77_dgebak("B", "R", &n, &ilo, &ihi, &work[ibal], &n,
                         &vr[vr_offset], &ldvr, &ierr);

        /* Normalize right eigenvectors and make largest component real */
        for (i__ = 1; i__ <= n; ++i__) {
            if (WI[i__-1] == 0.) {
                scl = 1. / magma_cblas_dnrm2(n, &vr[i__ * vr_dim1 + 1], 1);
                blasf77_dscal( &n, &scl, &vr[i__ * vr_dim1 + 1], &ione );
            } else if (WI[i__-1] > 0.) {
                d__1 = magma_cblas_dnrm2(n, &vr[ i__      * vr_dim1 + 1], 1);
                d__2 = magma_cblas_dnrm2(n, &vr[(i__ + 1) * vr_dim1 + 1], 1);
                scl = lapackf77_dlapy2(&d__1, &d__2);
                scl = 1. / scl;
                blasf77_dscal( &n, &scl, &vr[ i__      * vr_dim1 + 1], &ione );
                blasf77_dscal( &n, &scl, &vr[(i__ + 1) * vr_dim1 + 1], &ione );
                i__2 = n;
                for (k = 1; k <= i__2; ++k) {
                    /* Computing 2nd power */
                    d__1 = vr[k + i__ * vr_dim1];
                    /* Computing 2nd power */
                    d__2 = vr[k + (i__ + 1) * vr_dim1];
                    work[iwrk + k - 1] = d__1 * d__1 + d__2 * d__2;
                }
                /* Comment:
                   Fortran BLAS does not have to add 1
                   C       BLAS must add one to cblas_idamax */
                k = blasf77_idamax( &n, &work[iwrk], &ione );  //+1;
                lapackf77_dlartg(&vr[k + i__ * vr_dim1], &vr[k + (i__ + 1) * vr_dim1],
                        &cs, &sn, &r__);
                blasf77_drot( &n, &vr[ i__      * vr_dim1 + 1], &ione,
                                  &vr[(i__ + 1) * vr_dim1 + 1], &ione, &cs, &sn );
                vr[k + (i__ + 1) * vr_dim1] = 0.;
            }
        }
    }

    /*  Undo scaling if necessary */
L50:
    if (scalea) {
        i__1 = n - *info;
        /* Computing MAX */
        i__3 = n - *info;
        i__2 = max(i__3,1);
        lapackf77_dlascl("G", &c__0, &c__0, &cscale, &anrm, &i__1, &c__1,
                         WR + (*info), &i__2, &ierr);
        i__1 = n - *info;
        /* Computing MAX */
        i__3 = n - *info;
        i__2 = max(i__3,1);
        lapackf77_dlascl("G", &c__0, &c__0, &cscale, &anrm, &i__1, &c__1,
                WI + (*info), &i__2, &ierr);
        if (*info > 0) {
            i__1 = ilo - 1;
            lapackf77_dlascl("G", &c__0, &c__0, &cscale, &anrm, &i__1, &c__1,
                    WR, &n, &ierr);
            i__1 = ilo - 1;
            lapackf77_dlascl("G", &c__0, &c__0, &cscale, &anrm, &i__1, &c__1,
                    WI, &n, &ierr);
        }
    }

#if defined(VERSION3)
    magma_free( dT );
#endif
    return *info;
} /* magma_dgeev */
Beispiel #25
0
extern "C" magma_int_t
magma_zheevx_gpu(char jobz, char range, char uplo, magma_int_t n,
                 magmaDoubleComplex *da, magma_int_t ldda, double vl, double vu,
                 magma_int_t il, magma_int_t iu, double abstol, magma_int_t *m,
                 double *w, magmaDoubleComplex *dz, magma_int_t lddz,
                 magmaDoubleComplex *wa, magma_int_t ldwa,
                 magmaDoubleComplex *wz, magma_int_t ldwz,
                 magmaDoubleComplex *work, magma_int_t lwork,
                 double *rwork, magma_int_t *iwork, magma_int_t *ifail, magma_int_t *info)
{
/*  -- MAGMA (version 1.4.1) --
       Univ. of Tennessee, Knoxville
       Univ. of California, Berkeley
       Univ. of Colorado, Denver
       December 2013

    Purpose
    =======
    ZHEEVX computes selected eigenvalues and, optionally, eigenvectors
    of a complex Hermitian matrix A.  Eigenvalues and eigenvectors can
    be selected by specifying either a range of values or a range of
    indices for the desired eigenvalues.

