Beispiel #1
0
int main(int argc, char *argv[])
{
int meascount;
int prompt;
Real avm_iters,avs_iters;

double ssplaq,stplaq;


double starttime,endtime;
double dtime;

int MinCG,MaxCG;
Real size_r,RsdCG;

register int i,j,l;
register site *s;

int spinindex,spin,color,k,kk,t;
int flag;
int ci,si,sf,cf;
int num_prop;
Real space_vol;

int status;

int source_chirality;

    wilson_vector **eigVec ;
    double *eigVal ;
    int total_R_iters ;
    double norm;
    Real re,im,re5,im5;
    complex cc;
    char label[20] ;

    double *grad, *err, max_error;
  Matrix Array,V ;

int key[4];
#define restrict rstrict /* C-90 T3D cludge */
int restrict[4];

Real norm_fac[10];

static char *mes_kind[10] = {"PION","PS505","PS055","PS0505",
		"RHO33","RHO0303","SCALAR","SCALA0","PV35","B12"};
static char *bar_kind[4] = {"PROTON","PROTON0","DELTA","DELTA0"};

complex *pmes_prop[MAX_MASSES][10];
complex *smes_prop[MAX_MASSES][10];
complex *bar_prop[MAX_MASSES][4];

w_prop_file *fp_in_w[MAX_MASSES];        /* For propagator files */
w_prop_file *fp_out_w[MAX_MASSES];       /* For propagator files */

    initialize_machine(&argc,&argv);

  /* Remap standard I/O */
  if(remap_stdio_from_args(argc, argv) == 1)terminate(1);

    g_sync();
    /* set up */
    prompt = setup_p();
    /* loop over input sets */


    while( readin(prompt) == 0)
    {



	starttime=dclock();
	MaxCG=niter;

	avm_iters=0.0;
	meascount=0;



	if(this_node==0)printf("END OF HEADER\n");
	setup_offset();

/*
if(this_node==0)printf("warning--no fat link\n");
*/
	monte_block_ape_b(1);
                /* call plaquette measuring process */
                d_plaquette(&ssplaq,&stplaq);
                if(this_node==0)printf("FATPLAQ  %e %e\n",
                    (double)ssplaq,(double)stplaq);




/* flip the time oriented fat links 
if(this_node==0) printf("Periodic time BC\n");
*/
if(this_node==0) printf("AP time BC\n");
boundary_flip(MINUS);





	setup_links(SIMPLE);

/*	if(this_node==0) printf("num_masses = %d\n", num_masses); */
	/* Loop over mass */
	for(k=0;k<num_masses;k++){

	  m0=mass[k];
	if(m0 <= -10.0) exit(1);
	  RsdCG=resid[k];
	  if(this_node==0)printf("mass= %g r0= %g residue= %g\n",
		(double)m0,(double)wqs[k].r0,(double)RsdCG);
	  build_params(m0);
	  make_clov1();


                eigVal = (double *)malloc(Nvecs*sizeof(double));
                eigVec = (wilson_vector **)malloc(Nvecs*sizeof(wilson_vector*));
                for(i=0;i<Nvecs;i++)
                  eigVec[i]=
                    (wilson_vector*)malloc(sites_on_node*sizeof(wilson_vector));


          /* open files for wilson propagators */
          fp_in_w[k]  = r_open_wprop(startflag_w[k], startfile_w[k]);
          fp_out_w[k] = w_open_wprop(saveflag_w[k],  savefile_w[k],
				     wqs[k].type);


                    if(startflag_w[k] == FRESH)flag = 0;
                    else
                      flag = 1;
spin=color=0; /* needed by wilson writing routines */




		/* initialize the CG vectors */
		    if(flag==0){
if(this_node==0) printf("random (but chiral) initial vectors\n");
  /* Initiallize all the eigenvectors to a random vector */
  for(j=0;j<Nvecs;j++)
    {
      if(j< Nvecs/2){ source_chirality=1;}
      else{source_chirality= -1;}
      printf("source chirality %d\n",source_chirality);
      grsource_w();
      FORALLSITES(i,s){
        copy_wvec(&(s->g_rand),&(eigVec[j][i]));
	if(source_chirality==1){
	  for(kk=2;kk<4;kk++)for(l=0;l<3;l++)
	    eigVec[j][i].d[kk].c[l]=cmplx(0.0,0.0);
	}

	if(source_chirality== -1){
	  for(kk=0;kk<2;kk++)for(l=0;l<3;l++)
	    eigVec[j][i].d[kk].c[l]=cmplx(0.0,0.0);
	}
      }
      eigVal[j]=1.0e+16;
    }
		    }
		    else{
if(this_node==0) printf("reading in %d wilson_vectors--must be <= 12\n",Nvecs);
                    /* load psi if requested */
for(j=0;j<Nvecs;j++){
printf("reading %d %d %d\n",j,spin,color);
#ifdef IOTIME
                    status = reload_wprop_sc_to_site( startflag_w[k], fp_in_w[k], 
                                      spin, color, F_OFFSET(psi),1);
#else
                    status = reload_wprop_sc_to_site( startflag_w[k], fp_in_w[k], 
                                      spin, color, F_OFFSET(psi),0);
#endif

