/*
 * Alloc bounce buf for read/write numbers of pages in one request
 */
static int card_init_bounce_buf(struct card_queue *cq, 
			struct memory_card *card)
{
	int ret=0;
	struct card_host *host = card->host;
	unsigned int bouncesz;

	bouncesz = CARD_QUEUE_BOUNCESZ;

	if (bouncesz > host->max_req_size)
		bouncesz = host->max_req_size;

	if (bouncesz >= PAGE_CACHE_SIZE) {
		//cq->bounce_buf = kmalloc(bouncesz, GFP_KERNEL);
		cq->bounce_buf = host->dma_buf;
		if (!cq->bounce_buf) {
			printk(KERN_WARNING "%s: unable to "
				"allocate bounce buffer\n", card->name);
		}
	}

	if (cq->bounce_buf) {
		blk_queue_bounce_limit(cq->queue, BLK_BOUNCE_HIGH);
		blk_queue_max_hw_sectors(cq->queue, bouncesz / 512);
		blk_queue_physical_block_size(cq->queue, bouncesz);
		blk_queue_max_segments(cq->queue, bouncesz / PAGE_CACHE_SIZE);
		blk_queue_max_segment_size(cq->queue, bouncesz);

		cq->queue->queuedata = cq;
		cq->req = NULL;
	
		cq->sg = kmalloc(sizeof(struct scatterlist),
			GFP_KERNEL);
		if (!cq->sg) {
			ret = -ENOMEM;
			blk_cleanup_queue(cq->queue);
			return ret;
		}
		sg_init_table(cq->sg, 1);

		cq->bounce_sg = kmalloc(sizeof(struct scatterlist) *
			bouncesz / PAGE_CACHE_SIZE, GFP_KERNEL);
		if (!cq->bounce_sg) {
			ret = -ENOMEM;
			kfree(cq->sg);
			cq->sg = NULL;
			blk_cleanup_queue(cq->queue);
			return ret;
		}
		sg_init_table(cq->bounce_sg, bouncesz / PAGE_CACHE_SIZE);
	}

	return 0;
}
Beispiel #2
0
static int pmem_attach_disk(struct device *dev,
		struct nd_namespace_common *ndns, struct pmem_device *pmem)
{
	struct gendisk *disk;

	pmem->pmem_queue = blk_alloc_queue(GFP_KERNEL);
	if (!pmem->pmem_queue)
		return -ENOMEM;

	blk_queue_make_request(pmem->pmem_queue, pmem_make_request);
	blk_queue_physical_block_size(pmem->pmem_queue, PAGE_SIZE);
	blk_queue_max_hw_sectors(pmem->pmem_queue, UINT_MAX);
	blk_queue_bounce_limit(pmem->pmem_queue, BLK_BOUNCE_ANY);
	queue_flag_set_unlocked(QUEUE_FLAG_NONROT, pmem->pmem_queue);

	disk = alloc_disk(0);
	if (!disk) {
		blk_cleanup_queue(pmem->pmem_queue);
		return -ENOMEM;
	}

	disk->major		= pmem_major;
	disk->first_minor	= 0;
	disk->fops		= &pmem_fops;
	disk->private_data	= pmem;
	disk->queue		= pmem->pmem_queue;
	disk->flags		= GENHD_FL_EXT_DEVT;
	nvdimm_namespace_disk_name(ndns, disk->disk_name);
	disk->driverfs_dev = dev;
	set_capacity(disk, (pmem->size - pmem->data_offset) / 512);
	pmem->pmem_disk = disk;

	add_disk(disk);
	revalidate_disk(disk);

	return 0;
}
Beispiel #3
0
Datei: zvol.c Projekt: alek-p/zfs
/*
 * Create a block device minor node and setup the linkage between it
 * and the specified volume.  Once this function returns the block
 * device is live and ready for use.
 */
static int
zvol_create_minor_impl(const char *name)
{
	zvol_state_t *zv;
	objset_t *os;
	dmu_object_info_t *doi;
	uint64_t volsize;
	uint64_t len;
	unsigned minor = 0;
	int error = 0;

