/**
 * smix(B, r, N, V, XY):
 * Compute B = SMix_r(B, N).  The input B must be 128r bytes in length; the
 * temporary storage V must be 128rN bytes in length; the temporary storage
 * XY must be 256r bytes in length.  The value N must be a power of 2.
 */
static void
smix(uint8_t * B, size_t r, uint64_t N, uint8_t * V, uint8_t * XY)
{
	uint8_t * X = XY;
	uint8_t * Y = &XY[128 * r];
	uint64_t i;
	uint64_t j;

	/* 1: X <-- B */
	blkcpy(X, B, 128 * r);

	/* 2: for i = 0 to N - 1 do */
	for (i = 0; i < N; i++) {
		/* 3: V_i <-- X */
		blkcpy(&V[i * (128 * r)], X, 128 * r);

		/* 4: X <-- H(X) */
		blockmix_salsa8(X, Y, r);
	}

	/* 6: for i = 0 to N - 1 do */
	for (i = 0; i < N; i++) {
		/* 7: j <-- Integerify(X) mod N */
		j = integerify(X, r) & (N - 1);

		/* 8: X <-- H(X \xor V_j) */
		blkxor(X, &V[j * (128 * r)], 128 * r);
		blockmix_salsa8(X, Y, r);
	}

	/* 10: B' <-- X */
	blkcpy(B, X, 128 * r);
}
/**
 * blockmix_salsa8(Bin, Bout, X, r):
 * Compute Bout = BlockMix_{salsa20/8, r}(Bin).  The input Bin must be 128r
 * bytes in length; the output Bout must also be the same size.  The
 * temporary space X must be 64 bytes.
 */
static void
blockmix_salsa8(__m128i * Bin, __m128i * Bout, __m128i * X, size_t r)
{
	size_t i;

	/* 1: X <-- B_{2r - 1} */
	blkcpy(X, &Bin[8 * r - 4], 64);

	/* 2: for i = 0 to 2r - 1 do */
	for (i = 0; i < r; i++) {
		/* 3: X <-- H(X \xor B_i) */
		blkxor(X, &Bin[i * 8], 64);
		salsa20_8(X);

		/* 4: Y_i <-- X */
		/* 6: B' <-- (Y_0, Y_2 ... Y_{2r-2}, Y_1, Y_3 ... Y_{2r-1}) */
		blkcpy(&Bout[i * 4], X, 64);

		/* 3: X <-- H(X \xor B_i) */
		blkxor(X, &Bin[i * 8 + 4], 64);
		salsa20_8(X);

		/* 4: Y_i <-- X */
		/* 6: B' <-- (Y_0, Y_2 ... Y_{2r-2}, Y_1, Y_3 ... Y_{2r-1}) */
		blkcpy(&Bout[(r + i) * 4], X, 64);
	}
}
/**
 * blockmix_salsa8(Bin, Bout, X, r):
 * Compute Bout = BlockMix_{salsa20/8, r}(Bin).  The input Bin must be 128r
 * bytes in length; the output Bout must also be the same size.  The
 * temporary space X must be 64 bytes.
 */
static void
blockmix_salsa8(uint32_t * Bin, uint32_t * Bout, uint32_t * X, size_t r)
{
	size_t i;

	/* 1: X <-- B_{2r - 1} */
	blkcpy(X, &Bin[(2 * r - 1) * 16], 64);

	/* 2: for i = 0 to 2r - 1 do */
	for (i = 0; i < 2 * r; i += 2) {
		/* 3: X <-- H(X \xor B_i) */
		blkxor(X, &Bin[i * 16], 64);
		salsa20_8(X);

		/* 4: Y_i <-- X */
		/* 6: B' <-- (Y_0, Y_2 ... Y_{2r-2}, Y_1, Y_3 ... Y_{2r-1}) */
		blkcpy(&Bout[i * 8], X, 64);

		/* 3: X <-- H(X \xor B_i) */
		blkxor(X, &Bin[i * 16 + 16], 64);
		salsa20_8(X);

		/* 4: Y_i <-- X */
		/* 6: B' <-- (Y_0, Y_2 ... Y_{2r-2}, Y_1, Y_3 ... Y_{2r-1}) */
		blkcpy(&Bout[i * 8 + r * 16], X, 64);
	}
}
/**
 * blockmix_salsa8(B, Y, r):
 * Compute B = BlockMix_{salsa20/8, r}(B).  The input B must be 128r bytes in
 * length; the temporary space Y must also be the same size.
 */
static void
blockmix_salsa8(uint8_t * B, uint8_t * Y, size_t r)
{
	uint8_t X[64];
	size_t i;

	/* 1: X <-- B_{2r - 1} */
	blkcpy(X, &B[(2 * r - 1) * 64], 64);

