Beispiel #1
0
void bli_her2_int( conj_t  conjh,
                   obj_t*  alpha,
                   obj_t*  alpha_conj,
                   obj_t*  x,
                   obj_t*  y,
                   obj_t*  c,
                   cntx_t* cntx,
                   her2_t* cntl )
{
	varnum_t  n;
	impl_t    i;
	FUNCPTR_T f;
	obj_t     alpha_local;
	obj_t     alpha_conj_local;
	obj_t     x_local;
	obj_t     y_local;
	obj_t     c_local;

	// Check parameters.
	if ( bli_error_checking_is_enabled() )
	{
		if ( bli_is_conj( conjh ) ) bli_her2_check( alpha, x, y, c );
		else                        bli_syr2_check( alpha, x, y, c );
	}

	// If C, x, or y has a zero dimension, return early.
	if ( bli_obj_has_zero_dim( c ) ) return;
	if ( bli_obj_has_zero_dim( x ) ) return;
	if ( bli_obj_has_zero_dim( y ) ) return;

	// Alias the operands in case we need to apply conjugations.
	bli_obj_alias_to( x, &x_local );
	bli_obj_alias_to( y, &y_local );
	bli_obj_alias_to( c, &c_local );

	// If matrix C is marked for conjugation, we interpret this as a request
	// to apply a conjugation to the other operands.
	if ( bli_obj_has_conj( &c_local ) )
	{
		bli_obj_toggle_conj( &c_local );

		bli_obj_toggle_conj( &x_local );
		bli_obj_toggle_conj( &y_local );

		bli_obj_scalar_init_detached_copy_of( bli_obj_dt( alpha ),
		                                      BLIS_CONJUGATE,
		                                      alpha,
		                                      &alpha_local );
		bli_obj_scalar_init_detached_copy_of( bli_obj_dt( alpha_conj ),
		                                      BLIS_CONJUGATE,
		                                      alpha_conj,
		                                      &alpha_conj_local );
	}
	else
	{
		bli_obj_alias_to( *alpha, alpha_local );
		bli_obj_alias_to( *alpha_conj, alpha_conj_local );
	}


	// Extract the variant number and implementation type.
	n = bli_cntl_var_num( cntl );
	i = bli_cntl_impl_type( cntl );

	// Index into the variant array to extract the correct function pointer.
	f = vars[n][i];

	// Invoke the variant.
	f( conjh,
	   &alpha_local,
	   &alpha_conj_local,
	   &x_local,
	   &y_local,
	   &c_local,
	   cntx,
	   cntl );
}
Beispiel #2
0
void bli_gemm_front( obj_t*  alpha,
                     obj_t*  a,
                     obj_t*  b,
                     obj_t*  beta,
                     obj_t*  c,
                     gemm_t* cntl )
{
	obj_t   a_local;
	obj_t   b_local;
	obj_t   c_local;

	// Check parameters.
	if ( bli_error_checking_is_enabled() )
		bli_gemm_check( alpha, a, b, beta, c );

	// If alpha is zero, scale by beta and return.
	if ( bli_obj_equals( alpha, &BLIS_ZERO ) )
	{
		bli_scalm( beta, c );
		return;
	}

	// Alias A, B, and C in case we need to apply transformations.
	bli_obj_alias_to( *a, a_local );
	bli_obj_alias_to( *b, b_local );
	bli_obj_alias_to( *c, c_local );

	// An optimization: If C is stored by rows and the micro-kernel prefers
	// contiguous columns, or if C is stored by columns and the micro-kernel
	// prefers contiguous rows, transpose the entire operation to allow the
	// micro-kernel to access elements of C in its preferred manner.
	if (
	     ( bli_obj_is_row_stored( c_local ) &&
	       bli_func_prefers_contig_cols( bli_obj_datatype( c_local ),
	                                     bli_gemm_cntl_ukrs( cntl ) ) ) ||
	     ( bli_obj_is_col_stored( c_local ) &&
	       bli_func_prefers_contig_rows( bli_obj_datatype( c_local ),
	                                     bli_gemm_cntl_ukrs( cntl ) ) )
	   )
	{
		bli_obj_swap( a_local, b_local );

		bli_obj_induce_trans( a_local );
		bli_obj_induce_trans( b_local );
		bli_obj_induce_trans( c_local );
	}

    gemm_thrinfo_t** infos = bli_create_gemm_thrinfo_paths();
    dim_t n_threads = thread_num_threads( infos[0] );

	// Invoke the internal back-end.
    bli_level3_thread_decorator( n_threads,   
                                 (level3_int_t) bli_gemm_int, 
                                 alpha, 
                                 &a_local,  
                                 &b_local,  
                                 beta, 
                                 &c_local,  
                                 (void*) cntl, 
                                 (void**) infos );

    bli_gemm_thrinfo_free_paths( infos, n_threads );

#ifdef BLIS_ENABLE_FLOP_COUNT
	// Increment the global flop counter.
	bli_flop_count_inc( 2.0 * bli_obj_length( *c )
	                        * bli_obj_width( *c )
	                        * bli_obj_width_after_trans( a_local )
	                        * ( bli_obj_is_complex( *c ) ? 4.0 : 1.0 ) );
#endif
}
void bli_herk_front( obj_t*  alpha,
                     obj_t*  a,
                     obj_t*  beta,
                     obj_t*  c,
                     cntx_t* cntx,
                     gemm_t* cntl )
{
	obj_t   a_local;
	obj_t   ah_local;
	obj_t   c_local;

	// Check parameters.
	if ( bli_error_checking_is_enabled() )
		bli_herk_check( alpha, a, beta, c, cntx );

	// If alpha is zero, scale by beta, zero the imaginary components of
	// the diagonal elements, and return.
	if ( bli_obj_equals( alpha, &BLIS_ZERO ) )
	{
		bli_scalm( beta, c );
		bli_setid( &BLIS_ZERO, c );
		return;
	}

	// Reinitialize the memory allocator to accommodate the blocksizes
	// in the current context.
	bli_mem_reinit( cntx );

	// Alias A and C in case we need to apply transformations.
	bli_obj_alias_to( *a, a_local );
	bli_obj_alias_to( *c, c_local );
	bli_obj_set_as_root( c_local );

	// For herk, the right-hand "B" operand is simply A'.
	bli_obj_alias_to( *a, ah_local );
	bli_obj_induce_trans( ah_local );
	bli_obj_toggle_conj( ah_local );

	// An optimization: If C is stored by rows and the micro-kernel prefers
	// contiguous columns, or if C is stored by columns and the micro-kernel
	// prefers contiguous rows, transpose the entire operation to allow the
	// micro-kernel to access elements of C in its preferred manner.
	if ( bli_cntx_l3_nat_ukr_dislikes_storage_of( &c_local, BLIS_GEMM_UKR, cntx ) )
	{
		bli_obj_toggle_conj( a_local );
		bli_obj_toggle_conj( ah_local );

		bli_obj_induce_trans( c_local );
	}

    thrinfo_t** infos = bli_l3_thrinfo_create_paths( BLIS_HERK, BLIS_LEFT );
    dim_t n_threads = bli_thread_num_threads( infos[0] );

    // Invoke the internal back-end.
    bli_l3_thread_decorator( n_threads,
                                 (l3_int_t) bli_herk_int, 
                                 alpha, 
                                 &a_local,  
                                 &ah_local,  
                                 beta, 
                                 &c_local,  
                                 (void*) cntx, 
                                 (void*) cntl, 
                                 (void**) infos );

    bli_l3_thrinfo_free_paths( infos, n_threads );

	// The Hermitian rank-k product was computed as A*A', even for the
	// diagonal elements. Mathematically, the imaginary components of
	// diagonal elements of a Hermitian rank-k product should always be
	// zero. However, in practice, they sometimes accumulate meaningless
	// non-zero values. To prevent this, we explicitly set those values
	// to zero before returning.
	bli_setid( &BLIS_ZERO, &c_local );

}
Beispiel #4
0
void bli_unpackv_int( obj_t*     p,
                      obj_t*     a,
                      cntx_t*    cntx,
                      unpackv_t* cntl )
{
	// The unpackv operation consists of an optional casting post-process.
	// (This post-process is analogous to the cast pre-process in packv.)
	// Here are the following possible ways unpackv can execute:
	//  1. unpack and cast: Unpack to a temporary vector c and then cast
	//     c to a.
	//  2. unpack only: Unpack directly to vector a since typecasting is
	//     not needed.
	//  3. cast only: Not yet supported / not used.
	//  4. no-op: The control tree directs us to skip the unpack operation
	//     entirely. No action is taken.

	obj_t     c;

	varnum_t  n;
	impl_t    i;
	FUNCPTR_T f;

	// Check parameters.
	if ( bli_error_checking_is_enabled() )
		bli_unpackv_check( p, a, cntx );

	// Sanity check; A should never have a zero dimension. If we must support
	// it, then we should fold it into the next alias-and-early-exit block.
	if ( bli_obj_has_zero_dim( *a ) ) bli_abort();

	// First check if we are to skip this operation because the control tree
	// is NULL, and if so, simply return.
	if ( bli_cntl_is_noop( cntl ) )
	{
		return;
	}

	// If p was aliased to a during the pack stage (because it was already
	// in an acceptable packed/contiguous format), then no unpack is actually
	// necessary, so we return.
	if ( bli_obj_is_alias_of( *p, *a ) )
	{
		return;
	}

	// Now, if we are not skipping the unpack operation, then the only
	// question left is whether we are to typecast vector a after unpacking.
	if ( bli_obj_datatype( *p ) != bli_obj_datatype( *a ) )
		bli_abort();
/*
	if ( bli_obj_datatype( *p ) != bli_obj_datatype( *a ) )
	{
		// Initialize an object c for the intermediate typecast vector.
		bli_unpackv_init_cast( p,
		                       a,
		                       &c );
	}
	else
*/
	{
		// If no cast is needed, then aliasing object c to the original
		// vector serves as a minor optimization. This causes the unpackv
		// implementation to unpack directly into vector a.
		bli_obj_alias_to( *a, c );
	}

	// Now we are ready to proceed with the unpacking.