	mutex_enter(&zvol_state_lock);

	zv = zvol_find_by_name(name);
	if (zv) {
		error = SET_ERROR(EEXIST);
		goto out;
	}

	doi = kmem_alloc(sizeof (dmu_object_info_t), KM_SLEEP);

	error = dmu_objset_own(name, DMU_OST_ZVOL, B_TRUE, zvol_tag, &os);
	if (error)
		goto out_doi;

	error = dmu_object_info(os, ZVOL_OBJ, doi);
	if (error)
		goto out_dmu_objset_disown;

	error = zap_lookup(os, ZVOL_ZAP_OBJ, "size", 8, 1, &volsize);
	if (error)
		goto out_dmu_objset_disown;

	error = zvol_find_minor(&minor);
	if (error)
		goto out_dmu_objset_disown;

	zv = zvol_alloc(MKDEV(zvol_major, minor), name);
	if (zv == NULL) {
		error = SET_ERROR(EAGAIN);
		goto out_dmu_objset_disown;
	}

	if (dmu_objset_is_snapshot(os))
		zv->zv_flags |= ZVOL_RDONLY;

	zv->zv_volblocksize = doi->doi_data_block_size;
	zv->zv_volsize = volsize;
	zv->zv_objset = os;

	set_capacity(zv->zv_disk, zv->zv_volsize >> 9);

	blk_queue_max_hw_sectors(zv->zv_queue, (DMU_MAX_ACCESS / 4) >> 9);
	blk_queue_max_segments(zv->zv_queue, UINT16_MAX);
	blk_queue_max_segment_size(zv->zv_queue, UINT_MAX);
	blk_queue_physical_block_size(zv->zv_queue, zv->zv_volblocksize);
	blk_queue_io_opt(zv->zv_queue, zv->zv_volblocksize);
	blk_queue_max_discard_sectors(zv->zv_queue,
	    (zvol_max_discard_blocks * zv->zv_volblocksize) >> 9);
	blk_queue_discard_granularity(zv->zv_queue, zv->zv_volblocksize);
	queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, zv->zv_queue);
#ifdef QUEUE_FLAG_NONROT
	queue_flag_set_unlocked(QUEUE_FLAG_NONROT, zv->zv_queue);
#endif
#ifdef QUEUE_FLAG_ADD_RANDOM
	queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, zv->zv_queue);
#endif

	if (spa_writeable(dmu_objset_spa(os))) {
		if (zil_replay_disable)
			zil_destroy(dmu_objset_zil(os), B_FALSE);
		else
			zil_replay(os, zv, zvol_replay_vector);
	}

	/*
	 * When udev detects the addition of the device it will immediately
	 * invoke blkid(8) to determine the type of content on the device.
	 * Prefetching the blocks commonly scanned by blkid(8) will speed
	 * up this process.
	 */
	len = MIN(MAX(zvol_prefetch_bytes, 0), SPA_MAXBLOCKSIZE);
	if (len > 0) {
		dmu_prefetch(os, ZVOL_OBJ, 0, 0, len, ZIO_PRIORITY_SYNC_READ);
		dmu_prefetch(os, ZVOL_OBJ, 0, volsize - len, len,
			ZIO_PRIORITY_SYNC_READ);
	}

	zv->zv_objset = NULL;
out_dmu_objset_disown:
	dmu_objset_disown(os, zvol_tag);
out_doi:
	kmem_free(doi, sizeof (dmu_object_info_t));
out:

	if (error == 0) {
		zvol_insert(zv);
		/*
		 * Drop the lock to prevent deadlock with sys_open() ->
		 * zvol_open(), which first takes bd_disk->bd_mutex and then
		 * takes zvol_state_lock, whereas this code path first takes
		 * zvol_state_lock, and then takes bd_disk->bd_mutex.
		 */
		mutex_exit(&zvol_state_lock);
		add_disk(zv->zv_disk);
	} else {
		mutex_exit(&zvol_state_lock);
	}