    Arguments
    =========
    JOBZ    (input) CHARACTER*1
            = 'N':  Compute eigenvalues only;
            = 'V':  Compute eigenvalues and eigenvectors.

    RANGE   (input) CHARACTER*1
            = 'A': all eigenvalues will be found.
            = 'V': all eigenvalues in the half-open interval (VL,VU]
                   will be found.
            = 'I': the IL-th through IU-th eigenvalues will be found.

    UPLO    (input) CHARACTER*1
            = 'U':  Upper triangle of A is stored;
            = 'L':  Lower triangle of A is stored.

    N       (input) INTEGER
            The order of the matrix A.  N >= 0.

    DA      (device input/output) COMPLEX_16 array, dimension (LDDA, N)
            On entry, the Hermitian matrix A.  If UPLO = 'U', the
            leading N-by-N upper triangular part of A contains the
            upper triangular part of the matrix A.  If UPLO = 'L',
            the leading N-by-N lower triangular part of A contains
            the lower triangular part of the matrix A.
            On exit, the lower triangle (if UPLO='L') or the upper
            triangle (if UPLO='U') of A, including the diagonal, is
            destroyed.

    LDDA    (input) INTEGER
            The leading dimension of the array DA.  LDDA >= max(1,N).

    VL      (input) DOUBLE PRECISION
    VU      (input) DOUBLE PRECISION
            If RANGE='V', the lower and upper bounds of the interval to
            be searched for eigenvalues. VL < VU.
            Not referenced if RANGE = 'A' or 'I'.

    IL      (input) INTEGER
    IU      (input) INTEGER
            If RANGE='I', the indices (in ascending order) of the
            smallest and largest eigenvalues to be returned.
            1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
            Not referenced if RANGE = 'A' or 'V'.

    ABSTOL  (input) DOUBLE PRECISION
            The absolute error tolerance for the eigenvalues.
            An approximate eigenvalue is accepted as converged
            when it is determined to lie in an interval [a,b]
            of width less than or equal to

                    ABSTOL + EPS *   max( |a|,|b| ) ,

            where EPS is the machine precision.  If ABSTOL is less than
            or equal to zero, then  EPS*|T|  will be used in its place,
            where |T| is the 1-norm of the tridiagonal matrix obtained
            by reducing A to tridiagonal form.

            Eigenvalues will be computed most accurately when ABSTOL is
            set to twice the underflow threshold 2*DLAMCH('S'), not zero.
            If this routine returns with INFO>0, indicating that some
            eigenvectors did not converge, try setting ABSTOL to
            2*DLAMCH('S').

            See "Computing Small Singular Values of Bidiagonal Matrices
            with Guaranteed High Relative Accuracy," by Demmel and
            Kahan, LAPACK Working Note #3.

    M       (output) INTEGER
            The total number of eigenvalues found.  0 <= M <= N.
            If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.

    W       (output) DOUBLE PRECISION array, dimension (N)
            On normal exit, the first M elements contain the selected
            eigenvalues in ascending order.

    DZ      (device output) COMPLEX_16 array, dimension (LDDZ, max(1,M))
            If JOBZ = 'V', then if INFO = 0, the first M columns of Z
            contain the orthonormal eigenvectors of the matrix A
            corresponding to the selected eigenvalues, with the i-th
            column of Z holding the eigenvector associated with W(i).
            If an eigenvector fails to converge, then that column of Z
            contains the latest approximation to the eigenvector, and the
            index of the eigenvector is returned in IFAIL.
            If JOBZ = 'N', then Z is not referenced.
            Note: the user must ensure that at least max(1,M) columns are
            supplied in the array Z; if RANGE = 'V', the exact value of M
            is not known in advance and an upper bound must be used.
*********   (workspace) If FAST_HEMV is defined DZ should be (LDDZ, max(1,N)) in both cases.

    LDDZ    (input) INTEGER
            The leading dimension of the array DZ.  LDDZ >= 1, and if
            JOBZ = 'V', LDDZ >= max(1,N).