		    /* compute eigenvalue */
		    herm_delt(F_OFFSET(psi),F_OFFSET(chi));

		  re=im=0.0;
		  FORALLSITES(i,s){
		    cc = wvec_dot( &(s->chi), &(s->psi) );
		    re += cc.real ;
		  }
		  g_floatsum(&re);
		  eigVal[j]=re;
printf("trial eigenvalue of state %d %e\n",j,eigVal[j]);
		  FORALLSITES(i,s){eigVec[j][i]=s->psi;}
spin++;
if((spin %4) == 0){spin=0;color++;}
}

		    }
Beispiel #2
0
int main(int argc, char *argv[])  {
int meascount,todo;
int prompt;
double dssplaq,dstplaq;
int m_iters,s_iters,avm_iters,avs_iters,avspect_iters;
#ifdef SPECTRUM
int spect_iters;
#endif
complex plp;
double dtime;

 initialize_machine(&argc,&argv);
#ifdef HAVE_QDP
  QDP_initialize(&argc, &argv);
#endif
  /* Remap standard I/O */
  if(remap_stdio_from_args(argc, argv) == 1)terminate(1);

 g_sync();
    /* set up */
    prompt = setup();

    /* loop over input sets */
    while( readin(prompt) == 0){

/* set up loop tables */
        make_loop_table2();

	/* perform warmup trajectories */
	dtime = -dclock();

	/* call plaquette measuring process */
/* Check: compute initial plaquette (T. D.) */
                d_plaquette(&dssplaq,&dstplaq);
                if(this_node==0)printf("START %e %e %e\n",
                    dssplaq,dstplaq, 
                        dssplaq+dstplaq);

	for(todo=warms; todo > 0; --todo ){
	    update();
	}
	if(this_node==0)printf("WARMUPS COMPLETED\n");

	/* perform measuring trajectories, reunitarizing and measuring 	*/
	meascount=0;		/* number of measurements 		*/
	plp = cmplx(99.9,99.9);
	avspect_iters = avm_iters = avs_iters = 0;
	for(todo=trajecs; todo > 0; --todo ){ 

	    /* do the trajectories */
	    s_iters=update();

	    /* Do "local" measurements every trajectory! */
            /* The action from the RG trans */
            gauge_action(&dssplaq);
            if(this_node==0)printf("ACTION_V  %e  %e\n",
                dssplaq,(dssplaq)/(double)(volume*6));

	    /* call plaquette measuring process */
	    d_plaquette(&dssplaq,&dstplaq);

	    /* call the Polyakov loop measuring program */
	    plp = ploop();

            /* generate a pseudofermion configuration */
	    boundary_flip(MINUS);
	    m_iters = f_measure_cl();
	    boundary_flip(PLUS);

	    ++meascount;
	    avm_iters += m_iters;
	    avs_iters += s_iters;
	           
	    if(this_node==0)printf("GMES %e %e %e %e %e\n",
		(double)plp.real,(double)plp.imag,(double)m_iters,
		dssplaq,dstplaq);
	    /* Re(Polyakov) Im(Poyakov) cg_iters ss_plaq st_plaq */

	    /* measure other stuff every "propinterval" trajectories */
	    if(((todo-1)%propinterval) == 0){

	      fixflag = NO_GAUGE_FIX;
#ifdef SPECTRUM 
#ifdef SCREEN 
	      gaugefix(ZUP,(Real)1.5,500,(Real)GAUGE_FIX_TOL);
	      invalidate_this_clov(gen_clov);
		fixflag = COULOMB_GAUGE_FIX;
		boundary_flip(MINUS);
		spect_iters = s_props_cl();
		avspect_iters += spect_iters;
		boundary_flip(PLUS);
#else	/* spectrum in time direction */
		gaugefix(TUP,(Real)1.5,500,(Real)GAUGE_FIX_TOL);
		invalidate_this_clov(gen_clov);
		fixflag = COULOMB_GAUGE_FIX;
/* commented 15 OCT 95, MBW....we'll use periodic b.c. for spect. */
/*		boundary_flip(MINUS); */
/* Don't need t_props if we are doing w_spectrum  - C. DeTar */
/*		spect_iters = t_props_cl();
		avspect_iters += spect_iters; */
		spect_iters = w_spectrum_cl();
		avspect_iters += spect_iters;
/*		boundary_flip(PLUS); */
#endif	/* end ifndef SCREEN */
#endif	/* end ifdef SPECTRUM */

	    }
	    fflush(stdout);