	return (SET_ERROR(error));
}
Beispiel #4
0
static int null_add_dev(void)
{
	struct gendisk *disk;
	struct nullb *nullb;
	sector_t size;
	int rv;

	nullb = kzalloc_node(sizeof(*nullb), GFP_KERNEL, home_node);
	if (!nullb) {
		rv = -ENOMEM;
		goto out;
	}

	spin_lock_init(&nullb->lock);

	if (queue_mode == NULL_Q_MQ && use_per_node_hctx)
		submit_queues = nr_online_nodes;

	rv = setup_queues(nullb);
	if (rv)
		goto out_free_nullb;

	if (queue_mode == NULL_Q_MQ) {
		nullb->tag_set.ops = &null_mq_ops;
		nullb->tag_set.nr_hw_queues = submit_queues;
		nullb->tag_set.queue_depth = hw_queue_depth;
		nullb->tag_set.numa_node = home_node;
		nullb->tag_set.cmd_size	= sizeof(struct nullb_cmd);
		nullb->tag_set.flags = BLK_MQ_F_SHOULD_MERGE;
		nullb->tag_set.driver_data = nullb;

		rv = blk_mq_alloc_tag_set(&nullb->tag_set);
		if (rv)
			goto out_cleanup_queues;

		nullb->q = blk_mq_init_queue(&nullb->tag_set);
		if (IS_ERR(nullb->q)) {
			rv = -ENOMEM;
			goto out_cleanup_tags;
		}
	} else if (queue_mode == NULL_Q_BIO) {
		nullb->q = blk_alloc_queue_node(GFP_KERNEL, home_node);
		if (!nullb->q) {
			rv = -ENOMEM;
			goto out_cleanup_queues;
		}
		blk_queue_make_request(nullb->q, null_queue_bio);
		rv = init_driver_queues(nullb);
		if (rv)
			goto out_cleanup_blk_queue;
	} else {
		nullb->q = blk_init_queue_node(null_request_fn, &nullb->lock, home_node);
		if (!nullb->q) {
			rv = -ENOMEM;
			goto out_cleanup_queues;
		}
		blk_queue_prep_rq(nullb->q, null_rq_prep_fn);
		blk_queue_softirq_done(nullb->q, null_softirq_done_fn);
		rv = init_driver_queues(nullb);
		if (rv)
			goto out_cleanup_blk_queue;
	}

	nullb->q->queuedata = nullb;
	queue_flag_set_unlocked(QUEUE_FLAG_NONROT, nullb->q);
	queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, nullb->q);

	disk = nullb->disk = alloc_disk_node(1, home_node);
	if (!disk) {
		rv = -ENOMEM;
		goto out_cleanup_blk_queue;
	}

	mutex_lock(&lock);
	list_add_tail(&nullb->list, &nullb_list);
	nullb->index = nullb_indexes++;
	mutex_unlock(&lock);

	blk_queue_logical_block_size(nullb->q, bs);
	blk_queue_physical_block_size(nullb->q, bs);

	size = gb * 1024 * 1024 * 1024ULL;
	sector_div(size, bs);
	set_capacity(disk, size);

	disk->flags |= GENHD_FL_EXT_DEVT | GENHD_FL_SUPPRESS_PARTITION_INFO;
	disk->major		= null_major;
	disk->first_minor	= nullb->index;
	disk->fops		= &null_fops;
	disk->private_data	= nullb;
	disk->queue		= nullb->q;
	sprintf(disk->disk_name, "nullb%d", nullb->index);
	add_disk(disk);
	return 0;

out_cleanup_blk_queue:
	blk_cleanup_queue(nullb->q);
out_cleanup_tags:
	if (queue_mode == NULL_Q_MQ)
		blk_mq_free_tag_set(&nullb->tag_set);
out_cleanup_queues:
	cleanup_queues(nullb);
out_free_nullb:
	kfree(nullb);
out:
	return rv;
}
Beispiel #5
0
static int
__zvol_create_minor(const char *name)
{
	zvol_state_t *zv;
	objset_t *os;
	dmu_object_info_t *doi;
	uint64_t volsize;
	unsigned minor = 0;
	int error = 0;