    WA      (workspace) COMPLEX_16 array, dimension (LDWA, N)

    LDWA    (input) INTEGER
            The leading dimension of the array WA.  LDWA >= max(1,N).

    WZ      (workspace) COMPLEX_16 array, dimension (LDWZ, max(1,M))

    LDWZ    (input) INTEGER
            The leading dimension of the array DZ.  LDWZ >= 1, and if
            JOBZ = 'V', LDWZ >= max(1,N).

    WORK    (workspace/output) COMPLEX_16 array, dimension (LWORK)
            On exit, if INFO = 0, WORK(1) returns the optimal LWORK.

    LWORK   (input) INTEGER
            The length of the array WORK.  LWORK >= (NB+1)*N,
            where NB is the max of the blocksize for ZHETRD.

            If LWORK = -1, then a workspace query is assumed; the routine
            only calculates the optimal size of the WORK array, returns
            this value as the first entry of the WORK array, and no error
            message related to LWORK is issued by XERBLA.

    RWORK   (workspace) DOUBLE PRECISION array, dimension (7*N)

    IWORK   (workspace) INTEGER array, dimension (5*N)

    IFAIL   (output) INTEGER array, dimension (N)
            If JOBZ = 'V', then if INFO = 0, the first M elements of
            IFAIL are zero.  If INFO > 0, then IFAIL contains the
            indices of the eigenvectors that failed to converge.
            If JOBZ = 'N', then IFAIL is not referenced.

    INFO    (output) INTEGER
            = 0:  successful exit
            < 0:  if INFO = -i, the i-th argument had an illegal value
            > 0:  if INFO = i, then i eigenvectors failed to converge.
                  Their indices are stored in array IFAIL.
    =====================================================================     */
    
    char uplo_[2] = {uplo, 0};
    char jobz_[2] = {jobz, 0};
    char range_[2] = {range, 0};
    
    magma_int_t ione = 1;
    
    char order[1];
    magma_int_t indd, inde;
    magma_int_t imax;
    magma_int_t lopt, itmp1, indee;
    magma_int_t lower, wantz;
    magma_int_t i, j, jj, i__1;
    magma_int_t alleig, valeig, indeig;
    magma_int_t iscale, indibl;
    magma_int_t indiwk, indisp, indtau;
    magma_int_t indrwk, indwrk;
    magma_int_t llwork, nsplit;
    magma_int_t lquery;
    magma_int_t iinfo;
    double safmin;
    double bignum;
    double smlnum;
    double eps, tmp1;
    double anrm;
    double sigma, d__1;
    double rmin, rmax;
    
    double *dwork;
    
    /* Function Body */
    lower = lapackf77_lsame(uplo_, MagmaLowerStr);
    wantz = lapackf77_lsame(jobz_, MagmaVecStr);
    alleig = lapackf77_lsame(range_, "A");
    valeig = lapackf77_lsame(range_, "V");
    indeig = lapackf77_lsame(range_, "I");
    lquery = lwork == -1;
    
    *info = 0;
    if (! (wantz || lapackf77_lsame(jobz_, MagmaNoVecStr))) {
        *info = -1;
    } else if (! (alleig || valeig || indeig)) {
        *info = -2;
    } else if (! (lower || lapackf77_lsame(uplo_, MagmaUpperStr))) {
        *info = -3;
    } else if (n < 0) {
        *info = -4;
    } else if (ldda < max(1,n)) {
        *info = -6;
    } else if (lddz < 1 || (wantz && lddz < n)) {
        *info = -15;
    } else if (ldwa < max(1,n)) {
        *info = -17;
    } else if (ldwz < 1 || (wantz && ldwz < n)) {
        *info = -19;
    } else {
        if (valeig) {
            if (n > 0 && vu <= vl) {
                *info = -8;
            }
        } else if (indeig) {
            if (il < 1 || il > max(1,n)) {
                *info = -9;
            } else if (iu < min(n,il) || iu > n) {
                *info = -10;
            }
        }
    }
    
    magma_int_t nb = magma_get_zhetrd_nb(n);
    
    lopt = n * (nb + 1);
    
    work[0] = MAGMA_Z_MAKE( lopt, 0 );
    
    if (lwork < lopt && ! lquery) {
        *info = -21;
    }
    
    if (*info != 0) {
        magma_xerbla( __func__, -(*info));
        return *info;
    } else if (lquery) {
        return *info;
    }
    