	// Extract the variant number and implementation type.
	n = bli_cntl_var_num( cntl );
	i = bli_cntl_impl_type( cntl );

	// Index into the variant array to extract the correct function pointer.
	f = vars[n][i];

	// Invoke the variant.
	f( p,
	   &c,
	   cntx,
	   cntl );

	// Now, if necessary, we cast the contents of c to vector a. If casting
	// was not necessary, then we are done because the call to the unpackv
	// implementation would have unpacked directly to vector a.
/*
	if ( bli_obj_datatype( *p ) != bli_obj_datatype( *a ) )
	{
		// Copy/typecast vector c to vector a.
		// NOTE: Here, we use copynzv instead of copym because, in the cases
		// where we are unpacking/typecasting a real vector c to a complex
		// vector a, we want to touch only the real components of a, rather
		// than also set the imaginary components to zero. This comes about
		// because of the fact that, if we are unpacking real-to-complex,
		// then it is because all of the computation occurred in the real
		// domain, and so we would want to leave whatever imaginary values
		// there are in vector a untouched. Notice that for unpackings that
		// entail complex-to-complex data movements, the copynzv operation
		// behaves exactly as copym, so no use cases are lost (at least none
		// that I can think of).
		bli_copynzv( &c,
		             a );

		// NOTE: The above code/comment is outdated. What should happen is
		// as follows:
		// - If dt(a) is complex and dt(p) is real, then create an alias of
		//   a and then tweak it so that it looks like a real domain object.
		//   This will involve:
		//   - projecting the datatype to real domain
		//   - scaling both the row and column strides by 2
		//   ALL OF THIS should be done in the front-end, NOT here, as
		//   unpackv() won't even be needed in that case.
	}
*/
}
Beispiel #5
0
void bli_gemm_int
     (
       obj_t*  alpha,
       obj_t*  a,
       obj_t*  b,
       obj_t*  beta,
       obj_t*  c,
       cntx_t* cntx,
       cntl_t* cntl,
       thrinfo_t* thread
     )
{
	obj_t     a_local;
	obj_t     b_local;
	obj_t     c_local;
	gemm_voft f;

	// Check parameters.
	if ( bli_error_checking_is_enabled() )
		bli_gemm_basic_check( alpha, a, b, beta, c, cntx );

	// If C has a zero dimension, return early.
	if ( bli_obj_has_zero_dim( *c ) ) return;

	// If A or B has a zero dimension, scale C by beta and return early.
	if ( bli_obj_has_zero_dim( *a ) ||
	     bli_obj_has_zero_dim( *b ) )
	{
        if ( bli_thread_am_ochief( thread ) )
		    bli_scalm( beta, c );
        bli_thread_obarrier( thread );
		return;
	}

	// If A or B is marked as being filled with zeros, scale C by beta and
	// return early.
	if ( bli_obj_is_zeros( *a ) ||
	     bli_obj_is_zeros( *b ) )
	{
		// This should never execute.
		bli_abort();

        if ( bli_thread_am_ochief( thread ) )
		    bli_scalm( beta, c );
        bli_thread_obarrier( thread );
		return;
	}

	// Alias A, B, and C in case we need to update attached scalars.
	bli_obj_alias_to( *a, a_local );
	bli_obj_alias_to( *b, b_local );
	bli_obj_alias_to( *c, c_local );

	// If alpha is non-unit, typecast and apply it to the scalar attached
	// to B.
	if ( !bli_obj_equals( alpha, &BLIS_ONE ) )
	{
        bli_obj_scalar_apply_scalar( alpha, &b_local );
	}

	// If beta is non-unit, typecast and apply it to the scalar attached
	// to C.
	if ( !bli_obj_equals( beta, &BLIS_ONE ) )
	{
        bli_obj_scalar_apply_scalar( beta, &c_local );
	}

	// Create the next node in the thrinfo_t structure.
	bli_thrinfo_grow( cntx, cntl, thread );

	// Extract the function pointer from the current control tree node.
	f = bli_cntl_var_func( cntl );

	// Somewhat hackish support for 3m3, 3m2, and 4m1b method implementations.
	{
		ind_t im = bli_cntx_get_ind_method( cntx );

		if ( im != BLIS_NAT )
		{
			if      ( im == BLIS_3M3  && f == bli_gemm_packa    ) f = bli_gemm3m3_packa;
			else if ( im == BLIS_3M2  && f == bli_gemm_ker_var2 ) f = bli_gemm3m2_ker_var2;
			else if ( im == BLIS_4M1B && f == bli_gemm_ker_var2 ) f = bli_gemm4mb_ker_var2;
		}
	}

	// Invoke the variant.
	f
	(
	  &a_local,
	  &b_local,
	  &c_local,
	  cntx,
	  cntl,
      thread
	);
}
Beispiel #6
0
void bli_trmm_front( side_t  side,
                     obj_t*  alpha,
                     obj_t*  a,
                     obj_t*  b,
                     gemm_t* cntl )
{
	obj_t   a_local;
	obj_t   b_local;
	obj_t   c_local;

	// Check parameters.
	if ( bli_error_checking_is_enabled() )
		bli_trmm_check( side, alpha, a, b );

	// If alpha is zero, scale by beta and return.
	if ( bli_obj_equals( alpha, &BLIS_ZERO ) )
	{
		bli_scalm( alpha, b );
		return;
	}

	// Alias A and B so we can tweak the objects if necessary.
	bli_obj_alias_to( *a, a_local );
	bli_obj_alias_to( *b, b_local );
	bli_obj_alias_to( *b, c_local );

	// We do not explicitly implement the cases where A is transposed.
	// However, we can still handle them. Specifically, if A is marked as
	// needing a transposition, we simply induce a transposition. This
	// allows us to only explicitly implement the no-transpose cases. Once
	// the transposition is induced, the correct algorithm will be called,
	// since, for example, an algorithm over a transposed lower triangular
	// matrix A moves in the same direction (forwards) as a non-transposed
	// upper triangular matrix. And with the transposition induced, the
	// matrix now appears to be upper triangular, so the upper triangular
	// algorithm will grab the correct partitions, as if it were upper
	// triangular (with no transpose) all along.
	if ( bli_obj_has_trans( a_local ) )
	{
		bli_obj_induce_trans( a_local );
		bli_obj_set_onlytrans( BLIS_NO_TRANSPOSE, a_local );
	}

#if 0

	// If A is being multiplied from the right, transpose all operands
	// so that we can perform the computation as if A were being multiplied
	// from the left.
	if ( bli_is_right( side ) )
	{
		bli_toggle_side( side );
		bli_obj_induce_trans( a_local );
		bli_obj_induce_trans( b_local );
		bli_obj_induce_trans( c_local );
	}

#else

	// An optimization: If C is stored by rows and the micro-kernel prefers
	// contiguous columns, or if C is stored by columns and the micro-kernel
	// prefers contiguous rows, transpose the entire operation to allow the
	// micro-kernel to access elements of C in its preferred manner.
	if (
	     ( bli_obj_is_row_stored( c_local ) &&
	       bli_func_prefers_contig_cols( bli_obj_datatype( c_local ),
	                                     bli_gemm_cntl_ukrs( cntl ) ) ) ||
	     ( bli_obj_is_col_stored( c_local ) &&
	       bli_func_prefers_contig_rows( bli_obj_datatype( c_local ),
	                                     bli_gemm_cntl_ukrs( cntl ) ) )
	   )
	{
		bli_toggle_side( side );
		bli_obj_induce_trans( a_local );
		bli_obj_induce_trans( b_local );
		bli_obj_induce_trans( c_local );
	}

	// If A is being multiplied from the right, swap A and B so that
	// the matrix will actually be on the right.
	if ( bli_is_right( side ) )
	{
		bli_obj_swap( a_local, b_local );
	}