	ASSERT(MUTEX_HELD(&zvol_state_lock));

	zv = zvol_find_by_name(name);
	if (zv) {
		error = EEXIST;
		goto out;
	}

	doi = kmem_alloc(sizeof(dmu_object_info_t), KM_SLEEP);

	error = dmu_objset_own(name, DMU_OST_ZVOL, B_TRUE, zvol_tag, &os);
	if (error)
		goto out_doi;

    /* Make sure we have the key loaded if we need one. */
    error = dsl_crypto_key_inherit(name);
    if (error != 0 && error != EEXIST)
		goto out_dmu_objset_disown;

	error = dmu_object_info(os, ZVOL_OBJ, doi);
	if (error)
		goto out_dmu_objset_disown;

	error = zap_lookup(os, ZVOL_ZAP_OBJ, "size", 8, 1, &volsize);
	if (error)
		goto out_dmu_objset_disown;

	error = zvol_find_minor(&minor);
	if (error)
		goto out_dmu_objset_disown;

	zv = zvol_alloc(MKDEV(zvol_major, minor), name);
	if (zv == NULL) {
		error = EAGAIN;
		goto out_dmu_objset_disown;
	}

	if (dmu_objset_is_snapshot(os))
		zv->zv_flags |= ZVOL_RDONLY;

	zv->zv_volblocksize = doi->doi_data_block_size;
	zv->zv_volsize = volsize;
	zv->zv_objset = os;

	set_capacity(zv->zv_disk, zv->zv_volsize >> 9);

	blk_queue_max_hw_sectors(zv->zv_queue, UINT_MAX);
	blk_queue_max_segments(zv->zv_queue, UINT16_MAX);
	blk_queue_max_segment_size(zv->zv_queue, UINT_MAX);
	blk_queue_physical_block_size(zv->zv_queue, zv->zv_volblocksize);
	blk_queue_io_opt(zv->zv_queue, zv->zv_volblocksize);
#ifdef HAVE_BLK_QUEUE_DISCARD
	blk_queue_max_discard_sectors(zv->zv_queue,
	    (zvol_max_discard_blocks * zv->zv_volblocksize) >> 9);
	blk_queue_discard_granularity(zv->zv_queue, zv->zv_volblocksize);
	queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, zv->zv_queue);
#endif
#ifdef HAVE_BLK_QUEUE_NONROT
	queue_flag_set_unlocked(QUEUE_FLAG_NONROT, zv->zv_queue);
#endif

	if (zil_replay_disable)
		zil_destroy(dmu_objset_zil(os), B_FALSE);
	else
		zil_replay(os, zv, zvol_replay_vector);

out_dmu_objset_disown:
	dmu_objset_disown(os, zvol_tag);
	zv->zv_objset = NULL;
out_doi:
	kmem_free(doi, sizeof(dmu_object_info_t));
out:

	if (error == 0) {
		zvol_insert(zv);
		add_disk(zv->zv_disk);
	}

	return (error);
}
Beispiel #6
0
int nbdx_register_block_device(struct nbdx_file *nbdx_file)
{
	sector_t size = nbdx_file->stbuf.st_size;
	int page_size = PAGE_SIZE;
	int err = 0;

	pr_debug("%s called\n", __func__);

	nbdx_file->major = nbdx_major;

