void bn_gen_prime_basic(bn_t a, int bits) {
	while (1) {
		do {
			bn_rand(a, BN_POS, bits);
		} while (bn_bits(a) != bits);
		if (bn_is_prime(a)) {
			return;
		}
	}
}
void bn_gen_prime_safep(bn_t a, int bits) {
	while (1) {
		do {
			bn_rand(a, BN_POS, bits);
		} while (bn_bits(a) != bits);
		/* Check if (a - 1)/2 is prime. */
		bn_sub_dig(a, a, 1);
		bn_rsh(a, a, 1);
		if (bn_is_prime(a)) {
			/* Restore a. */
			bn_lsh(a, a, 1);
			bn_add_dig(a, a, 1);
			if (bn_is_prime(a)) {
				/* Should be prime now. */
				return;
			}
		}
	}
}
Beispiel #3
0
int fp_param_set_any_dense() {
	bn_t modulus;
	int result = STS_OK;

	bn_null(modulus);

	TRY {
		bn_new(modulus);
		bn_gen_prime(modulus, FP_BITS);
		if (!bn_is_prime(modulus)) {
			result = STS_ERR;
		} else {
			fp_prime_set_dense(modulus);
		}
	}
	CATCH_ANY {
		THROW(ERR_CAUGHT);
	}
	FINALLY {
		bn_free(modulus);
	}
	return result;
}
Beispiel #4
0
int cp_bdpe_gen(bdpe_t pub, bdpe_t prv, dig_t block, int bits) {
	bn_t t, r;
	int result = STS_OK;

	bn_null(t);
	bn_null(r);

	TRY {
		bn_new(t);
		bn_new(r);

		prv->t = pub->t = block;

		/* Make sure that block size is prime. */
		bn_set_dig(t, block);
		if (bn_is_prime_basic(t) == 0) {
			THROW(ERR_NO_VALID);
		}

		/* Generate prime q such that gcd(block, (q - 1)) = 1. */
		do {
			bn_gen_prime(prv->q, bits / 2);
			bn_sub_dig(prv->q, prv->q, 1);
			bn_gcd_dig(t, prv->q, block);
			bn_add_dig(prv->q, prv->q, 1);
		} while (bn_cmp_dig(t, 1) != CMP_EQ);

		/* Generate different primes p and q. */
		do {
			/* Compute p = block * (x * block + b) + 1, 0 < b < block random. */
			bn_rand(prv->p, BN_POS, bits / 2 - 2 * util_bits_dig(block));
			bn_mul_dig(prv->p, prv->p, block);
			bn_rand(t, BN_POS, util_bits_dig(block));
			bn_add_dig(prv->p, prv->p, t->dp[0]);

			/* We know that block divides (p-1). */
			bn_gcd_dig(t, prv->p, block);
			bn_mul_dig(prv->p, prv->p, block);
			bn_add_dig(prv->p, prv->p, 1);
		} while (bn_cmp_dig(t, 1) != CMP_EQ || bn_is_prime(prv->p) == 0);

		/* Compute t = (p-1)*(q-1). */
		bn_sub_dig(prv->q, prv->q, 1);
		bn_sub_dig(prv->p, prv->p, 1);
		bn_mul(t, prv->p, prv->q);
		bn_div_dig(t, t, block);

		/* Restore factors p and q and compute n = p * q. */
		bn_add_dig(prv->p, prv->p, 1);
		bn_add_dig(prv->q, prv->q, 1);
		bn_mul(pub->n, prv->p, prv->q);
		bn_copy(prv->n, pub->n);

		/* Select random y such that y^{(p-1)(q-1)}/block \neq 1 mod N. */
		do {
			bn_rand(pub->y, BN_POS, bits);
			bn_mxp(r, pub->y, t, pub->n);
		} while (bn_cmp_dig(r, 1) == CMP_EQ);

		bn_copy(prv->y, pub->y);
	}
	CATCH_ANY {
		result = STS_ERR;
	}
	FINALLY {
		bn_free(t);
		bn_free(r);
	}

	return result;
}
void bn_gen_prime_stron(bn_t a, int bits) {
	dig_t i, j;
	int found, k;
	bn_t r, s, t;

	bn_null(r);
	bn_null(s);
	bn_null(t);

	TRY {
		bn_new(r);
		bn_new(s);
		bn_new(t);

		do {
			do {
				/* Generate two large primes r and s. */
				bn_rand(s, BN_POS, bits / 2 - BN_DIGIT / 2);
				bn_rand(t, BN_POS, bits / 2 - BN_DIGIT / 2);
			} while (!bn_is_prime(s) || !bn_is_prime(t));
			found = 1;
			bn_rand(a, BN_POS, bits / 2 - bn_bits(t) - 1);
			i = a->dp[0];
			bn_dbl(t, t);
			do {
				/* Find first prime r = 2 * i * t + 1. */
				bn_mul_dig(r, t, i);
				bn_add_dig(r, r, 1);
				i++;
				if (bn_bits(r) > bits / 2 - 1) {
					found = 0;
					break;
				}
			} while (!bn_is_prime(r));
			if (found == 0) {
				continue;
			}
			/* Compute t = 2 * (s^(r-2) mod r) * s - 1. */
			bn_sub_dig(t, r, 2);
#if BN_MOD != PMERS
			bn_mxp(t, s, t, r);
#else
			bn_exp(t, s, t, r);
#endif

			bn_mul(t, t, s);
			bn_dbl(t, t);
			bn_sub_dig(t, t, 1);

			k = bits - bn_bits(r);
			k -= bn_bits(s);
			bn_rand(a, BN_POS, k);
			j = a->dp[0];
			do {
				/* Find first prime a = t + 2 * j * r * s. */
				bn_mul(a, r, s);
				bn_mul_dig(a, a, j);
				bn_dbl(a, a);
				bn_add(a, a, t);
				j++;
				if (bn_bits(a) > bits) {
					found = 0;
					break;
				}
			} while (!bn_is_prime(a));
		} while (found == 0 && bn_bits(a) != bits);
	}
	CATCH_ANY {
		THROW(ERR_CAUGHT);
	}
	FINALLY {
		bn_free(r);
		bn_free(s);
		bn_free(t);
	}
}