Beispiel #1
0
/* Test that data values are written and read with proper alignment. */
static void
test_alignment(void)
{
   struct blob blob;
   struct blob_reader reader;
   uint8_t bytes[] = "ABCDEFGHIJKLMNOP";
   size_t delta, last, num_bytes;

   blob_init(&blob);

   /* First, write an intptr value to the blob and capture that size. This is
    * the expected offset between any pair of intptr values (if written with
    * alignment).
    */
   blob_write_intptr(&blob, (intptr_t) &blob);

   delta = blob.size;
   last = blob.size;

   /* Then loop doing the following:
    *
    *   1. Write an unaligned number of bytes
    *   2. Verify that write results in an unaligned size
    *   3. Write an intptr_t value
    *   2. Verify that that write results in an aligned size
    */
   for (num_bytes = 1; num_bytes < sizeof(intptr_t); num_bytes++) {
      blob_write_bytes(&blob, bytes, num_bytes);

      expect_unequal(delta, blob.size - last, "unaligned write of bytes");

      blob_write_intptr(&blob, (intptr_t) &blob);

      expect_equal(2 * delta, blob.size - last, "aligned write of intptr");

      last = blob.size;
   }

   /* Finally, test that reading also does proper alignment. Since we know
    * that values were written with all the right alignment, all we have to do
    * here is verify that correct values are read.
    */
   blob_reader_init(&reader, blob.data, blob.size);

   expect_equal((intptr_t) &blob, blob_read_intptr(&reader),
                "read of initial, aligned intptr_t");

   for (num_bytes = 1; num_bytes < sizeof(intptr_t); num_bytes++) {
      expect_equal_bytes(bytes, blob_read_bytes(&reader, num_bytes),
                         num_bytes, "unaligned read of bytes");
      expect_equal((intptr_t) &blob, blob_read_intptr(&reader),
                   "aligned read of intptr_t");
   }

   blob_finish(&blob);
}
Beispiel #2
0
void
shader_cache_write_program_metadata(struct gl_context *ctx,
                                    struct gl_shader_program *prog)
{
   struct disk_cache *cache = ctx->Cache;
   if (!cache)
      return;

   /* Exit early when we are dealing with a ff shader with no source file to
    * generate a source from.
    *
    * TODO: In future we should use another method to generate a key for ff
    * programs.
    */
   static const char zero[sizeof(prog->data->sha1)] = {0};
   if (memcmp(prog->data->sha1, zero, sizeof(prog->data->sha1)) == 0)
      return;

   struct blob metadata;
   blob_init(&metadata);

   serialize_glsl_program(&metadata, ctx, prog);

   struct cache_item_metadata cache_item_metadata;
   cache_item_metadata.type = CACHE_ITEM_TYPE_GLSL;
   cache_item_metadata.keys =
      (cache_key *) malloc(prog->NumShaders * sizeof(cache_key));
   cache_item_metadata.num_keys = prog->NumShaders;

   if (!cache_item_metadata.keys)
      goto fail;

   char sha1_buf[41];
   for (unsigned i = 0; i < prog->NumShaders; i++) {
      disk_cache_put_key(cache, prog->Shaders[i]->sha1);
      memcpy(cache_item_metadata.keys[i], prog->Shaders[i]->sha1,
             sizeof(cache_key));
      if (ctx->_Shader->Flags & GLSL_CACHE_INFO) {
         _mesa_sha1_format(sha1_buf, prog->Shaders[i]->sha1);
         fprintf(stderr, "marking shader: %s\n", sha1_buf);
      }
   }

   disk_cache_put(cache, prog->data->sha1, metadata.data, metadata.size,
                  &cache_item_metadata);

   if (ctx->_Shader->Flags & GLSL_CACHE_INFO) {
      _mesa_sha1_format(sha1_buf, prog->data->sha1);
      fprintf(stderr, "putting program metadata in cache: %s\n", sha1_buf);
   }

fail:
   free(cache_item_metadata.keys);
   blob_finish(&metadata);
}
Beispiel #3
0
/* Test that we detect overrun. */
static void
test_overrun(void)
{
   struct blob blob;
   struct blob_reader reader;
   uint32_t value = 0xdeadbeef;

   blob_init(&blob);

   blob_write_uint32(&blob, value);

   blob_reader_init(&reader, blob.data, blob.size);

   expect_equal(value, blob_read_uint32(&reader), "read before overrun");
   expect_equal(false, reader.overrun, "overrun flag not set");
   expect_equal(0, blob_read_uint32(&reader), "read at overrun");
   expect_equal(true, reader.overrun, "overrun flag set");

   blob_finish(&blob);
}
Beispiel #4
0
/* Test that we can read and write some large objects, (exercising the code in
 * the blob_write functions to realloc blob->data.
 */
static void
test_big_objects(void)
{
   void *ctx = ralloc_context(NULL);
   struct blob blob;
   struct blob_reader reader;
   int size = 1000;
   int count = 1000;
   size_t i;
   char *buf;

   blob_init(&blob);

   /* Initialize our buffer. */
   buf = ralloc_size(ctx, size);
   for (i = 0; i < size; i++) {
      buf[i] = i % 256;
   }

   /* Write it many times. */
   for (i = 0; i < count; i++) {
      blob_write_bytes(&blob, buf, size);
   }

   blob_reader_init(&reader, blob.data, blob.size);