#if LINUX_VERSION_CODE < KERNEL_VERSION(3, 16, 0)
	nbdx_mq_reg.nr_hw_queues = submit_queues;

	nbdx_file->queue = blk_mq_init_queue(&nbdx_mq_reg, nbdx_file);
#else
	nbdx_file->tag_set.ops = &nbdx_mq_ops;
	nbdx_file->tag_set.nr_hw_queues = submit_queues;
	nbdx_file->tag_set.queue_depth = NBDX_QUEUE_DEPTH;
	nbdx_file->tag_set.numa_node = NUMA_NO_NODE;
	nbdx_file->tag_set.cmd_size	= sizeof(struct raio_io_u);
	nbdx_file->tag_set.flags = BLK_MQ_F_SHOULD_MERGE;
	nbdx_file->tag_set.driver_data = nbdx_file;

	err = blk_mq_alloc_tag_set(&nbdx_file->tag_set);
	if (err)
		goto out;

	nbdx_file->queue = blk_mq_init_queue(&nbdx_file->tag_set);
#endif
	if (IS_ERR(nbdx_file->queue)) {
		pr_err("%s: Failed to allocate blk queue ret=%ld\n",
		       __func__, PTR_ERR(nbdx_file->queue));
		err = PTR_ERR(nbdx_file->queue);
		goto blk_mq_init;
	}

	nbdx_file->queue->queuedata = nbdx_file;
	queue_flag_set_unlocked(QUEUE_FLAG_NONROT, nbdx_file->queue);
	queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, nbdx_file->queue);

	nbdx_file->disk = alloc_disk_node(1, NUMA_NO_NODE);
	if (!nbdx_file->disk) {
		pr_err("%s: Failed to allocate disk node\n", __func__);
		err = -ENOMEM;
		goto alloc_disk;
	}

	nbdx_file->disk->major = nbdx_file->major;
	nbdx_file->disk->first_minor = nbdx_file->index;
	nbdx_file->disk->fops = &nbdx_ops;
	nbdx_file->disk->queue = nbdx_file->queue;
	nbdx_file->disk->private_data = nbdx_file;
	blk_queue_logical_block_size(nbdx_file->queue, NBDX_SECT_SIZE);
	blk_queue_physical_block_size(nbdx_file->queue, NBDX_SECT_SIZE);
	sector_div(page_size, NBDX_SECT_SIZE);
	blk_queue_max_hw_sectors(nbdx_file->queue, page_size * MAX_SGL_LEN);
	sector_div(size, NBDX_SECT_SIZE);
	set_capacity(nbdx_file->disk, size);
	sscanf(nbdx_file->dev_name, "%s", nbdx_file->disk->disk_name);
	add_disk(nbdx_file->disk);
	goto out;

alloc_disk:
	blk_cleanup_queue(nbdx_file->queue);
blk_mq_init:
#if LINUX_VERSION_CODE >= KERNEL_VERSION(3, 16, 0)
	blk_mq_free_tag_set(&nbdx_file->tag_set);
#endif
out:
	return err;
}
Beispiel #7
0
static int null_add_dev(void)
{
	struct nullb *nullb;
	int rv;

	nullb = kzalloc_node(sizeof(*nullb), GFP_KERNEL, home_node);
	if (!nullb) {
		rv = -ENOMEM;
		goto out;
	}

	spin_lock_init(&nullb->lock);

	if (queue_mode == NULL_Q_MQ && use_per_node_hctx)
		submit_queues = nr_online_nodes;

	rv = setup_queues(nullb);
	if (rv)
		goto out_free_nullb;

	if (queue_mode == NULL_Q_MQ) {
		nullb->tag_set.ops = &null_mq_ops;
		nullb->tag_set.nr_hw_queues = submit_queues;
		nullb->tag_set.queue_depth = hw_queue_depth;
		nullb->tag_set.numa_node = home_node;
		nullb->tag_set.cmd_size	= sizeof(struct nullb_cmd);
		nullb->tag_set.flags = BLK_MQ_F_SHOULD_MERGE;
		nullb->tag_set.driver_data = nullb;

		rv = blk_mq_alloc_tag_set(&nullb->tag_set);
		if (rv)
			goto out_cleanup_queues;