    *m = 0;
    /* Check if matrix is very small then just call LAPACK on CPU, no need for GPU */
    if (n <= 128) {
        #ifdef ENABLE_DEBUG
        printf("--------------------------------------------------------------\n");
        printf("  warning matrix too small N=%d NB=%d, calling lapack on CPU  \n", (int) n, (int) nb);
        printf("--------------------------------------------------------------\n");
        #endif
        magmaDoubleComplex *a = (magmaDoubleComplex *) malloc( n * n * sizeof(magmaDoubleComplex) );
        magma_zgetmatrix(n, n, da, ldda, a, n);
        lapackf77_zheevx(jobz_, range_, uplo_,
                         &n, a, &n, &vl, &vu, &il, &iu, &abstol, m,
                         w, wz, &ldwz, work, &lwork,
                         rwork, iwork, ifail, info);
        magma_zsetmatrix( n,  n,  a,    n, da, ldda);
        magma_zsetmatrix( n, *m, wz, ldwz, dz, lddz);
        free(a);
        return *info;
    }

    if (MAGMA_SUCCESS != magma_dmalloc( &dwork, n )) {
        fprintf (stderr, "!!!! device memory allocation error (magma_zheevx_gpu)\n");
        *info = MAGMA_ERR_DEVICE_ALLOC;
        return *info;
    }
    
    --w;
    --work;
    --rwork;
    --iwork;
    --ifail;
    
    /* Get machine constants. */
    safmin = lapackf77_dlamch("Safe minimum");
    eps = lapackf77_dlamch("Precision");
    smlnum = safmin / eps;
    bignum = 1. / smlnum;
    rmin = magma_dsqrt(smlnum);
    rmax = magma_dsqrt(bignum);
    
    /* Scale matrix to allowable range, if necessary. */
    anrm = magmablas_zlanhe('M', uplo, n, da, ldda, dwork);
    iscale = 0;
    sigma  = 1;
    if (anrm > 0. && anrm < rmin) {
        iscale = 1;
        sigma = rmin / anrm;
    } else if (anrm > rmax) {
        iscale = 1;
        sigma = rmax / anrm;
    }
    if (iscale == 1) {
        d__1 = 1.;
        magmablas_zlascl(uplo, 0, 0, 1., sigma, n, n, da,
                         ldda, info);
        
        if (abstol > 0.) {
            abstol *= sigma;
        }
        if (valeig) {
            vl *= sigma;
            vu *= sigma;
        }
    }
    
    /* Call ZHETRD to reduce Hermitian matrix to tridiagonal form. */
    indd = 1;
    inde = indd + n;
    indrwk = inde + n;
    indtau = 1;
    indwrk = indtau + n;
    llwork = lwork - indwrk + 1;
    
#ifdef FAST_HEMV
    magma_zhetrd2_gpu(uplo, n, da, ldda, &rwork[indd], &rwork[inde],
                      &work[indtau], wa, ldwa, &work[indwrk], llwork, dz, lddz*n, &iinfo);
#else
    magma_zhetrd_gpu (uplo, n, da, ldda, &rwork[indd], &rwork[inde],
                      &work[indtau], wa, ldwa, &work[indwrk], llwork, &iinfo);
#endif

    lopt = n + (magma_int_t)MAGMA_Z_REAL(work[indwrk]);
    
