void AssemblyHelpers::purifyNaN(FPRReg fpr)
{
    MacroAssembler::Jump notNaN = branchDouble(DoubleEqual, fpr, fpr);
    static const double NaN = PNaN;
    loadDouble(TrustedImmPtr(&NaN), fpr);
    notNaN.link(this);
}
void JIT::emitSlow_op_jlesseq(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter, bool invert)
{
    unsigned op1 = currentInstruction[1].u.operand;
    unsigned op2 = currentInstruction[2].u.operand;
    unsigned target = currentInstruction[3].u.operand;

    // We generate inline code for the following cases in the slow path:
    // - floating-point number to constant int immediate
    // - constant int immediate to floating-point number
    // - floating-point number to floating-point number.

    if (isOperandConstantImmediateChar(op1) || isOperandConstantImmediateChar(op2)) {
        linkSlowCase(iter);
        linkSlowCase(iter);
        linkSlowCase(iter);
        linkSlowCase(iter);
        JITStubCall stubCall(this, cti_op_jlesseq);
        stubCall.addArgument(op1, regT0);
        stubCall.addArgument(op2, regT1);
        stubCall.call();
        emitJumpSlowToHot(branchTest32(invert ? Zero : NonZero, regT0), target);
        return;
    }

    if (isOperandConstantImmediateInt(op2)) {
        linkSlowCase(iter);

        if (supportsFloatingPoint()) {
            Jump fail1 = emitJumpIfNotImmediateNumber(regT0);
            addPtr(tagTypeNumberRegister, regT0);
            movePtrToDouble(regT0, fpRegT0);

            int32_t op2imm = getConstantOperand(op2).asInt32();;

            move(Imm32(op2imm), regT1);
            convertInt32ToDouble(regT1, fpRegT1);

            emitJumpSlowToHot(branchDouble(invert ? DoubleLessThanOrUnordered : DoubleGreaterThanOrEqual, fpRegT1, fpRegT0), target);

            emitJumpSlowToHot(jump(), OPCODE_LENGTH(op_jnlesseq));

            fail1.link(this);
        }

        JITStubCall stubCall(this, cti_op_jlesseq);
        stubCall.addArgument(regT0);
        stubCall.addArgument(op2, regT2);
        stubCall.call();
        emitJumpSlowToHot(branchTest32(invert ? Zero : NonZero, regT0), target);

    } else if (isOperandConstantImmediateInt(op1)) {
        linkSlowCase(iter);

        if (supportsFloatingPoint()) {
            Jump fail1 = emitJumpIfNotImmediateNumber(regT1);
            addPtr(tagTypeNumberRegister, regT1);
            movePtrToDouble(regT1, fpRegT1);

            int32_t op1imm = getConstantOperand(op1).asInt32();;

            move(Imm32(op1imm), regT0);
            convertInt32ToDouble(regT0, fpRegT0);

            emitJumpSlowToHot(branchDouble(invert ? DoubleLessThanOrUnordered : DoubleGreaterThanOrEqual, fpRegT1, fpRegT0), target);

            emitJumpSlowToHot(jump(), OPCODE_LENGTH(op_jnlesseq));

            fail1.link(this);
        }

        JITStubCall stubCall(this, cti_op_jlesseq);
        stubCall.addArgument(op1, regT2);
        stubCall.addArgument(regT1);
        stubCall.call();
        emitJumpSlowToHot(branchTest32(invert ? Zero : NonZero, regT0), target);

    } else {
        linkSlowCase(iter);

        if (supportsFloatingPoint()) {
            Jump fail1 = emitJumpIfNotImmediateNumber(regT0);
            Jump fail2 = emitJumpIfNotImmediateNumber(regT1);
            Jump fail3 = emitJumpIfImmediateInteger(regT1);
            addPtr(tagTypeNumberRegister, regT0);
            addPtr(tagTypeNumberRegister, regT1);
            movePtrToDouble(regT0, fpRegT0);
            movePtrToDouble(regT1, fpRegT1);

            emitJumpSlowToHot(branchDouble(invert ? DoubleLessThanOrUnordered : DoubleGreaterThanOrEqual, fpRegT1, fpRegT0), target);

            emitJumpSlowToHot(jump(), OPCODE_LENGTH(op_jnlesseq));

            fail1.link(this);
            fail2.link(this);
            fail3.link(this);
        }

        linkSlowCase(iter);
        JITStubCall stubCall(this, cti_op_jlesseq);
        stubCall.addArgument(regT0);
        stubCall.addArgument(regT1);
        stubCall.call();
        emitJumpSlowToHot(branchTest32(invert ? Zero : NonZero, regT0), target);
    }
}