		nullb->q = blk_mq_init_queue(&nullb->tag_set);
		if (IS_ERR(nullb->q)) {
			rv = -ENOMEM;
			goto out_cleanup_tags;
		}
	} else if (queue_mode == NULL_Q_BIO) {
		nullb->q = blk_alloc_queue_node(GFP_KERNEL, home_node);
		if (!nullb->q) {
			rv = -ENOMEM;
			goto out_cleanup_queues;
		}
		blk_queue_make_request(nullb->q, null_queue_bio);
		rv = init_driver_queues(nullb);
		if (rv)
			goto out_cleanup_blk_queue;
	} else {
		nullb->q = blk_init_queue_node(null_request_fn, &nullb->lock, home_node);
		if (!nullb->q) {
			rv = -ENOMEM;
			goto out_cleanup_queues;
		}
		blk_queue_prep_rq(nullb->q, null_rq_prep_fn);
		blk_queue_softirq_done(nullb->q, null_softirq_done_fn);
		rv = init_driver_queues(nullb);
		if (rv)
			goto out_cleanup_blk_queue;
	}

	nullb->q->queuedata = nullb;
	queue_flag_set_unlocked(QUEUE_FLAG_NONROT, nullb->q);
	queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, nullb->q);

	mutex_lock(&lock);
	nullb->index = nullb_indexes++;
	mutex_unlock(&lock);

	blk_queue_logical_block_size(nullb->q, bs);
	blk_queue_physical_block_size(nullb->q, bs);

	sprintf(nullb->disk_name, "nullb%d", nullb->index);

	if (use_lightnvm)
		rv = null_nvm_register(nullb);
	else
		rv = null_gendisk_register(nullb);

	if (rv)
		goto out_cleanup_blk_queue;

	mutex_lock(&lock);
	list_add_tail(&nullb->list, &nullb_list);
	mutex_unlock(&lock);

	return 0;
out_cleanup_blk_queue:
	blk_cleanup_queue(nullb->q);
out_cleanup_tags:
	if (queue_mode == NULL_Q_MQ)
		blk_mq_free_tag_set(&nullb->tag_set);
out_cleanup_queues:
	cleanup_queues(nullb);
out_free_nullb:
	kfree(nullb);
out:
	return rv;
}
Beispiel #8
0
static int null_add_dev(void)
{
	struct gendisk *disk;
	struct nullb *nullb;
	sector_t size;

	nullb = kzalloc_node(sizeof(*nullb), GFP_KERNEL, home_node);
	if (!nullb)
		return -ENOMEM;

	spin_lock_init(&nullb->lock);

	if (setup_queues(nullb))
		goto err;

	if (queue_mode == NULL_Q_MQ) {
		null_mq_reg.numa_node = home_node;
		null_mq_reg.queue_depth = hw_queue_depth;

		if (use_per_node_hctx) {
			null_mq_reg.ops->alloc_hctx = null_alloc_hctx;
			null_mq_reg.ops->free_hctx = null_free_hctx;

			null_mq_reg.nr_hw_queues = nr_online_nodes;
		} else {
			null_mq_reg.ops->alloc_hctx = blk_mq_alloc_single_hw_queue;
			null_mq_reg.ops->free_hctx = blk_mq_free_single_hw_queue;

			null_mq_reg.nr_hw_queues = submit_queues;
		}

		nullb->q = blk_mq_init_queue(&null_mq_reg, nullb);
	} else if (queue_mode == NULL_Q_BIO) {
		nullb->q = blk_alloc_queue_node(GFP_KERNEL, home_node);
		blk_queue_make_request(nullb->q, null_queue_bio);
	} else {
		nullb->q = blk_init_queue_node(null_request_fn, &nullb->lock, home_node);
		blk_queue_prep_rq(nullb->q, null_rq_prep_fn);
		if (nullb->q)
			blk_queue_softirq_done(nullb->q, null_softirq_done_fn);
	}

	if (!nullb->q)
		goto queue_fail;

	nullb->q->queuedata = nullb;
	queue_flag_set_unlocked(QUEUE_FLAG_NONROT, nullb->q);