    /* If all eigenvalues are desired and ABSTOL is less than or equal to
       zero, then call DSTERF or ZUNGTR and ZSTEQR.  If this fails for
       some eigenvalue, then try DSTEBZ. */
    if ((alleig || (indeig && il == 1 && iu == n)) && abstol <= 0.) {
        blasf77_dcopy(&n, &rwork[indd], &ione, &w[1], &ione);
        indee = indrwk + 2*n;
        if (! wantz) {
            i__1 = n - 1;
            blasf77_dcopy(&i__1, &rwork[inde], &ione, &rwork[indee], &ione);
            lapackf77_dsterf(&n, &w[1], &rwork[indee], info);
        }
        else {
            lapackf77_zlacpy("A", &n, &n, wa, &ldwa, wz, &ldwz);
            lapackf77_zungtr(uplo_, &n, wz, &ldwz, &work[indtau], &work[indwrk], &llwork, &iinfo);
            i__1 = n - 1;
            blasf77_dcopy(&i__1, &rwork[inde], &ione, &rwork[indee], &ione);
            lapackf77_zsteqr(jobz_, &n, &w[1], &rwork[indee], wz, &ldwz, &rwork[indrwk], info);
            if (*info == 0) {
                for (i = 1; i <= n; ++i) {
                    ifail[i] = 0;
                }
                magma_zsetmatrix( n, n, wz, ldwz, dz, lddz );
            }
        }
        if (*info == 0) {
            *m = n;
        }
    }
    
    /* Otherwise, call DSTEBZ and, if eigenvectors are desired, ZSTEIN. */
    if (*m == 0) {
        *info = 0;
        if (wantz) {
            *(unsigned char *)order = 'B';
        } else {
            *(unsigned char *)order = 'E';
        }
        indibl = 1;
        indisp = indibl + n;
        indiwk = indisp + n;

        lapackf77_dstebz(range_, order, &n, &vl, &vu, &il, &iu, &abstol, &rwork[indd], &rwork[inde], m,
                         &nsplit, &w[1], &iwork[indibl], &iwork[indisp], &rwork[indrwk], &iwork[indiwk], info);
        
        if (wantz) {
            
            lapackf77_zstein(&n, &rwork[indd], &rwork[inde], m, &w[1], &iwork[indibl], &iwork[indisp],
                             wz, &ldwz, &rwork[indrwk], &iwork[indiwk], &ifail[1], info);
            
            magma_zsetmatrix( n, *m, wz, ldwz, dz, lddz );
            
            /* Apply unitary matrix used in reduction to tridiagonal
               form to eigenvectors returned by ZSTEIN. */
            magma_zunmtr_gpu(MagmaLeft, uplo, MagmaNoTrans, n, *m, da, ldda, &work[indtau],
                             dz, lddz, wa, ldwa, &iinfo);
        }
    }
    /* If matrix was scaled, then rescale eigenvalues appropriately. */
    if (iscale == 1) {
        if (*info == 0) {
            imax = *m;
        } else {
            imax = *info - 1;
        }
        d__1 = 1. / sigma;
        blasf77_dscal(&imax, &d__1, &w[1], &ione);
    }
    
    /* If eigenvalues are not in order, then sort them, along with
       eigenvectors. */
    if (wantz) {
        for (j = 1; j <= *m-1; ++j) {
            i = 0;
            tmp1 = w[j];
            for (jj = j + 1; jj <= *m; ++jj) {
                if (w[jj] < tmp1) {
                    i = jj;
                    tmp1 = w[jj];
                }
            }
            
            if (i != 0) {
                itmp1 = iwork[indibl + i - 1];
                w[i] = w[j];
                iwork[indibl + i - 1] = iwork[indibl + j - 1];
                w[j] = tmp1;
                iwork[indibl + j - 1] = itmp1;
                magma_zswap(n, dz + (i-1)*lddz, ione, dz + (j-1)*lddz, ione);
                if (*info != 0) {
                    itmp1 = ifail[i];
                    ifail[i] = ifail[j];
                    ifail[j] = itmp1;
                }
            }
        }
    }
    
    /* Set WORK(1) to optimal complex workspace size. */
    work[1] = MAGMA_Z_MAKE( lopt, 0 );
    
    return *info;
    
} /* magma_zheevx_gpu */
Beispiel #26
0
/***************************************************************************//**
    Purpose
    -------
    DSYEVD computes all eigenvalues and, optionally, eigenvectors of a
    real symmetric matrix A.  If eigenvectors are desired, it uses a
    divide and conquer algorithm.

    The divide and conquer algorithm makes very mild assumptions about
    floating point arithmetic. It will work on machines with a guard
    digit in add/subtract, or on those binary machines without guard
    digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
    Cray-2. It could conceivably fail on hexadecimal or decimal machines
    without guard digits, but we know of none.