	/* 2: for i = 0 to 2r - 1 do */
	for (i = 0; i < 2 * r; i++) {
		/* 3: X <-- H(X \xor B_i) */
		blkxor(X, &B[i * 64], 64);
		salsa20_8(X);

		/* 4: Y_i <-- X */
		blkcpy(&Y[i * 64], X, 64);
	}

	/* 6: B' <-- (Y_0, Y_2 ... Y_{2r-2}, Y_1, Y_3 ... Y_{2r-1}) */
	for (i = 0; i < r; i++)
		blkcpy(&B[i * 64], &Y[(i * 2) * 64], 64);
	for (i = 0; i < r; i++)
		blkcpy(&B[(i + r) * 64], &Y[(i * 2 + 1) * 64], 64);
}
/**
 * smix(B, r, N, V, XY):
 * Compute B = SMix_r(B, N).  The input B must be 128r bytes in length;
 * the temporary storage V must be 128rN bytes in length; the temporary
 * storage XY must be 256r + 64 bytes in length.  The value N must be a
 * power of 2 greater than 1.  The arrays B, V, and XY must be aligned to a
 * multiple of 64 bytes.
 */
static void
smix(uint8_t * B, size_t r, uint64_t N, void * V, void * XY)
{
	__m128i * X = XY;
	__m128i * Y = (void *)((uintptr_t)(XY) + 128 * r);
	__m128i * Z = (void *)((uintptr_t)(XY) + 256 * r);
	uint32_t * X32 = (void *)X;
	uint64_t i, j;
	size_t k;

	/* 1: X <-- B */
	for (k = 0; k < 2 * r; k++) {
		for (i = 0; i < 16; i++) {
			X32[k * 16 + i] =
			    le32dec(&B[(k * 16 + (i * 5 % 16)) * 4]);
		}
	}

	/* 2: for i = 0 to N - 1 do */
	for (i = 0; i < N; i += 2) {
		/* 3: V_i <-- X */
		blkcpy((void *)((uintptr_t)(V) + i * 128 * r), X, 128 * r);

		/* 4: X <-- H(X) */
		blockmix_salsa8(X, Y, Z, r);

		/* 3: V_i <-- X */
		blkcpy((void *)((uintptr_t)(V) + (i + 1) * 128 * r),
		    Y, 128 * r);

		/* 4: X <-- H(X) */
		blockmix_salsa8(Y, X, Z, r);
	}

	/* 6: for i = 0 to N - 1 do */
	for (i = 0; i < N; i += 2) {
		/* 7: j <-- Integerify(X) mod N */
		j = integerify(X, r) & (N - 1);

		/* 8: X <-- H(X \xor V_j) */
		blkxor(X, (void *)((uintptr_t)(V) + j * 128 * r), 128 * r);
		blockmix_salsa8(X, Y, Z, r);

		/* 7: j <-- Integerify(X) mod N */
		j = integerify(Y, r) & (N - 1);

		/* 8: X <-- H(X \xor V_j) */
		blkxor(Y, (void *)((uintptr_t)(V) + j * 128 * r), 128 * r);
		blockmix_salsa8(Y, X, Z, r);
	}

	/* 10: B' <-- X */
	for (k = 0; k < 2 * r; k++) {
		for (i = 0; i < 16; i++) {
			le32enc(&B[(k * 16 + (i * 5 % 16)) * 4],
			    X32[k * 16 + i]);
		}
	}
}
Beispiel #6
0
/**
 * crypto_scrypt_smix(B, r, N, V, XY):
 * Compute B = SMix_r(B, N).  The input B must be 128r bytes in length;
 * the temporary storage V must be 128rN bytes in length; the temporary
 * storage XY must be 256r + 64 bytes in length.  The value N must be a
 * power of 2 greater than 1.  The arrays B, V, and XY must be aligned to a
 * multiple of 64 bytes.
 */
void
crypto_scrypt_smix(uint8_t * B, size_t r, uint64_t N, void * _V, void * XY)
{
	uint32_t * X = XY;
	uint32_t * Y = (void *)((uint8_t *)(XY) + 128 * r);
	uint32_t * Z = (void *)((uint8_t *)(XY) + 256 * r);
	uint32_t * V = _V;
	uint64_t i;
	uint64_t j;
	size_t k;

	/* 1: X <-- B */
	for (k = 0; k < 32 * r; k++)
		X[k] = le32dec(&B[4 * k]);

	/* 2: for i = 0 to N - 1 do */
	for (i = 0; i < N; i += 2) {
		/* 3: V_i <-- X */
		blkcpy(&V[i * (32 * r)], X, 128 * r);

		/* 4: X <-- H(X) */
		blockmix_salsa8(X, Y, Z, r);