	disk = nullb->disk = alloc_disk_node(1, home_node);
	if (!disk) {
queue_fail:
		if (queue_mode == NULL_Q_MQ)
			blk_mq_free_queue(nullb->q);
		else
			blk_cleanup_queue(nullb->q);
		cleanup_queues(nullb);
err:
		kfree(nullb);
		return -ENOMEM;
	}

	mutex_lock(&lock);
	list_add_tail(&nullb->list, &nullb_list);
	nullb->index = nullb_indexes++;
	mutex_unlock(&lock);

	blk_queue_logical_block_size(nullb->q, bs);
	blk_queue_physical_block_size(nullb->q, bs);

	size = gb * 1024 * 1024 * 1024ULL;
	sector_div(size, bs);
	set_capacity(disk, size);

	disk->flags |= GENHD_FL_EXT_DEVT;
	disk->major		= null_major;
	disk->first_minor	= nullb->index;
	disk->fops		= &null_fops;
	disk->private_data	= nullb;
	disk->queue		= nullb->q;
	sprintf(disk->disk_name, "nullb%d", nullb->index);
	add_disk(disk);
	return 0;
}
Beispiel #9
0
int td_linux_block_create(struct td_osdev *dev)
{
	int rc;
	struct request_queue *queue;
	unsigned bio_sector_size = dev->block_params.bio_sector_size;
	unsigned hw_sector_size = dev->block_params.hw_sector_size;

	/* very simple sector size support */
	if (!bio_sector_size || bio_sector_size & 511 || bio_sector_size > 4096) {
		td_os_err(dev, "bio sector size of %u is not supported\n", bio_sector_size);
		return -EINVAL;
	}

	/* MetaData is reported here */
	if (hw_sector_size == 520)
		hw_sector_size = 512;
	if (!hw_sector_size || hw_sector_size & 511 || hw_sector_size > 4096) {
		td_os_err(dev, "hw sector size of %u is not supported\n", hw_sector_size);
		return -EINVAL;
	}

	td_os_notice(dev, " - Set capacity to %llu (%u bytes/sector)\n",
		dev->block_params.capacity, dev->block_params.hw_sector_size);

	/* create a new bio queue */
	queue = blk_alloc_queue(GFP_KERNEL);
	if (!queue) {
		td_os_err(dev, "Error allocating disk queue.\n");
		rc = -ENOMEM;
		goto error_alloc_queue;
	}

#ifdef QUEUE_FLAG_NONROT
	queue_flag_set_unlocked(QUEUE_FLAG_NONROT, queue);
#endif
	
	switch (dev->type) {
	case TD_OSDEV_DEVICE:
		blk_queue_make_request(queue, td_device_make_request);
		dev->_bio_error = td_device_bio_error;
		break;
	case TD_OSDEV_RAID:
		blk_queue_make_request(queue, td_raid_make_request);
		dev->_bio_error = td_raid_bio_error;
		break;
		
	default:
		td_os_err(dev, "Unkonwn OS Type, cannot register block request handler\n");
		goto error_config_queue;
	}
	queue->queuedata = dev;

#if defined QUEUE_FLAG_PLUGGED 
	queue->unplug_fn = td_device_queue_unplug;
#endif

	/* configure queue ordering */

	/* in QUEUE_ORDERED_DRAIN we will get BARRIERS after the queue has
	 * been drained. */
#if defined KABI__blk_queue_ordered

#if KABI__blk_queue_ordered == 2
	blk_queue_ordered(queue, QUEUE_ORDERED_DRAIN);
#elif KABI__blk_queue_ordered == 3
	blk_queue_ordered(queue, QUEUE_ORDERED_DRAIN, NULL);
#else
#error unhandled value of KABI__blk_queue_ordered
#endif

#elif defined KABI__blk_queue_flush
	/*
	 * blk_queue_ordered was replaced with blk_queue_flush 
	 * The default implementation is QUEUE_ORDERED_DRAIN
	 */
	blk_queue_flush(queue, 0);
#else
#error undefined KABI__blk_queue_flush or KABI__blk_queue_ordered
#endif