#endif

	// Set each alias as the root object.
	// NOTE: We MUST wait until we are done potentially swapping the objects
	// before setting the root fields!
	bli_obj_set_as_root( a_local );
	bli_obj_set_as_root( b_local );
	bli_obj_set_as_root( c_local );
 

    trmm_thrinfo_t** infos = bli_create_trmm_thrinfo_paths( bli_is_right( side ) );
    dim_t n_threads = thread_num_threads( infos[0] );

    // Invoke the internal back-end.
    bli_level3_thread_decorator( n_threads,   
                                 (level3_int_t) bli_trmm_int, 
                                 alpha, 
                                 &a_local,  
                                 &b_local,  
                                 &BLIS_ZERO, 
                                 &c_local,  
                                 (void*) cntl, 
                                 (void**) infos );

    bli_trmm_thrinfo_free_paths( infos, n_threads );

#ifdef BLIS_ENABLE_FLOP_COUNT
	// Increment the global flop counter.
	bli_flop_count_inc( 1.0 * bli_obj_length( *c )
	                        * bli_obj_width( *c )
	                        * bli_obj_width_after_trans( a_local )
	                        * ( bli_obj_is_complex( *c ) ? 4.0 : 1.0 ) );
#endif
}
Beispiel #7
0
void bli_syr2k_front
     (
       obj_t*  alpha,
       obj_t*  a,
       obj_t*  b,
       obj_t*  beta,
       obj_t*  c,
       cntx_t* cntx,
       cntl_t* cntl
     )
{
	bli_init_once();

	obj_t    c_local;
	obj_t    a_local;
	obj_t    bt_local;
	obj_t    b_local;
	obj_t    at_local;

	// Check parameters.
	if ( bli_error_checking_is_enabled() )
		bli_syr2k_check( alpha, a, b, beta, c, cntx );

	// If alpha is zero, scale by beta and return.
	if ( bli_obj_equals( alpha, &BLIS_ZERO ) )
	{
		bli_scalm( beta, c );
		return;
	}

	// Alias A, B, and C in case we need to apply transformations.
	bli_obj_alias_to( a, &a_local );
	bli_obj_alias_to( b, &b_local );
	bli_obj_alias_to( c, &c_local );
	bli_obj_set_as_root( &c_local );

	// For syr2k, the first and second right-hand "B" operands are simply B'
	// and A'.
	bli_obj_alias_to( b, &bt_local );
	bli_obj_induce_trans( &bt_local );
	bli_obj_alias_to( a, &at_local );
	bli_obj_induce_trans( &at_local );

	// An optimization: If C is stored by rows and the micro-kernel prefers
	// contiguous columns, or if C is stored by columns and the micro-kernel
	// prefers contiguous rows, transpose the entire operation to allow the
	// micro-kernel to access elements of C in its preferred manner.
	if ( bli_cntx_l3_ukr_dislikes_storage_of( &c_local, BLIS_GEMM_UKR, cntx ) )
	{
		bli_obj_induce_trans( &c_local );
	}

	// Record the threading for each level within the context.
	bli_cntx_set_thrloop_from_env( BLIS_SYR2K, BLIS_LEFT, cntx,
                                   bli_obj_length( &c_local ),
                                   bli_obj_width( &c_local ),
                                   bli_obj_width( &a_local ) );

	// Invoke herk twice, using beta only the first time.

	// Invoke the internal back-end.
	bli_l3_thread_decorator
	(
	  bli_gemm_int,
	  BLIS_HERK, // operation family id
	  alpha,
	  &a_local,
	  &bt_local,
	  beta,
	  &c_local,
	  cntx,
	  cntl
	);

	bli_l3_thread_decorator
	(
	  bli_gemm_int,
	  BLIS_HERK, // operation family id
	  alpha,
	  &b_local,
	  &at_local,
	  &BLIS_ONE,
	  &c_local,
	  cntx,
	  cntl
	);
}
Beispiel #8
0
void bli_trsm_front( side_t  side,
                     obj_t*  alpha,
                     obj_t*  a,
                     obj_t*  b,
                     cntx_t* cntx,
                     trsm_t* l_cntl,
                     trsm_t* r_cntl )
{
	trsm_t* cntl;
	obj_t   a_local;
	obj_t   b_local;
	obj_t   c_local;

	// Check parameters.
	if ( bli_error_checking_is_enabled() )
		bli_trsm_check( side, alpha, a, b, &BLIS_ZERO, b, cntx );

	// If alpha is zero, scale by beta and return.
	if ( bli_obj_equals( alpha, &BLIS_ZERO ) )
	{
		bli_scalm( alpha, b );
		return;
	}

	// Reinitialize the memory allocator to accommodate the blocksizes
	// in the current context.
	bli_mem_reinit( cntx );

	// Alias A and B so we can tweak the objects if necessary.
	bli_obj_alias_to( *a, a_local );
	bli_obj_alias_to( *b, b_local );
	bli_obj_alias_to( *b, c_local );

	// We do not explicitly implement the cases where A is transposed.
	// However, we can still handle them. Specifically, if A is marked as
	// needing a transposition, we simply induce a transposition. This
	// allows us to only explicitly implement the no-transpose cases. Once
	// the transposition is induced, the correct algorithm will be called,
	// since, for example, an algorithm over a transposed lower triangular
	// matrix A moves in the same direction (forwards) as a non-transposed
	// upper triangular matrix. And with the transposition induced, the
	// matrix now appears to be upper triangular, so the upper triangular
	// algorithm will grab the correct partitions, as if it were upper
	// triangular (with no transpose) all along.
	if ( bli_obj_has_trans( a_local ) )
	{
		bli_obj_induce_trans( a_local );
		bli_obj_set_onlytrans( BLIS_NO_TRANSPOSE, a_local );
	}

#if 0

	// If A is being solved against from the right, transpose all operands
	// so that we can perform the computation as if A were being solved
	// from the left.
	if ( bli_is_right( side ) )
	{
		bli_toggle_side( side );
		bli_obj_induce_trans( a_local );
		bli_obj_induce_trans( b_local );
		bli_obj_induce_trans( c_local );
	}

#else

	// If A is being solved against from the right, swap A and B so that
	// the triangular matrix will actually be on the right.
	if ( bli_is_right( side ) )
	{
		bli_obj_swap( a_local, b_local );
	}

#endif

	// Set each alias as the root object.
	// NOTE: We MUST wait until we are done potentially swapping the objects
	// before setting the root fields!
	bli_obj_set_as_root( a_local );
	bli_obj_set_as_root( b_local );
	bli_obj_set_as_root( c_local );

	// Choose the control tree.
	if ( bli_is_left( side ) ) cntl = l_cntl;
	else                       cntl = r_cntl;

    trsm_thrinfo_t** infos = bli_create_trsm_thrinfo_paths( bli_is_right( side ) );
    dim_t n_threads = thread_num_threads( infos[0] );
    
    // Invoke the internal back-end.
    bli_level3_thread_decorator( n_threads,   
                                 (l3_int_t) bli_trsm_int, 
                                 alpha, 
                                 &a_local,  
                                 &b_local,  
                                 alpha, 
                                 &c_local,  
                                 (void*) cntx, 
                                 (void*) cntl, 
                                 (void**) infos );

    bli_trsm_thrinfo_free_paths( infos, n_threads );

}
Beispiel #9
0
void bli_gemm_int( obj_t*  alpha,
                   obj_t*  a,
                   obj_t*  b,
                   obj_t*  beta,
                   obj_t*  c,
                   gemm_t* cntl,
                   gemm_thrinfo_t* thread )
{
	obj_t     a_local;
	obj_t     b_local;
	obj_t     c_local;
	varnum_t  n;
	impl_t    i;
	FUNCPTR_T f;

	// Check parameters.
	if ( bli_error_checking_is_enabled() )
		bli_gemm_int_check( alpha, a, b, beta, c, cntl );

	// If C has a zero dimension, return early.
	if ( bli_obj_has_zero_dim( *c ) ) return;

	// If A or B has a zero dimension, scale C by beta and return early.
	if ( bli_obj_has_zero_dim( *a ) ||
	     bli_obj_has_zero_dim( *b ) )
	{
        if( thread_am_ochief( thread ) )
		    bli_scalm( beta, c );
        thread_obarrier( thread );
		return;
	}

	// If A or B is marked as being filled with zeros, scale C by beta and
	// return early.
	if ( bli_obj_is_zeros( *a ) ||
	     bli_obj_is_zeros( *b ) )
	{
        if( thread_am_ochief( thread ) )
		    bli_scalm( beta, c );
        thread_obarrier( thread );
		return;
	}

	// Alias A and B in case we need to update attached scalars.
	bli_obj_alias_to( *a, a_local );
	bli_obj_alias_to( *b, b_local );

	// Alias C in case we need to induce a transposition.
	bli_obj_alias_to( *c, c_local );