    Arguments
    ---------
    @param[in]
    ngpu    INTEGER
            Number of GPUs to use. ngpu > 0.

    @param[in]
    jobz    magma_vec_t
      -     = MagmaNoVec:  Compute eigenvalues only;
      -     = MagmaVec:    Compute eigenvalues and eigenvectors.

    @param[in]
    range   magma_range_t
      -     = MagmaRangeAll: all eigenvalues will be found.
      -     = MagmaRangeV:   all eigenvalues in the half-open interval (VL,VU]
                             will be found.
      -     = MagmaRangeI:   the IL-th through IU-th eigenvalues will be found.

    @param[in]
    uplo    magma_uplo_t
      -     = MagmaUpper:  Upper triangle of A is stored;
      -     = MagmaLower:  Lower triangle of A is stored.

    @param[in]
    n       INTEGER
            The order of the matrix A.  N >= 0.

    @param[in,out]
    A       DOUBLE PRECISION array, dimension (LDA, N)
            On entry, the symmetric matrix A.  If UPLO = MagmaUpper, the
            leading N-by-N upper triangular part of A contains the
            upper triangular part of the matrix A.  If UPLO = MagmaLower,
            the leading N-by-N lower triangular part of A contains
            the lower triangular part of the matrix A.
            On exit, if JOBZ = MagmaVec, then if INFO = 0, A contains the
            orthonormal eigenvectors of the matrix A.
            If JOBZ = MagmaNoVec, then on exit the lower triangle (if UPLO=MagmaLower)
            or the upper triangle (if UPLO=MagmaUpper) of A, including the
            diagonal, is destroyed.

    @param[in]
    lda     INTEGER
            The leading dimension of the array A.  LDA >= max(1,N).

    @param[in]
    vl      DOUBLE PRECISION
    @param[in]
    vu      DOUBLE PRECISION
            If RANGE=MagmaRangeV, the lower and upper bounds of the interval to
            be searched for eigenvalues. VL < VU.
            Not referenced if RANGE = MagmaRangeAll or MagmaRangeI.

    @param[in]
    il      INTEGER
    @param[in]
    iu      INTEGER
            If RANGE=MagmaRangeI, the indices (in ascending order) of the
            smallest and largest eigenvalues to be returned.
            1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
            Not referenced if RANGE = MagmaRangeAll or MagmaRangeV.

    @param[out]
    m       INTEGER
            The total number of eigenvalues found.  0 <= M <= N.
            If RANGE = MagmaRangeAll, M = N, and if RANGE = MagmaRangeI, M = IU-IL+1.

    @param[out]
    w       DOUBLE PRECISION array, dimension (N)
            If INFO = 0, the eigenvalues in ascending order.

    @param[out]
    work    (workspace) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
            On exit, if INFO = 0, WORK[0] returns the optimal LWORK.

    @param[in]
    lwork   INTEGER
            The length of the array WORK.
     -      If N <= 1,                      LWORK >= 1.
     -      If JOBZ = MagmaNoVec and N > 1, LWORK >= 2*N + N*NB.
     -      If JOBZ = MagmaVec   and N > 1, LWORK >= max( 2*N + N*NB, 1 + 6*N + 2*N**2 ).
            NB can be obtained through magma_get_dsytrd_nb(N).
    \n
            If LWORK = -1, then a workspace query is assumed; the routine
            only calculates the optimal sizes of the WORK, RWORK and
            IWORK arrays, returns these values as the first entries of
            the WORK, RWORK and IWORK arrays, and no error message
            related to LWORK or LRWORK or LIWORK is issued by XERBLA.

    @param[out]
    iwork   (workspace) INTEGER array, dimension (MAX(1,LIWORK))
            On exit, if INFO = 0, IWORK[0] returns the optimal LIWORK.

    @param[in]
    liwork  INTEGER
            The dimension of the array IWORK.
     -      If N <= 1,                      LIWORK >= 1.
     -      If JOBZ = MagmaNoVec and N > 1, LIWORK >= 1.
     -      If JOBZ = MagmaVec   and N > 1, LIWORK >= 3 + 5*N.
    \n
            If LIWORK = -1, then a workspace query is assumed; the
            routine only calculates the optimal sizes of the WORK, RWORK
            and IWORK arrays, returns these values as the first entries
            of the WORK, RWORK and IWORK arrays, and no error message
            related to LWORK or LRWORK or LIWORK is issued by XERBLA.