		/* 3: V_i <-- X */
		blkcpy(&V[(i + 1) * (32 * r)], Y, 128 * r);

		/* 4: X <-- H(X) */
		blockmix_salsa8(Y, X, Z, r);
	}

	/* 6: for i = 0 to N - 1 do */
	for (i = 0; i < N; i += 2) {
		/* 7: j <-- Integerify(X) mod N */
		j = integerify(X, r) & (N - 1);

		/* 8: X <-- H(X \xor V_j) */
		blkxor(X, &V[j * (32 * r)], 128 * r);
		blockmix_salsa8(X, Y, Z, r);

		/* 7: j <-- Integerify(X) mod N */
		j = integerify(Y, r) & (N - 1);

		/* 8: X <-- H(X \xor V_j) */
		blkxor(Y, &V[j * (32 * r)], 128 * r);
		blockmix_salsa8(Y, X, Z, r);
	}

	/* 10: B' <-- X */
	for (k = 0; k < 32 * r; k++)
		le32enc(&B[4 * k], X[k]);
}
Beispiel #7
0
/*
 * Left shift a command argument list, discarding
 * the first c arguments.  Used in "shift" commands
 * as well as by commands like "repeat".
 */
void
lshift(Char **v, int c)
{
    Char **u;

    for (u = v; *u && --c >= 0; u++)
	xfree(*u);
    (void) blkcpy(v, u);
}
Beispiel #8
0
/*
 * Left shift a command argument list, discarding
 * the first c arguments.  Used in "shift" commands
 * as well as by commands like "repeat".
 */
void
lshift(Char **v, size_t c)
{
    Char **u;

    for (u = v; *u && c-- > 0; u++)
	free(*u);
    (void)blkcpy(v, u);
}
Beispiel #9
0
/**
 * salsa20_8(B):
 * Apply the salsa20/8 core to the provided block.
 */
static void
salsa20_8(uint32_t B[16]) {
    uint32_t x[16];
    size_t i;

    blkcpy(x, B, 64);
    for (i = 0; i < 8; i += 2) {
#define R(a, b) (((a) << (b)) | ((a) >> (32 - (b))))
        /* Operate on columns. */
        x[4] ^= R(x[0] + x[12], 7);
        x[8] ^= R(x[4] + x[0], 9);
        x[12] ^= R(x[8] + x[4], 13);
        x[0] ^= R(x[12] + x[8], 18);

        x[9] ^= R(x[5] + x[1], 7);
        x[13] ^= R(x[9] + x[5], 9);
        x[1] ^= R(x[13] + x[9], 13);
        x[5] ^= R(x[1] + x[13], 18);

        x[14] ^= R(x[10] + x[6], 7);
        x[2] ^= R(x[14] + x[10], 9);
        x[6] ^= R(x[2] + x[14], 13);
        x[10] ^= R(x[6] + x[2], 18);

        x[3] ^= R(x[15] + x[11], 7);
        x[7] ^= R(x[3] + x[15], 9);
        x[11] ^= R(x[7] + x[3], 13);
        x[15] ^= R(x[11] + x[7], 18);

        /* Operate on rows. */
        x[1] ^= R(x[0] + x[3], 7);
        x[2] ^= R(x[1] + x[0], 9);
        x[3] ^= R(x[2] + x[1], 13);
        x[0] ^= R(x[3] + x[2], 18);

        x[6] ^= R(x[5] + x[4], 7);
        x[7] ^= R(x[6] + x[5], 9);
        x[4] ^= R(x[7] + x[6], 13);
        x[5] ^= R(x[4] + x[7], 18);

        x[11] ^= R(x[10] + x[9], 7);
        x[8] ^= R(x[11] + x[10], 9);
        x[9] ^= R(x[8] + x[11], 13);
        x[10] ^= R(x[9] + x[8], 18);

        x[12] ^= R(x[15] + x[14], 7);
        x[13] ^= R(x[12] + x[15], 9);
        x[14] ^= R(x[13] + x[12], 13);
        x[15] ^= R(x[14] + x[13], 18);
#undef R
    }
    for (i = 0; i < 16; i++)
        B[i] += x[i];
}
Beispiel #10
0
void des_ecb_enc (des_ctx *ctx, void *input, 
  void *output, uint32_t len)
{
  aes_blk t;
  aes_blk *in  = (aes_blk*)input;
  aes_blk *out = (aes_blk*)output;
  uint32_t r;
  
  while (len > 0) {
    // clear t
    blkclr (&t);
    // copy input to t
    r=memxor (&t, &t, in, len);
    // encrypt
    des_encrypt (ctx, &t, AES_ENCRYPT);
    // copy to output
    blkcpy (out, &t);
    len -= r;
    in++;
    out++;
  }
}