   /* Read and verify it many times. */
   for (i = 0; i < count; i++) {
      expect_equal_bytes((uint8_t *) buf, blob_read_bytes(&reader, size), size,
                         "read of large objects");
   }

   expect_equal(reader.end - reader.data, reader.current - reader.data,
                "number of bytes read reading large objects");

   expect_equal(false, reader.overrun,
                "overrun flag not set reading large objects");

   blob_finish(&blob);
   ralloc_free(ctx);
}
Beispiel #5
0
/* Test at least one call of each blob_write_foo and blob_read_foo function,
 * verifying that we read out everything we wrote, that every bytes is
 * consumed, and that the overrun bit is not set.
 */
static void
test_write_and_read_functions (void)
{
   struct blob blob;
   struct blob_reader reader;
   ssize_t reserved;
   size_t str_offset, uint_offset;
   uint8_t reserve_buf[sizeof(reserve_test_str)];

   blob_init(&blob);

   /*** Test blob by writing one of every possible kind of value. */

   blob_write_bytes(&blob, bytes_test_str, sizeof(bytes_test_str));

   reserved = blob_reserve_bytes(&blob, sizeof(reserve_test_str));
   blob_overwrite_bytes(&blob, reserved, reserve_test_str, sizeof(reserve_test_str));

   /* Write a placeholder, (to be replaced later via overwrite_bytes) */
   str_offset = blob.size;
   blob_write_bytes(&blob, placeholder_str, sizeof(placeholder_str));

   blob_write_uint32(&blob, uint32_test);

   /* Write a placeholder, (to be replaced later via overwrite_uint32) */
   uint_offset = blob.size;
   blob_write_uint32(&blob, uint32_placeholder);

   blob_write_uint64(&blob, uint64_test);

   blob_write_intptr(&blob, (intptr_t) &blob);

   blob_write_string(&blob, string_test_str);

   /* Finally, overwrite our placeholders. */
   blob_overwrite_bytes(&blob, str_offset, overwrite_test_str,
                        sizeof(overwrite_test_str));
   blob_overwrite_uint32(&blob, uint_offset, uint32_overwrite);

   /*** Now read each value and verify. */
   blob_reader_init(&reader, blob.data, blob.size);

   expect_equal_str(bytes_test_str,
                    blob_read_bytes(&reader, sizeof(bytes_test_str)),
                    "blob_write/read_bytes");

   blob_copy_bytes(&reader, reserve_buf, sizeof(reserve_buf));
   expect_equal_str(reserve_test_str, (char *) reserve_buf,
                    "blob_reserve_bytes/blob_copy_bytes");

   expect_equal_str(overwrite_test_str,
                    blob_read_bytes(&reader, sizeof(overwrite_test_str)),
                    "blob_overwrite_bytes");

   expect_equal(uint32_test, blob_read_uint32(&reader),
                "blob_write/read_uint32");
   expect_equal(uint32_overwrite, blob_read_uint32(&reader),
                "blob_overwrite_uint32");
   expect_equal(uint64_test, blob_read_uint64(&reader),
                "blob_write/read_uint64");
   expect_equal((intptr_t) &blob, blob_read_intptr(&reader),
                "blob_write/read_intptr");
   expect_equal_str(string_test_str, blob_read_string(&reader),
                    "blob_write/read_string");

   expect_equal(reader.end - reader.data, reader.current - reader.data,
                "read_consumes_all_bytes");
   expect_equal(false, reader.overrun, "read_does_not_overrun");

   blob_finish(&blob);
}
static void
st_serialise_ir_program(struct gl_context *ctx, struct gl_program *prog,
                        bool nir)
{
   if (prog->driver_cache_blob)
      return;

   struct blob blob;
   blob_init(&blob);

   switch (prog->info.stage) {
   case MESA_SHADER_VERTEX: {
      struct st_vertex_program *stvp = (struct st_vertex_program *) prog;

      blob_write_uint32(&blob, stvp->num_inputs);
      blob_write_bytes(&blob, stvp->index_to_input,
                       sizeof(stvp->index_to_input));
      blob_write_bytes(&blob, stvp->input_to_index,
                       sizeof(stvp->input_to_index));
      blob_write_bytes(&blob, stvp->result_to_output,
                       sizeof(stvp->result_to_output));

      write_stream_out_to_cache(&blob, &stvp->tgsi);

      if (nir)
         write_nir_to_cache(&blob, prog);
      else
         write_tgsi_to_cache(&blob, stvp->tgsi.tokens, prog,
                             stvp->num_tgsi_tokens);
      break;
   }
   case MESA_SHADER_TESS_CTRL:
   case MESA_SHADER_TESS_EVAL:
   case MESA_SHADER_GEOMETRY: {
      struct st_common_program *stcp = (struct st_common_program *) prog;

      write_stream_out_to_cache(&blob, &stcp->tgsi);

      if (nir)
         write_nir_to_cache(&blob, prog);
      else
         write_tgsi_to_cache(&blob, stcp->tgsi.tokens, prog,
                             stcp->num_tgsi_tokens);
      break;
   }
   case MESA_SHADER_FRAGMENT: {
      struct st_fragment_program *stfp = (struct st_fragment_program *) prog;

      if (nir)
         write_nir_to_cache(&blob, prog);
      else
         write_tgsi_to_cache(&blob, stfp->tgsi.tokens, prog,
                             stfp->num_tgsi_tokens);
      break;
   }
   case MESA_SHADER_COMPUTE: {
      struct st_compute_program *stcp = (struct st_compute_program *) prog;

      if (nir)
         write_nir_to_cache(&blob, prog);
      else
         write_tgsi_to_cache(&blob, stcp->tgsi.prog, prog,
                             stcp->num_tgsi_tokens);
      break;
   }
   default:
      unreachable("Unsupported stage");
   }

   blob_finish(&blob);
}