    @param[out]
    info    INTEGER
      -     = 0:  successful exit
      -     < 0:  if INFO = -i, the i-th argument had an illegal value
      -     > 0:  if INFO = i and JOBZ = MagmaNoVec, then the algorithm failed
                  to converge; i off-diagonal elements of an intermediate
                  tridiagonal form did not converge to zero;
                  if INFO = i and JOBZ = MagmaVec, then the algorithm failed
                  to compute an eigenvalue while working on the submatrix
                  lying in rows and columns INFO/(N+1) through
                  mod(INFO,N+1).

    Further Details
    ---------------
    Based on contributions by
       Jeff Rutter, Computer Science Division, University of California
       at Berkeley, USA

    Modified description of INFO. Sven, 16 Feb 05.

    @ingroup magma_heevdx
*******************************************************************************/
extern "C" magma_int_t
magma_dsyevdx_m(
    magma_int_t ngpu,
    magma_vec_t jobz, magma_range_t range, magma_uplo_t uplo,
    magma_int_t n,
    double *A, magma_int_t lda,
    double vl, double vu, magma_int_t il, magma_int_t iu,
    magma_int_t *m, double *w,
    double *work, magma_int_t lwork,
    #ifdef COMPLEX
    double *rwork, magma_int_t lrwork,
    #endif
    magma_int_t *iwork, magma_int_t liwork,
    magma_int_t *info)
{
    const char* uplo_  = lapack_uplo_const( uplo  );
    const char* jobz_  = lapack_vec_const( jobz  );
    magma_int_t ione = 1;
    magma_int_t izero = 0;
    double d_one = 1.;
    
    double d__1;
    
    double eps;
    magma_int_t inde;
    double anrm;
    double rmin, rmax;
    double sigma;
    magma_int_t iinfo, lwmin;
    magma_int_t lower;
    magma_int_t wantz;
    magma_int_t indwk2, llwrk2;
    magma_int_t iscale;
    double safmin;
    double bignum;
    magma_int_t indtau;
    magma_int_t indwrk, liwmin;
    magma_int_t llwork;
    double smlnum;
    magma_int_t lquery;
    magma_int_t alleig, valeig, indeig;
    
    wantz = (jobz == MagmaVec);
    lower = (uplo == MagmaLower);
    
    alleig = (range == MagmaRangeAll);
    valeig = (range == MagmaRangeV);
    indeig = (range == MagmaRangeI);
    
    lquery = (lwork == -1 || liwork == -1);

    *info = 0;
    if (! (wantz || (jobz == MagmaNoVec))) {
        *info = -1;
    } else if (! (alleig || valeig || indeig)) {
        *info = -2;
    } else if (! (lower || (uplo == MagmaUpper))) {
        *info = -3;
    } else if (n < 0) {
        *info = -4;
    } else if (lda < max(1,n)) {
        *info = -6;
    } else {
        if (valeig) {
            if (n > 0 && vu <= vl) {
                *info = -8;
            }
        } else if (indeig) {
            if (il < 1 || il > max(1,n)) {
                *info = -9;
            } else if (iu < min(n,il) || iu > n) {
                *info = -10;
            }
        }
    }
    
    magma_int_t nb = magma_get_dsytrd_nb( n );
    if ( n <= 1 ) {
        lwmin  = 1;
        liwmin = 1;
    }
    else if ( wantz ) {
        lwmin  = max( 2*n + n*nb, 1 + 6*n + 2*n*n );
        liwmin = 3 + 5*n;
    }
    else {
        lwmin  = 2*n + n*nb;
        liwmin = 1;
    }
    
    work[0]  = magma_dmake_lwork( lwmin );
    iwork[0] = liwmin;
    
    if ((lwork < lwmin) && !lquery) {
        *info = -14;
    } else if ((liwork < liwmin) && ! lquery) {
        *info = -16;
    }
    
    if (*info != 0) {
        magma_xerbla( __func__, -(*info) );
        return *info;
    }
    else if (lquery) {
        return *info;
    }
    