	// If we are about to call a leaf-level implementation, and matrix C
	// still needs a transposition, then we must induce one by swapping the
	// strides and dimensions. Note that this transposition would normally
	// be handled explicitly in the packing of C, but if C is not being
	// packed, this is our last chance to handle the transposition.
	if ( cntl_is_leaf( cntl ) && bli_obj_has_trans( *c ) )
	{
        //if( thread_am_ochief( thread ) ) {
            bli_obj_induce_trans( c_local );
            bli_obj_set_onlytrans( BLIS_NO_TRANSPOSE, c_local );
       // }
	}

	// If alpha is non-unit, typecast and apply it to the scalar attached
	// to B.
	if ( !bli_obj_equals( alpha, &BLIS_ONE ) )
	{
        bli_obj_scalar_apply_scalar( alpha, &b_local );
	}

	// If beta is non-unit, typecast and apply it to the scalar attached
	// to C.
	if ( !bli_obj_equals( beta, &BLIS_ONE ) )
	{
        bli_obj_scalar_apply_scalar( beta, &c_local );
	}

	// Extract the variant number and implementation type.
	n = cntl_var_num( cntl );
	i = cntl_impl_type( cntl );

	// Index into the variant array to extract the correct function pointer.
	f = vars[n][i];

	// Invoke the variant.
	f( &a_local,
	   &b_local,
	   &c_local,
	   cntl,
       thread );
}
Beispiel #10
0
void bli_trsm_int( obj_t*  alpha,
                   obj_t*  a,
                   obj_t*  b,
                   obj_t*  beta,
                   obj_t*  c,
                   trsm_t* cntl,
                   trsm_thrinfo_t* thread )
{
	obj_t     a_local;
	obj_t     b_local;
	obj_t     c_local;
	bool_t    side, uplo;
	varnum_t  n;
	impl_t    i;
	FUNCPTR_T f;

	// Check parameters.
	if ( bli_error_checking_is_enabled() )
		bli_trsm_int_check( alpha, a, b, beta, c, cntl );

	// If C has a zero dimension, return early.
	if ( bli_obj_has_zero_dim( *c ) ) return;

	// If A or B has a zero dimension, scale C by beta and return early.
	if ( bli_obj_has_zero_dim( *a ) ||
	     bli_obj_has_zero_dim( *b ) )
	{
        if( thread_am_ochief( thread ) )
            bli_scalm( beta, c );
        thread_obarrier( thread );
		return;
	}

	// Alias A and B in case we need to update attached scalars.
	bli_obj_alias_to( *a, a_local );
	bli_obj_alias_to( *b, b_local );

	// Alias C in case we need to induce a transposition.
	bli_obj_alias_to( *c, c_local );

	// If we are about to call a leaf-level implementation, and matrix C
	// still needs a transposition, then we must induce one by swapping the
	// strides and dimensions. Note that this transposition would normally
	// be handled explicitly in the packing of C, but if C is not being
	// packed, this is our last chance to handle the transposition.
	if ( cntl_is_leaf( cntl ) && bli_obj_has_trans( *c ) )
	{
        bli_obj_induce_trans( c_local );
        bli_obj_set_onlytrans( BLIS_NO_TRANSPOSE, c_local );
	}

	// If beta is non-unit, apply it to the scalar attached to C.
	if ( !bli_obj_equals( beta, &BLIS_ONE ) )
	{
        bli_obj_scalar_apply_scalar( beta, &c_local );
	}

	// Set two bools: one based on the implied side parameter (the structure
	// of the root object) and one based on the uplo field of the triangular
	// matrix's root object (whether that is matrix A or matrix B).
	if ( bli_obj_root_is_triangular( *a ) )
	{
		side = 0;
		if ( bli_obj_root_is_lower( *a ) ) uplo = 0;
		else                               uplo = 1;

		// If alpha is non-unit, typecast and apply it to the scalar
		// attached to B (the non-triangular matrix).
		if ( !bli_obj_equals( alpha, &BLIS_ONE ) )
		{
            bli_obj_scalar_apply_scalar( alpha, &b_local );
		}
	}
	else // if ( bli_obj_root_is_triangular( *b ) )
	{
		side = 1;
		// Set a bool based on the uplo field of A's root object.
		if ( bli_obj_root_is_lower( *b ) ) uplo = 0;
		else                               uplo = 1;

		// If alpha is non-unit, typecast and apply it to the scalar
		// attached to A (the non-triangular matrix).
		if ( !bli_obj_equals( alpha, &BLIS_ONE ) )
		{
            bli_obj_scalar_apply_scalar( alpha, &a_local );
		}
	}

    thread_obarrier( thread );

	// Extract the variant number and implementation type.
	n = cntl_var_num( cntl );
	i = cntl_impl_type( cntl );

	// Index into the variant array to extract the correct function pointer.
	f = vars[side][uplo][n][i];

	// Invoke the variant.
	f( &a_local,
	   &b_local,
	   &c_local,
	   cntl,
       thread );
}
Beispiel #11
0
void bli_trsm_int
     (
       obj_t*  alpha,
       obj_t*  a,
       obj_t*  b,
       obj_t*  beta,
       obj_t*  c,
       cntx_t* cntx,
       rntm_t* rntm,
       cntl_t* cntl,
       thrinfo_t* thread
     )
{
	obj_t        a_local;
	obj_t        b_local;
	obj_t        c_local;
	trsm_var_oft f;

	// Check parameters.
	if ( bli_error_checking_is_enabled() )
		bli_gemm_basic_check( alpha, a, b, beta, c, cntx );

	// If C has a zero dimension, return early.
	if ( bli_obj_has_zero_dim( c ) ) return;

	// If A or B has a zero dimension, scale C by beta and return early.
	if ( bli_obj_has_zero_dim( a ) ||
	     bli_obj_has_zero_dim( b ) )
	{
		if ( bli_thread_am_ochief( thread ) )
		    bli_scalm( beta, c );
		bli_thread_obarrier( thread );
		return;
	}

	// Alias A and B in case we need to update attached scalars.
	bli_obj_alias_to( a, &a_local );
	bli_obj_alias_to( b, &b_local );

	// Alias C in case we need to induce a transposition.
	bli_obj_alias_to( c, &c_local );

	// If we are about to call a leaf-level implementation, and matrix C
	// still needs a transposition, then we must induce one by swapping the
	// strides and dimensions. Note that this transposition would normally
	// be handled explicitly in the packing of C, but if C is not being
	// packed, this is our last chance to handle the transposition.
	if ( bli_cntl_is_leaf( cntl ) && bli_obj_has_trans( c ) )
	{
		bli_obj_induce_trans( &c_local );
		bli_obj_set_onlytrans( BLIS_NO_TRANSPOSE, &c_local );
	}

	// If beta is non-unit, apply it to the scalar attached to C.
	if ( !bli_obj_equals( beta, &BLIS_ONE ) )
	{
		bli_obj_scalar_apply_scalar( beta, &c_local );
	}

	// Set two bools: one based on the implied side parameter (the structure
	// of the root object) and one based on the uplo field of the triangular
	// matrix's root object (whether that is matrix A or matrix B).
	if ( bli_obj_root_is_triangular( a ) )
	{
		// If alpha is non-unit, typecast and apply it to the scalar
		// attached to B (the non-triangular matrix).
		if ( !bli_obj_equals( alpha, &BLIS_ONE ) )
		{
			bli_obj_scalar_apply_scalar( alpha, &b_local );
		}
	}
	else // if ( bli_obj_root_is_triangular( b ) )
	{
		// If alpha is non-unit, typecast and apply it to the scalar
		// attached to A (the non-triangular matrix).
		if ( !bli_obj_equals( alpha, &BLIS_ONE ) )
		{
            bli_obj_scalar_apply_scalar( alpha, &a_local );
		}
	}

	// FGVZ->TMS: Is this barrier still needed?
	bli_thread_obarrier( thread );

	// Create the next node in the thrinfo_t structure.
	bli_thrinfo_grow( rntm, cntl, thread );

	// Extract the function pointer from the current control tree node.
	f = bli_cntl_var_func( cntl );

	// Invoke the variant.
	f
	(
	  &a_local,
	  &b_local,
	  &c_local,
	  cntx,
	  rntm,
	  cntl,
	  thread
	);
}
Beispiel #12
0
void bli_her2k_front
     (
       obj_t*  alpha,
       obj_t*  a,
       obj_t*  b,
       obj_t*  beta,
       obj_t*  c,
       cntx_t* cntx,
       cntl_t* cntl
     )
{
	bli_init_once();

	obj_t    alpha_conj;
	obj_t    c_local;
	obj_t    a_local;
	obj_t    bh_local;
	obj_t    b_local;
	obj_t    ah_local;

	// Check parameters.
	if ( bli_error_checking_is_enabled() )
		bli_her2k_check( alpha, a, b, beta, c, cntx );

	// If alpha is zero, scale by beta, zero the imaginary components of
	// the diagonal elements, and return.
	if ( bli_obj_equals( alpha, &BLIS_ZERO ) )
	{
		bli_scalm( beta, c );
		bli_setid( &BLIS_ZERO, c );
		return;
	}