	/* max out the throttling */
#ifdef KABI__blk_queue_max_hw_sectors
	blk_queue_max_hw_sectors(queue, dev->block_params.bio_max_bytes/512);
#elif defined KABI__blk_queue_max_sectors
	blk_queue_max_sectors(queue, dev->block_params.bio_max_bytes/512);
#else
	td_os_err(dev, "No kernel API for maximum sectors\n");
#endif

#if defined KABI__blk_queue_max_segments
	blk_queue_max_segments(queue, BLK_MAX_SEGMENTS);
#elif defined KABI__blk_queue_max_phys_segments
	blk_queue_max_phys_segments(queue, MAX_SEGMENT_SIZE);
	blk_queue_max_hw_segments(queue, MAX_SEGMENT_SIZE);
#else
	td_os_err(dev, "No kernel API for maximum segments\n");
#endif

	blk_queue_max_segment_size(queue, dev->block_params.bio_max_bytes);

	blk_queue_bounce_limit(queue, BLK_BOUNCE_ANY);

	/* setup paged based access */
	td_os_info(dev, "Set queue physical block size to %u\n", hw_sector_size);
#ifdef KABI__blk_queue_physical_block_size
	blk_queue_physical_block_size(queue, hw_sector_size);
#elif defined KABI__blk_queue_hardsect_size
	blk_queue_hardsect_size(queue, hw_sector_size);
#else
	td_os_err(dev, "No kernel API for physical sector size\n");
#endif

#ifdef KABI__blk_queue_logical_block_size
	td_os_info(dev, "Set queue logical block size to %u\n", bio_sector_size);
	blk_queue_logical_block_size(queue, bio_sector_size);
#else
	td_os_err(dev, "No kernel API for logical block size\n");
#endif
#ifdef KABI__blk_queue_io_min
	td_os_info(dev, "Set queue io_min to %u\n", bio_sector_size);
	blk_queue_io_min(queue, bio_sector_size);
#else
	td_os_err(dev, "No kernel API for minimum IO size\n");
#endif
#ifdef KABI__blk_queue_io_opt
	td_os_info(dev, "Set queue io_opt to %u\n", dev->block_params.bio_max_bytes);
	blk_queue_io_opt(queue,  dev->block_params.bio_max_bytes);
#else
	td_os_err(dev, "No kernel API for optimal IO size\n");
#endif

#if 0
	if (dev->block_params.discard)
	{
		int did_something = 0;
#if defined KABI__blk_queue_discard_granularity
		queue->limits.discard_granularity = bio_sector_size;
		did_something++;
#endif
#ifdef KABI__blk_queue_max_discard_sectors
		/* 0xFFFF (max sector size of chunk on trim) * 64  * # SSD */
		blk_queue_max_discard_sectors(queue, TD_MAX_DISCARD_LBA_COUNT * 2);
		did_something++;
#endif
#ifdef KABI__blk_queue_discard_zeroes_data
		queue->limits.discard_zeroes_data = 1;
		did_something++;
#endif
#ifdef KABI__queue_flag_set_unlocked
		queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, queue);
		did_something++;
#endif
		/* Maybe some day.. But not today. 
		queue_flag_set_unlocked(QUEUE_FLAG_SECDISCARD, queue);
		*/
		if (did_something)
			td_os_info(dev, "Enabling discard support\n");
		else
			td_os_notice(dev, "No kernel API for discard support\n");
	} else {
		td_os_info(dev, "No DISCARD support enabled\n");
	}
#else
	/* bug 7444 */
	if (dev->block_params.discard)
		td_os_info(dev, "Device supports DISCARD but is currently being forced disabled\n");
#endif

	/*  assign */
	dev->queue = queue;

	return 0;

error_config_queue:
	blk_cleanup_queue(dev->queue);
	dev->queue = NULL;

error_alloc_queue:
	return rc;
}