    /* Quick return if possible */
    if (n == 0) {
        return *info;
    }
    
    if (n == 1) {
        w[0] = A[0];
        if (wantz) {
            A[0] = 1.;
        }
        return *info;
    }
    /* Check if matrix is very small then just call LAPACK on CPU, no need for GPU */
    if (n <= 128) {
        #ifdef ENABLE_DEBUG
        printf("--------------------------------------------------------------\n");
        printf("  warning matrix too small N=%lld NB=%lld, calling lapack on CPU\n", (long long) n, (long long) nb );
        printf("--------------------------------------------------------------\n");
        #endif
        lapackf77_dsyevd(jobz_, uplo_,
                         &n, A, &lda,
                         w, work, &lwork,
                         iwork, &liwork, info);
        return *info;
    }

    /* Get machine constants. */
    safmin = lapackf77_dlamch("Safe minimum");
    eps = lapackf77_dlamch("Precision");
    smlnum = safmin / eps;
    bignum = 1. / smlnum;
    rmin = magma_dsqrt(smlnum);
    rmax = magma_dsqrt(bignum);

    /* Scale matrix to allowable range, if necessary. */
    anrm = lapackf77_dlansy("M", uplo_, &n, A, &lda, work);
    iscale = 0;
    if (anrm > 0. && anrm < rmin) {
        iscale = 1;
        sigma = rmin / anrm;
    } else if (anrm > rmax) {
        iscale = 1;
        sigma = rmax / anrm;
    }
    if (iscale == 1) {
        lapackf77_dlascl(uplo_, &izero, &izero, &d_one, &sigma, &n, &n, A,
                         &lda, info);
    }

    /* Call DSYTRD to reduce symmetric matrix to tridiagonal form. */
    // dsytrd work: e (n) + tau (n) + llwork (n*nb)  ==>  2n + n*nb
    // dstedx work: e (n) + tau (n) + z (n*n) + llwrk2 (1 + 4*n + n^2)  ==>  1 + 6n + 2n^2
    inde   = 0;
    indtau = inde   + n;
    indwrk = indtau + n;
    indwk2 = indwrk + n*n;
    llwork = lwork - indwrk;
    llwrk2 = lwork - indwk2;

    magma_timer_t time=0;
    timer_start( time );

    magma_dsytrd_mgpu(ngpu, 1, uplo, n, A, lda, w, &work[inde],
                      &work[indtau], &work[indwrk], llwork, &iinfo);

    timer_stop( time );
    timer_printf( "time dsytrd = %6.2f\n", time );

    /* For eigenvalues only, call DSTERF.  For eigenvectors, first call
       DSTEDC to generate the eigenvector matrix, WORK(INDWRK), of the
       tridiagonal matrix, then call DORMTR to multiply it to the Householder
       transformations represented as Householder vectors in A. */
    if (! wantz) {
        lapackf77_dsterf(&n, w, &work[inde], info);
        magma_dmove_eig(range, n, w, &il, &iu, vl, vu, m);
    }
    else {
        timer_start( time );

        magma_dstedx_m(ngpu, range, n, vl, vu, il, iu, w, &work[inde],
                       &work[indwrk], n, &work[indwk2],
                       llwrk2, iwork, liwork, info);

        timer_stop( time );
        timer_printf( "time dstedc = %6.2f\n", time );
        timer_start( time );

        magma_dmove_eig(range, n, w, &il, &iu, vl, vu, m);

        magma_dormtr_m(ngpu, MagmaLeft, uplo, MagmaNoTrans, n, *m, A, lda, &work[indtau],
                       &work[indwrk + n * (il-1)], n, &work[indwk2], llwrk2, &iinfo);

        lapackf77_dlacpy("A", &n, m, &work[indwrk + n * (il-1)], &n, A, &lda);

        timer_stop( time );
        timer_printf( "time dormtr + copy = %6.2f\n", time );
    }

    /* If matrix was scaled, then rescale eigenvalues appropriately. */
    if (iscale == 1) {
        d__1 = 1. / sigma;
        blasf77_dscal(&n, &d__1, w, &ione);
    }
    
    work[0]  = magma_dmake_lwork( lwmin );
    iwork[0] = liwmin;

    return *info;
} /* magma_dsyevd_m */