	// Alias A, B, and C in case we need to apply transformations.
	bli_obj_alias_to( a, &a_local );
	bli_obj_alias_to( b, &b_local );
	bli_obj_alias_to( c, &c_local );
	bli_obj_set_as_root( &c_local );

	// For her2k, the first and second right-hand "B" operands are simply B'
	// and A'.
	bli_obj_alias_to( b, &bh_local );
	bli_obj_induce_trans( &bh_local );
	bli_obj_toggle_conj( &bh_local );
	bli_obj_alias_to( a, &ah_local );
	bli_obj_induce_trans( &ah_local );
	bli_obj_toggle_conj( &ah_local );

	// Initialize a conjugated copy of alpha.
	bli_obj_scalar_init_detached_copy_of( bli_obj_dt( a ),
	                                      BLIS_CONJUGATE,
	                                      alpha,
	                                      &alpha_conj );

	// An optimization: If C is stored by rows and the micro-kernel prefers
	// contiguous columns, or if C is stored by columns and the micro-kernel
	// prefers contiguous rows, transpose the entire operation to allow the
	// micro-kernel to access elements of C in its preferred manner.
	if ( bli_cntx_l3_ukr_dislikes_storage_of( &c_local, BLIS_GEMM_UKR, cntx ) )
	{
		bli_obj_swap( &a_local, &bh_local );
		bli_obj_swap( &b_local, &ah_local );

		bli_obj_induce_trans( &a_local );
		bli_obj_induce_trans( &bh_local );
		bli_obj_induce_trans( &b_local );
		bli_obj_induce_trans( &ah_local );

		bli_obj_induce_trans( &c_local );
	}

	// Record the threading for each level within the context.
	bli_cntx_set_thrloop_from_env( BLIS_HER2K, BLIS_LEFT, cntx,
                                   bli_obj_length( &c_local ),
                                   bli_obj_width( &c_local ),
                                   bli_obj_width( &a_local ) );

	// Invoke herk twice, using beta only the first time.

	// Invoke the internal back-end.
	bli_l3_thread_decorator
	(
	  bli_gemm_int,
	  BLIS_HERK, // operation family id
	  alpha,
	  &a_local,
	  &bh_local,
	  beta,
	  &c_local,
	  cntx,
	  cntl
	);

	bli_l3_thread_decorator
	(
	  bli_gemm_int,
	  BLIS_HERK, // operation family id
	  &alpha_conj,
	  &b_local,
	  &ah_local,
	  &BLIS_ONE,
	  &c_local,
	  cntx,
	  cntl
	);

	// The Hermitian rank-2k product was computed as A*B'+B*A', even for
	// the diagonal elements. Mathematically, the imaginary components of
	// diagonal elements of a Hermitian rank-2k product should always be
	// zero. However, in practice, they sometimes accumulate meaningless
	// non-zero values. To prevent this, we explicitly set those values
	// to zero before returning.
	bli_setid( &BLIS_ZERO, &c_local );
}
Beispiel #13
0
void bli_hemv_int( conj_t  conjh,
                   obj_t*  alpha,
                   obj_t*  a,
                   obj_t*  x,
                   obj_t*  beta,
                   obj_t*  y,
                   cntx_t* cntx,
                   hemv_t* cntl )
{
	varnum_t  n;
	impl_t    i;
	FUNCPTR_T f;
	obj_t     a_local;

	// Check parameters.
	if ( bli_error_checking_is_enabled() )
	{
		if ( bli_is_conj( conjh ) ) bli_hemv_check( alpha, a, x, beta, y );
		else                        bli_symv_check( alpha, a, x, beta, y );
	}

	// If y has a zero dimension, return early.
	if ( bli_obj_has_zero_dim( *y ) ) return;

	// If x has a zero dimension, scale y by beta and return early.
	if ( bli_obj_has_zero_dim( *x ) )
	{
		bli_scalm( beta, y );
		return;
	}

	// Alias A in case we need to induce the upper triangular case.
	bli_obj_alias_to( *a, a_local );

/*
	// Our blocked algorithms only [explicitly] implement the lower triangular
	// case, so if matrix A is stored as upper triangular, we must toggle the
	// transposition (and conjugation) bits so that the diagonal partitioning
	// routines grab the correct partitions corresponding to the upper
	// triangular case. But we only need to do this for blocked algorithms,
	// since unblocked algorithms are responsible for handling the upper case
	// explicitly (and they should not be inspecting the transposition bit anyway).
	if ( bli_cntl_is_blocked( cntl ) && bli_obj_is_upper( *a ) )
	{
		bli_obj_toggle_conj( a_local );
		bli_obj_toggle_trans( a_local );
	}
*/

	// Extract the variant number and implementation type.
	n = bli_cntl_var_num( cntl );
	i = bli_cntl_impl_type( cntl );

	// Index into the variant array to extract the correct function pointer.
	f = vars[n][i];

	// Invoke the variant.
	f( conjh,
	   alpha,
	   &a_local,
	   x,
	   beta,
	   y,
	   cntx,
	   cntl );
}
Beispiel #14
0
void libblis_test_dotaxpyv_experiment( test_params_t* params,
                                       test_op_t*     op,
                                       iface_t        iface,
                                       num_t          datatype,
                                       char*          pc_str,
                                       char*          sc_str,
                                       unsigned int   p_cur,
                                       double*        perf,
                                       double*        resid )
{
	unsigned int n_repeats = params->n_repeats;
	unsigned int i;

	double       time_min  = 1e9;
	double       time;

	dim_t        m;

	conj_t       conjxt, conjx, conjy;
	conj_t       conjconjxty;

	obj_t        alpha, xt, x, y, rho, z;
	obj_t        z_save;


	// Map the dimension specifier to an actual dimension.
	m = libblis_test_get_dim_from_prob_size( op->dim_spec[0], p_cur );

	// Map parameter characters to BLIS constants.
	bli_param_map_char_to_blis_conj( pc_str[0], &conjxt );
	bli_param_map_char_to_blis_conj( pc_str[1], &conjx );
	bli_param_map_char_to_blis_conj( pc_str[2], &conjy );

	// Create test scalars.
	bli_obj_scalar_init_detached( datatype, &alpha );
	bli_obj_scalar_init_detached( datatype, &rho );

	// Create test operands (vectors and/or matrices).
	libblis_test_vobj_create( params, datatype, sc_str[0], m, &x );
	libblis_test_vobj_create( params, datatype, sc_str[1], m, &y );
	libblis_test_vobj_create( params, datatype, sc_str[2], m, &z );
	libblis_test_vobj_create( params, datatype, sc_str[2], m, &z_save );

	// Set alpha.
	if ( bli_obj_is_real( z ) )
	{
		bli_setsc( -0.8,  0.0, &alpha );
	}
	else
	{
		bli_setsc(  0.0, -0.8, &alpha );
	}

	// Randomize x and z, and save z.
	bli_randv( &x );
	bli_randv( &z );
	bli_copyv( &z, &z_save );

	// Create an alias to x for xt. (Note that it doesn't actually need to be
	// transposed.)
	bli_obj_alias_to( x, xt );

	// Determine whether to make a copy of x with or without conjugation.
	// 
	//  conjx conjy  ~conjx^conjy   y is initialized as
	//  n     n      c              y = conj(x)
	//  n     c      n              y = x
	//  c     n      n              y = x
	//  c     c      c              y = conj(x)
	//
	conjconjxty = bli_apply_conj( conjxt, conjy );
	conjconjxty = bli_conj_toggled( conjconjxty );
	bli_obj_set_conj( conjconjxty, xt );
	bli_copyv( &xt, &y );

	// Apply the parameters.
	bli_obj_set_conj( conjxt, xt );
	bli_obj_set_conj( conjx,  x );
	bli_obj_set_conj( conjy,  y );

	// Repeat the experiment n_repeats times and record results. 
	for ( i = 0; i < n_repeats; ++i )
	{
		bli_copysc( &BLIS_MINUS_ONE, &rho );
		bli_copyv( &z_save, &z );

		time = bli_clock();

		libblis_test_dotaxpyv_impl( iface, &alpha, &xt, &x, &y, &rho, &z );

		time_min = bli_clock_min_diff( time_min, time );
	}

	// Estimate the performance of the best experiment repeat.
	*perf = ( 2.0 * m + 2.0 * m ) / time_min / FLOPS_PER_UNIT_PERF;
	if ( bli_obj_is_complex( z ) ) *perf *= 4.0;

	// Perform checks.
	libblis_test_dotaxpyv_check( &alpha, &xt, &x, &y, &rho, &z, &z_save, resid );

	// Zero out performance and residual if output vector is empty.
	libblis_test_check_empty_problem( &z, perf, resid );

	// Free the test objects.
	bli_obj_free( &x );
	bli_obj_free( &y );
	bli_obj_free( &z );
	bli_obj_free( &z_save );
}
Beispiel #15
0
void bli_symm_front( side_t  side,
                     obj_t*  alpha,
                     obj_t*  a,
                     obj_t*  b,
                     obj_t*  beta,
                     obj_t*  c,
                     gemm_t* cntl )
{
	obj_t   a_local;
	obj_t   b_local;
	obj_t   c_local;