	}	/* end loop over trajectories */

	if(this_node==0)printf("RUNNING COMPLETED\n");
/* Check: compute final plaquette (T. D.) */
                d_plaquette(&dssplaq,&dstplaq);
                if(this_node==0)printf("STOP %e %e %e\n",
                    dssplaq,dstplaq,
                        dssplaq+dstplaq);

	if(meascount>0)  {
	    if(this_node==0)printf("average cg iters for step= %e\n",
		(double)avs_iters/meascount);
	    if(this_node==0)printf("average cg iters for measurement= %e\n",
		(double)avm_iters/meascount);
#ifdef SPECTRUM
	    if(this_node==0)printf("average cg iters for spectrum = %e\n",
		(double)avspect_iters/meascount);
#endif
	}

	dtime += dclock();
	if(this_node==0){
	    printf("Time = %e seconds\n",dtime);
	    printf("total_iters = %d\n",total_iters);
	}
	fflush(stdout);
	dtime = -dclock();

	/* save lattice if requested */
        if( saveflag != FORGET ){
	  save_lattice( saveflag, savefile, stringLFN );
        }
    }
    return 0;
}
Beispiel #3
0
int main(int argc, char *argv[]){
int meascount,todo;
int prompt;
double ssplaq,stplaq;
int m_iters,s_iters,avm_iters,avs_iters,avspect_iters;
#ifdef SPECTRUM
int spect_iters;
#endif
#ifdef QUARK
int disp_iters;
#endif
complex plp;
double dtime;

 initialize_machine(&argc,&argv);

  /* Remap standard I/O */
  if(remap_stdio_from_args(argc, argv) == 1)terminate(1);
 g_sync();
    /* set up */
    prompt = setup();

    /* loop over input sets */
    while( readin(prompt) == 0){

	/* perform warmup trajectories */
	dtime = -dclock();
	for(todo=warms; todo > 0; --todo ){
	    update();
	}
	if(this_node==0)printf("WARMUPS COMPLETED\n");

	/* perform measuring trajectories, reunitarizing and measuring 	*/
	meascount=0;		/* number of measurements 		*/
	plp = cmplx(99.9,99.9);
	avspect_iters = avm_iters = avs_iters = 0;
	for(todo=trajecs; todo > 0; --todo ){ 

	    /* do the trajectories */
	    if(steps>0)s_iters=update(); else s_iters=-99;

	    /* measure every "propinterval" trajectories */
	    if((todo%propinterval) == 0){
	    
                /* generate a pseudofermion configuration */
		boundary_flip(MINUS);
		m_iters = f_measure2();

#ifdef SPECTRUM 
#ifdef SCREEN 
		boundary_flip(PLUS);
		gaugefix(ZUP,(Real)1.5,100,(Real)GAUGE_FIX_TOL);
		boundary_flip(MINUS);
		spect_iters = s_props();
		avspect_iters += spect_iters;
		spect_iters = w_spectrum_z();
		avspect_iters += spect_iters;
#ifdef QUARK
		boundary_flip(PLUS);
		/* Lorentz gauge*/
		gaugefix(8,(Real)1.5,100,(Real)GAUGE_FIX_TOL);
		boundary_flip(MINUS);
                disp_iters = quark();
                avspect_iters += disp_iters;
#endif /* ifdef QUARK */
#else	/* spectrum in time direction */
		boundary_flip(PLUS);
		gaugefix(TUP,(Real)1.5,100,(Real)GAUGE_FIX_TOL);
		boundary_flip(MINUS);
		spect_iters = t_props();
		avspect_iters += spect_iters;
		spect_iters = w_spectrum();
		avspect_iters += spect_iters;
#endif	/* end ifndef SCREEN */
#endif	/* end ifdef SPECTRUM */
		boundary_flip(PLUS);

	        /* call plaquette measuring process */
		d_plaquette(&ssplaq,&stplaq);

		/* call the Polyakov loop measuring program */
		plp = ploop();

		avm_iters += m_iters;
		avs_iters += s_iters;
	           
	        ++meascount;
	        if(this_node==0)printf("GMES %e %e %e %e %e\n",
		    (double)plp.real,(double)plp.imag,(double)m_iters,
		    (double)ssplaq,(double)stplaq);
		/* Re(Polyakov) Im(Poyakov) cg_iters ss_plaq st_plaq */

		fflush(stdout);
	    }
	}	/* end loop over trajectories */

	if(this_node==0)printf("RUNNING COMPLETED\n");
	if(meascount>0)  {
	    if(this_node==0)printf("average cg iters for step= %e\n",
		(double)avs_iters/meascount);
	    if(this_node==0)printf("average cg iters for measurement= %e\n",
		(double)avm_iters/meascount);
#ifdef SPECTRUM
	    if(this_node==0)printf("average cg iters for spectrum = %e\n",
		(double)avspect_iters/meascount);
#endif
	}

	dtime += dclock();
	if(this_node==0){
	    printf("Time = %e seconds\n",dtime);
	    printf("total_iters = %d\n",total_iters);
	}
	fflush(stdout);

	/* save lattice if requested */
        if( saveflag != FORGET ){
	  save_lattice( saveflag, savefile, stringLFN );
        }
    }
    return 0;
}