	// Check parameters.
	if ( bli_error_checking_is_enabled() )
		bli_symm_check( side, alpha, a, b, beta, c );

	// If alpha is zero, scale by beta and return.
	if ( bli_obj_equals( alpha, &BLIS_ZERO ) )
	{
		bli_scalm( beta, c );
		return;
	}

	// Alias A, B, and C in case we need to apply transformations.
	bli_obj_alias_to( *a, a_local );
	bli_obj_alias_to( *b, b_local );
	bli_obj_alias_to( *c, c_local );

	// An optimization: If C is stored by rows and the micro-kernel prefers
	// contiguous columns, or if C is stored by columns and the micro-kernel
	// prefers contiguous rows, transpose the entire operation to allow the
	// micro-kernel to access elements of C in its preferred manner.
	if (
	     ( bli_obj_is_row_stored( c_local ) &&
	       bli_func_prefers_contig_cols( bli_obj_datatype( c_local ),
	                                     cntl_gemm_ukrs( cntl ) ) ) ||
	     ( bli_obj_is_col_stored( c_local ) &&
	       bli_func_prefers_contig_rows( bli_obj_datatype( c_local ),
	                                     cntl_gemm_ukrs( cntl ) ) )
	   )
	{
		bli_toggle_side( side );
		bli_obj_induce_trans( b_local );
		bli_obj_induce_trans( c_local );
	}

	// Swap A and B if multiplying A from the right so that "B" contains
	// the symmetric matrix.
	if ( bli_is_right( side ) )
	{
		bli_obj_swap( a_local, b_local );
	}

    gemm_thrinfo_t** infos = bli_create_gemm_thrinfo_paths();
    dim_t n_threads = thread_num_threads( infos[0] );
    
    // Invoke the internal back-end.
    bli_level3_thread_decorator( n_threads,   
                                 (level3_int_t) bli_gemm_int, 
                                 alpha, 
                                 &a_local,  
                                 &b_local,  
                                 beta, 
                                 &c_local,  
                                 (void*) cntl, 
                                 (void**) infos );

     bli_gemm_thrinfo_free_paths( infos, n_threads );
}
Beispiel #16
0
int main( int argc, char** argv )
{
	//bli_init();

#if 0
	obj_t a, b, c;
	obj_t aa, bb, cc;
	dim_t m, n, k;
	num_t dt;
	uplo_t uploa, uplob, uploc;

	{
		dt = BLIS_DOUBLE;

		m = 6;
		k = 6;
		n = 6;

		bli_obj_create( dt, m, k, 0, 0, &a );
		bli_obj_create( dt, k, n, 0, 0, &b );
		bli_obj_create( dt, m, n, 0, 0, &c );

		uploa = BLIS_UPPER;
		uploa = BLIS_LOWER;
		bli_obj_set_struc( BLIS_TRIANGULAR, &a );
		bli_obj_set_uplo( uploa, &a );
		bli_obj_set_diag_offset( -2, &a );

		uplob = BLIS_UPPER;
		uplob = BLIS_LOWER;
		bli_obj_set_struc( BLIS_TRIANGULAR, &b );
		bli_obj_set_uplo( uplob, &b );
		bli_obj_set_diag_offset( -2, &b );

		uploc = BLIS_UPPER;
		//uploc = BLIS_LOWER;
		//uploc = BLIS_ZEROS;
		//uploc = BLIS_DENSE;
		bli_obj_set_struc( BLIS_HERMITIAN, &c );
		//bli_obj_set_struc( BLIS_TRIANGULAR, &c );
		bli_obj_set_uplo( uploc, &c );
		bli_obj_set_diag_offset(  1, &c );

		bli_obj_alias_to( &a, &aa ); (void)aa;
		bli_obj_alias_to( &b, &bb ); (void)bb;
		bli_obj_alias_to( &c, &cc ); (void)cc;

		bli_randm( &a );
		bli_randm( &b );
		bli_randm( &c );
		//bli_mkherm( &a );
		//bli_mktrim( &a );

		bli_prune_unref_mparts( &cc, BLIS_M,
		                        &aa, BLIS_N );

		bli_printm( "c orig", &c, "%4.1f", "" );
		bli_printm( "c alias", &cc, "%4.1f", "" );
		bli_printm( "a orig", &a, "%4.1f", "" );
		bli_printm( "a alias", &aa, "%4.1f", "" );
		//bli_obj_print( "a struct", &a );
	}
#endif

	dim_t  p_begin, p_max, p_inc;
	gint_t m_input, n_input;
	char   uploa_ch;
	doff_t diagoffa;
	dim_t  bf;
	dim_t  n_way;
	char   part_dim_ch;
	bool_t go_fwd;
	char   out_ch;

	obj_t   a;
	blksz_t bfs;

	thrinfo_t thrinfo;
	dim_t  m, n;
	uplo_t uploa;
	bool_t part_m_dim, part_n_dim;
	bool_t go_bwd;
	dim_t  p;
	num_t  dt;
	dim_t  start, end;

	dim_t  width;
	siz_t  area;

	gint_t t_begin, t_stop, t_inc;
	dim_t  t;

	if ( argc == 13 )
	{
		sscanf( argv[1], "%u", &p_begin );
		sscanf( argv[2], "%u", &p_max );
		sscanf( argv[3], "%u", &p_inc );
		sscanf( argv[4], "%d", &m_input );
		sscanf( argv[5], "%d", &n_input );
		sscanf( argv[6], "%c",  &uploa_ch );
		sscanf( argv[7], "%d", &diagoffa );
		sscanf( argv[8], "%u", &bf );
		sscanf( argv[9], "%u", &n_way );
		sscanf( argv[10], "%c", &part_dim_ch );
		sscanf( argv[11], "%u", &go_fwd );
		sscanf( argv[12], "%c", &out_ch );
	}
	else
	{
		printf( "\n" );
		printf( " %s\n", argv[0] );
		printf( "\n" );
		printf( "  Simulate the dimension ranges assigned to threads when\n" );
		printf( "  partitioning a matrix for parallelism in BLIS.\n" );
		printf( "\n" );
		printf( " Usage:\n" );
		printf( "\n" );
		printf( "  %s p_beg p_max p_inc m n uplo doff bf n_way part_dim go_fwd out\n", argv[0] );
		printf( "\n" );
		printf( "  p_beg:    the first problem size p to test.\n" );
		printf( "  p_max:    the maximum problem size p to test.\n" );
		printf( "  p_inc:    the increase in problem size p between tests.\n" );
		printf( "  m:        the m dimension:\n" );
		printf( "  n:        the n dimension:\n" );
		printf( "            if m,n = -1: bind m,n to problem size p.\n" );
		printf( "            if m,n =  0: bind m,n to p_max.\n" );
		printf( "            if m,n >  0: hold m,n = c constant for all p.\n" );
		printf( "  uplo:     the uplo field of the matrix being partitioned:\n" );
		printf( "            'l': lower-stored (BLIS_LOWER)\n" );
		printf( "            'u': upper-stored (BLIS_UPPER)\n" );
		printf( "            'd': densely-stored (BLIS_DENSE)\n" );
		printf( "  doff:     the diagonal offset of the matrix being partitioned.\n" );
		printf( "  bf:       the simulated blocking factor. all thread ranges must\n" );
		printf( "            be a multiple of bf, except for the range that contains\n" );
		printf( "            the edge case (if one exists). the blocking factor\n" );
		printf( "            would typically correspond to a register blocksize.\n" );
		printf( "  n_way:    the number of ways of parallelism for which we are\n" );
		printf( "            partitioning (i.e.: the number of threads, or thread\n" );
		printf( "            groups).\n" );
		printf( "  part_dim: the dimension to partition:\n" );
		printf( "            'm': partition the m dimension.\n" );
		printf( "            'n': partition the n dimension.\n" );
		printf( "  go_fwd:   the direction to partition:\n" );
		printf( "            '1': forward, e.g. left-to-right (part_dim = 'm') or\n" );
		printf( "                 top-to-bottom (part_dim = 'n')\n" );
		printf( "            '0': backward, e.g. right-to-left (part_dim = 'm') or\n" );
		printf( "                 bottom-to-top (part_dim = 'n')\n" );
		printf( "            NOTE: reversing the direction does not change the\n" );
		printf( "            subpartitions' widths, but it does change which end of\n" );
		printf( "            the index range receives the edge case, if it exists.\n" );
		printf( "  out:      the type of output per thread-column:\n" );
		printf( "            'w': the width (and area) of the thread's subpartition\n" );
		printf( "            'r': the actual ranges of the thread's subpartition\n" );
		printf( "                 where the start and end points of each range are\n" );
		printf( "                 inclusive and exclusive, respectively.\n" );
		printf( "\n" );

		exit(1);
	}

	if ( m_input == 0 ) m_input = p_max;
	if ( n_input == 0 ) n_input = p_max;

	if ( part_dim_ch == 'm' ) { part_m_dim = TRUE;  part_n_dim = FALSE; }
	else                      { part_m_dim = FALSE; part_n_dim = TRUE;  }

	go_bwd = !go_fwd;

	if      ( uploa_ch == 'l' ) uploa = BLIS_LOWER;
	else if ( uploa_ch == 'u' ) uploa = BLIS_UPPER;
	else                        uploa = BLIS_DENSE;

	if ( part_n_dim )
	{
		if ( bli_is_upper( uploa ) ) { t_begin = n_way-1; t_stop = -1;    t_inc = -1; }
		else /* if lower or dense */ { t_begin = 0;       t_stop = n_way; t_inc =  1; }
	}
	else // if ( part_m_dim )
	{
		if ( bli_is_lower( uploa ) ) { t_begin = n_way-1; t_stop = -1;    t_inc = -1; }
		else /* if upper or dense */ { t_begin = 0;       t_stop = n_way; t_inc =  1; }
	}

	printf( "\n" );
	printf( "  part: %3s   doff: %3d   bf: %3d   output: %s\n",
	        ( part_n_dim ? ( go_fwd ? "l2r" : "r2l" )
	                     : ( go_fwd ? "t2b" : "b2t" ) ),
	        ( int )diagoffa, ( int )bf,
            ( out_ch == 'w' ? "width(area)" : "ranges" ) );
	printf( "              uplo: %3c   nt: %3u\n", uploa_ch, ( unsigned )n_way );
	printf( "\n" );

	printf( "             " );
	for ( t = t_begin; t != t_stop; t += t_inc )
	{
		if ( part_n_dim )
		{
			if      ( t == t_begin      ) printf( "left...      " );
			else if ( t == t_stop-t_inc ) printf( "     ...right" );
			else                          printf( "             " );
		}
		else // if ( part_m_dim )
		{
			if      ( t == t_begin      ) printf( "top...       " );
			else if ( t == t_stop-t_inc ) printf( "    ...bottom" );
			else                          printf( "             " );
		}
	}
	printf( "\n" );


	printf( "%4c x %4c  ", 'm', 'n' );
	for ( t = t_begin; t != t_stop; t += t_inc )
	{
		printf( "%9s %u  ", "thread", ( unsigned )t );
	}
	printf( "\n" );
	printf( "-------------" );
	for ( t = t_begin; t != t_stop; t += t_inc )
	{
		printf( "-------------" );
	}
	printf( "\n" );


	for ( p = p_begin; p <= p_max; p += p_inc )
	{
		if ( m_input < 0 ) m = ( dim_t )p;
		else               m = ( dim_t )m_input;
		if ( n_input < 0 ) n = ( dim_t )p;
		else               n = ( dim_t )n_input;

		dt = BLIS_DOUBLE;
		
		bli_obj_create( dt, m, n, 0, 0, &a );

		bli_obj_set_struc( BLIS_TRIANGULAR, &a );
		bli_obj_set_uplo( uploa, &a );
		bli_obj_set_diag_offset( diagoffa, &a );

		bli_randm( &a );

		bli_blksz_init_easy( &bfs, bf, bf, bf, bf );

		printf( "%4u x %4u  ", ( unsigned )m, ( unsigned )n );

		for ( t = t_begin; t != t_stop; t += t_inc )
		{
			thrinfo.n_way   = n_way;
			thrinfo.work_id = t;

			if      ( part_n_dim && go_fwd )
				area = bli_thread_get_range_weighted_l2r( &thrinfo, &a, &bfs, &start, &end );
			else if ( part_n_dim && go_bwd )
				area = bli_thread_get_range_weighted_r2l( &thrinfo, &a, &bfs, &start, &end );
			else if ( part_m_dim && go_fwd )
				area = bli_thread_get_range_weighted_t2b( &thrinfo, &a, &bfs, &start, &end );
			else // ( part_m_dim && go_bwd )
				area = bli_thread_get_range_weighted_b2t( &thrinfo, &a, &bfs, &start, &end );

			width = end - start;

			if ( out_ch == 'w' ) printf( "%4u(%6u) ", ( unsigned )width,
			                                            ( unsigned )area );
			else                 printf( "[%4u,%4u)  ", ( unsigned )start,
			                                              ( unsigned )end );
		}

		printf( "\n" );

		bli_obj_free( &a );
	}

	//bli_finalize();

	return 0;
}
Beispiel #17
0
void libblis_test_syr_check
     (
       test_params_t* params,
       obj_t*         alpha,
       obj_t*         x,
       obj_t*         a,
       obj_t*         a_orig,
       double*        resid
     )
{
	num_t  dt      = bli_obj_datatype( *a );
	num_t  dt_real = bli_obj_datatype_proj_to_real( *a );

	dim_t  m_a     = bli_obj_length( *a );

	obj_t  xt, t, v, w;
	obj_t  rho, norm;

	double junk;

	//
	// Pre-conditions:
	// - x is randomized.
	// - a is randomized and symmetric.
	// Note:
	// - alpha should have a non-zero imaginary component in the
	//   complex cases in order to more fully exercise the implementation.
	//
	// Under these conditions, we assume that the implementation for
	//
	//   A := A_orig + alpha * conjx(x) * conjx(x)^T
	//
	// is functioning correctly if
	//
	//   normf( v - w )
	//
	// is negligible, where
	//
	//   v = A * t
	//   w = ( A_orig + alpha * conjx(x) * conjx(x)^T ) * t
	//     =   A_orig * t + alpha * conjx(x) * conjx(x)^T * t
	//     =   A_orig * t + alpha * conjx(x) * rho
	//     =   A_orig * t + w
	//

	bli_mksymm( a );
	bli_mksymm( a_orig );
	bli_obj_set_struc( BLIS_GENERAL, *a );
	bli_obj_set_struc( BLIS_GENERAL, *a_orig );
	bli_obj_set_uplo( BLIS_DENSE, *a );
	bli_obj_set_uplo( BLIS_DENSE, *a_orig );

	bli_obj_scalar_init_detached( dt,      &rho );
	bli_obj_scalar_init_detached( dt_real, &norm );

	bli_obj_create( dt, m_a, 1, 0, 0, &t );
	bli_obj_create( dt, m_a, 1, 0, 0, &v );
	bli_obj_create( dt, m_a, 1, 0, 0, &w );

	bli_obj_alias_to( *x, xt );

	libblis_test_vobj_randomize( params, TRUE, &t );

	bli_gemv( &BLIS_ONE, a, &t, &BLIS_ZERO, &v );

	bli_dotv( &xt, &t, &rho );
	bli_mulsc( alpha, &rho );
	bli_scal2v( &rho, x, &w );
	bli_gemv( &BLIS_ONE, a_orig, &t, &BLIS_ONE, &w );

	bli_subv( &w, &v );
	bli_normfv( &v, &norm );
	bli_getsc( &norm, resid, &junk );

	bli_obj_free( &t );
	bli_obj_free( &v );
	bli_obj_free( &w );
}
Beispiel #18
0
void bli_gemmsup_ref_var1n
     (
       trans_t trans,
       obj_t*  alpha,
       obj_t*  a,
       obj_t*  b,
       obj_t*  beta,
       obj_t*  c,
       stor3_t eff_id,
       cntx_t* cntx,
       rntm_t* rntm
     )
{
#if 0
	obj_t at, bt;

	bli_obj_alias_to( a, &at );
	bli_obj_alias_to( b, &bt );

	// Induce transpositions on A and/or B if either object is marked for
	// transposition. We can induce "fast" transpositions since they objects
	// are guaranteed to not have structure or be packed.
	if ( bli_obj_has_trans( &at ) ) { bli_obj_induce_fast_trans( &at ); }
	if ( bli_obj_has_trans( &bt ) ) { bli_obj_induce_fast_trans( &bt ); }

	const num_t    dt_exec   = bli_obj_dt( c );

	const conj_t   conja     = bli_obj_conj_status( a );
	const conj_t   conjb     = bli_obj_conj_status( b );

	const dim_t    m         = bli_obj_length( c );
	const dim_t    n         = bli_obj_width( c );

	const dim_t    k         = bli_obj_width( &at );

	void* restrict buf_a     = bli_obj_buffer_at_off( &at );
	const inc_t    rs_a      = bli_obj_row_stride( &at );
	const inc_t    cs_a      = bli_obj_col_stride( &at );

	void* restrict buf_b     = bli_obj_buffer_at_off( &bt );
	const inc_t    rs_b      = bli_obj_row_stride( &bt );
	const inc_t    cs_b      = bli_obj_col_stride( &bt );

	void* restrict buf_c     = bli_obj_buffer_at_off( c );
	const inc_t    rs_c      = bli_obj_row_stride( c );
	const inc_t    cs_c      = bli_obj_col_stride( c );

	void* restrict buf_alpha = bli_obj_buffer_for_1x1( dt_exec, alpha );
	void* restrict buf_beta  = bli_obj_buffer_for_1x1( dt_exec, beta );

#else

	const num_t    dt_exec   = bli_obj_dt( c );

	const conj_t   conja     = bli_obj_conj_status( a );
	const conj_t   conjb     = bli_obj_conj_status( b );

	const dim_t    m         = bli_obj_length( c );
	const dim_t    n         = bli_obj_width( c );
	      dim_t    k;

	void* restrict buf_a = bli_obj_buffer_at_off( a );
	      inc_t    rs_a;
	      inc_t    cs_a;

	void* restrict buf_b = bli_obj_buffer_at_off( b );
	      inc_t    rs_b;
	      inc_t    cs_b;

	if ( bli_obj_has_notrans( a ) )
	{
		k     = bli_obj_width( a );

		rs_a  = bli_obj_row_stride( a );
		cs_a  = bli_obj_col_stride( a );
	}
	else // if ( bli_obj_has_trans( a ) )
	{
		// Assign the variables with an implicit transposition.
		k     = bli_obj_length( a );

		rs_a  = bli_obj_col_stride( a );
		cs_a  = bli_obj_row_stride( a );
	}

	if ( bli_obj_has_notrans( b ) )
	{
		rs_b  = bli_obj_row_stride( b );
		cs_b  = bli_obj_col_stride( b );
	}
	else // if ( bli_obj_has_trans( b ) )
	{
		// Assign the variables with an implicit transposition.
		rs_b  = bli_obj_col_stride( b );
		cs_b  = bli_obj_row_stride( b );
	}

	void* restrict buf_c     = bli_obj_buffer_at_off( c );
	const inc_t    rs_c      = bli_obj_row_stride( c );
	const inc_t    cs_c      = bli_obj_col_stride( c );

	void* restrict buf_alpha = bli_obj_buffer_for_1x1( dt_exec, alpha );
	void* restrict buf_beta  = bli_obj_buffer_for_1x1( dt_exec, beta );

#endif

	// Index into the type combination array to extract the correct
	// function pointer.
	FUNCPTR_T f = ftypes_var1n[dt_exec];

	if ( bli_is_notrans( trans ) )
	{
		// Invoke the function.
		f
		(
		  conja,
		  conjb,
		  m,
		  n,
		  k,
		  buf_alpha,
		  buf_a, rs_a, cs_a,
		  buf_b, rs_b, cs_b,
		  buf_beta,
		  buf_c, rs_c, cs_c,
		  eff_id,
		  cntx,
		  rntm
		);
	}
	else
	{
		// Invoke the function (transposing the operation).
		f
		(
		  conjb,             // swap the conj values.
		  conja,
		  n,                 // swap the m and n dimensions.
		  m,
		  k,
		  buf_alpha,
		  buf_b, cs_b, rs_b, // swap the positions of A and B.
		  buf_a, cs_a, rs_a, // swap the strides of A and B.
		  buf_beta,
		  buf_c, cs_c, rs_c, // swap the strides of C.
		  bli_stor3_trans( eff_id ), // transpose the stor3_t id.
		  cntx,
		  rntm
		);
	}
}
Beispiel #19
0
void bli_her2k_int( obj_t*   alpha_abh,
                    obj_t*   a,
                    obj_t*   bh,
                    obj_t*   alpha_bah,
                    obj_t*   b,
                    obj_t*   ah,
                    obj_t*   beta,
                    obj_t*   c,
                    her2k_t* cntl )
{
	obj_t     a_local;
	obj_t     bh_local;
	obj_t     b_local;
	obj_t     ah_local;
	obj_t     c_local;
	varnum_t  n;
	impl_t    i;
	bool_t    uplo;
	FUNCPTR_T f;

	// Check parameters.
	if ( bli_error_checking_is_enabled() )
		bli_her2k_int_check( alpha_abh, a, bh, alpha_bah, b, ah, beta, c, cntl );

	// If C has a zero dimension, return early.
	if ( bli_obj_has_zero_dim( *c ) ) return;

	// If A or B has a zero dimension, scale C by beta and return early.
	if ( bli_obj_has_zero_dim( *a  ) ||
	     bli_obj_has_zero_dim( *ah ) ||
	     bli_obj_has_zero_dim( *b  ) ||
	     bli_obj_has_zero_dim( *bh ) )
	{
		bli_scalm( beta, c );
		return;
	}

	// Alias A, B', B, and A' in case we need to update attached scalars.
	bli_obj_alias_to( *a, a_local );
	bli_obj_alias_to( *bh, bh_local );
	bli_obj_alias_to( *b, b_local );
	bli_obj_alias_to( *ah, ah_local );

	// Alias C in case we need to induce a transposition.
	bli_obj_alias_to( *c, c_local );

	// If we are about to call a leaf-level implementation, and matrix C
	// still needs a transposition, then we must induce one by swapping the
	// strides and dimensions. Note that this transposition would normally
	// be handled explicitly in the packing of C, but if C is not being
	// packed, this is our last chance to handle the transposition.
	if ( cntl_is_leaf( cntl ) && bli_obj_has_trans( *c ) )
	{
		bli_obj_induce_trans( c_local );
		bli_obj_set_onlytrans( BLIS_NO_TRANSPOSE, c_local );
	}

	// If alpha_abh is non-unit, typecast and apply it to the scalar
	// attached to B'.
	if ( !bli_obj_equals( alpha_abh, &BLIS_ONE ) )
	{
		bli_obj_scalar_apply_scalar( alpha_abh, &bh_local );
	}

	// If alpha_bah is non-unit, typecast and apply it to the scalar
	// attached to A'.
	if ( !bli_obj_equals( alpha_bah, &BLIS_ONE ) )
	{
		bli_obj_scalar_apply_scalar( alpha_bah, &ah_local );
	}

	// If beta is non-unit, typecast and apply it to the scalar
	// attached to C.
	if ( !bli_obj_equals( beta, &BLIS_ONE ) )
	{
		bli_obj_scalar_apply_scalar( beta, &c_local );
	}

	// Set a bool based on the uplo field of c.
	if ( bli_obj_root_is_lower( c_local ) ) uplo = 0;
	else                                    uplo = 1;

	// Extract the variant number and implementation type.
	n = cntl_var_num( cntl );
	i = cntl_impl_type( cntl );

	// Index into the variant array to extract the correct function pointer.
	f = vars[uplo][n][i];

	// Invoke the variant.
	f( &a_local,
	   &bh_local,
	   &b_local,
	   &ah_local,
	   &c_local,
	   cntl );
}
Beispiel #20
0
void bli_ger_int( conj_t  conjx,
                  conj_t  conjy,
                  obj_t*  alpha,
                  obj_t*  x,
                  obj_t*  y,
                  obj_t*  a,
                  cntx_t* cntx,
                  ger_t*  cntl )
{
	varnum_t  n;
	impl_t    i;
	FUNCPTR_T f;
	obj_t     alpha_local;
	obj_t     x_local;
	obj_t     y_local;
	obj_t     a_local;

	// Check parameters.
	if ( bli_error_checking_is_enabled() )
		bli_ger_check( alpha, x, y, a );

	// If A has a zero dimension, return early.
	if ( bli_obj_has_zero_dim( a ) ) return;

	// If x or y has a zero dimension, return early.
	if ( bli_obj_has_zero_dim( x ) ||
	     bli_obj_has_zero_dim( y ) ) return;

	// Alias the objects, applying conjx and conjy to x and y, respectively.
	bli_obj_alias_with_conj( conjx, x, &x_local );
	bli_obj_alias_with_conj( conjy, y, &y_local );
	bli_obj_alias_to( a, &a_local );

	// If matrix A is marked for conjugation, we interpret this as a request
	// to apply a conjugation to the other operands.
	if ( bli_obj_has_conj( &a_local ) )
	{
		bli_obj_toggle_conj( &a_local );

		bli_obj_toggle_conj( &x_local );
		bli_obj_toggle_conj( &y_local );

		bli_obj_scalar_init_detached_copy_of( bli_obj_dt( alpha ),
		                                      BLIS_CONJUGATE,
		                                      alpha,
		                                      &alpha_local );
	}
	else
	{
		bli_obj_alias_to( *alpha, alpha_local );
	}

	// If we are about the call a leaf-level implementation, and matrix A
	// still needs a transposition, then we must induce one by swapping the
	// strides and dimensions.
	if ( bli_cntl_is_leaf( cntl ) && bli_obj_has_trans( &a_local ) )
	{
		bli_obj_induce_trans( &a_local );
		bli_obj_set_onlytrans( BLIS_NO_TRANSPOSE, &a_local );
	}

	// Extract the variant number and implementation type.
	n = bli_cntl_var_num( cntl );
	i = bli_cntl_impl_type( cntl );

	// Index into the variant array to extract the correct function pointer.
	f = vars[n][i];

	// Invoke the variant.
	f( &alpha_local,
	   &x_local,
	   &y_local,
	   &a_local,
	   cntx,
	   cntl );
}