/* * btvacuumscan --- scan the index for VACUUMing purposes * * This combines the functions of looking for leaf tuples that are deletable * according to the vacuum callback, looking for empty pages that can be * deleted, and looking for old deleted pages that can be recycled. Both * btbulkdelete and btvacuumcleanup invoke this (the latter only if no * btbulkdelete call occurred). * * The caller is responsible for initially allocating/zeroing a stats struct * and for obtaining a vacuum cycle ID if necessary. */ static void btvacuumscan(IndexVacuumInfo *info, IndexBulkDeleteResult *stats, IndexBulkDeleteCallback callback, void *callback_state, BTCycleId cycleid) { MIRROREDLOCK_BUFMGR_VERIFY_NO_LOCK_LEAK_DECLARE; Relation rel = info->index; BTVacState vstate; BlockNumber num_pages; BlockNumber blkno; bool needLock; MIRROREDLOCK_BUFMGR_VERIFY_NO_LOCK_LEAK_ENTER; /* * Reset counts that will be incremented during the scan; needed in case * of multiple scans during a single VACUUM command */ stats->num_index_tuples = 0; stats->pages_deleted = 0; /* Set up info to pass down to btvacuumpage */ vstate.info = info; vstate.stats = stats; vstate.callback = callback; vstate.callback_state = callback_state; vstate.cycleid = cycleid; vstate.freePages = NULL; /* temporarily */ vstate.nFreePages = 0; vstate.maxFreePages = 0; vstate.totFreePages = 0; /* Create a temporary memory context to run _bt_pagedel in */ vstate.pagedelcontext = AllocSetContextCreate(CurrentMemoryContext, "_bt_pagedel", ALLOCSET_DEFAULT_MINSIZE, ALLOCSET_DEFAULT_INITSIZE, ALLOCSET_DEFAULT_MAXSIZE); /* * The outer loop iterates over all index pages except the metapage, in * physical order (we hope the kernel will cooperate in providing * read-ahead for speed). It is critical that we visit all leaf pages, * including ones added after we start the scan, else we might fail to * delete some deletable tuples. Hence, we must repeatedly check the * relation length. We must acquire the relation-extension lock while * doing so to avoid a race condition: if someone else is extending the * relation, there is a window where bufmgr/smgr have created a new * all-zero page but it hasn't yet been write-locked by _bt_getbuf(). If * we manage to scan such a page here, we'll improperly assume it can be * recycled. Taking the lock synchronizes things enough to prevent a * problem: either num_pages won't include the new page, or _bt_getbuf * already has write lock on the buffer and it will be fully initialized * before we can examine it. (See also vacuumlazy.c, which has the same * issue.) Also, we need not worry if a page is added immediately after * we look; the page splitting code already has write-lock on the left * page before it adds a right page, so we must already have processed any * tuples due to be moved into such a page. * * We can skip locking for new or temp relations, however, since no one * else could be accessing them. */ needLock = !RELATION_IS_LOCAL(rel); blkno = BTREE_METAPAGE + 1; for (;;) { /* Get the current relation length */ if (needLock) LockRelationForExtension(rel, ExclusiveLock); num_pages = RelationGetNumberOfBlocks(rel); if (needLock) UnlockRelationForExtension(rel, ExclusiveLock); /* Allocate freePages after we read num_pages the first time */ if (vstate.freePages == NULL) { /* No point in remembering more than MaxFSMPages pages */ vstate.maxFreePages = MaxFSMPages; if ((BlockNumber) vstate.maxFreePages > num_pages) vstate.maxFreePages = (int) num_pages; vstate.freePages = (BlockNumber *) palloc(vstate.maxFreePages * sizeof(BlockNumber)); } /* Quit if we've scanned the whole relation */ if (blkno >= num_pages) break; /* Iterate over pages, then loop back to recheck length */ for (; blkno < num_pages; blkno++) { btvacuumpage(&vstate, blkno, blkno); } } /* * During VACUUM FULL, we truncate off any recyclable pages at the end of * the index. In a normal vacuum it'd be unsafe to do this except by * acquiring exclusive lock on the index and then rechecking all the * pages; doesn't seem worth it. */ if (info->vacuum_full && vstate.nFreePages > 0) { BlockNumber new_pages = num_pages; while (vstate.nFreePages > 0 && vstate.freePages[vstate.nFreePages - 1] == new_pages - 1) { new_pages--; stats->pages_deleted--; vstate.nFreePages--; vstate.totFreePages = vstate.nFreePages; /* can't be more */ } if (new_pages != num_pages) { /* * Okay to truncate. */ RelationTruncate(rel, new_pages, /* markPersistentAsPhysicallyTruncated */ true); /* update statistics */ stats->pages_removed += num_pages - new_pages; num_pages = new_pages; } } /* * Update the shared Free Space Map with the info we now have about free * pages in the index, discarding any old info the map may have. We do not * need to sort the page numbers; they're in order already. */ RecordIndexFreeSpace(&rel->rd_node, vstate.totFreePages, vstate.nFreePages, vstate.freePages); pfree(vstate.freePages); MemoryContextDelete(vstate.pagedelcontext); /* update statistics */ stats->num_pages = num_pages; stats->pages_free = vstate.totFreePages; MIRROREDLOCK_BUFMGR_VERIFY_NO_LOCK_LEAK_EXIT; }
/* * btvacuumscan --- scan the index for VACUUMing purposes * * This combines the functions of looking for leaf tuples that are deletable * according to the vacuum callback, looking for empty pages that can be * deleted, and looking for old deleted pages that can be recycled. Both * btbulkdelete and btvacuumcleanup invoke this (the latter only if no * btbulkdelete call occurred). * * The caller is responsible for initially allocating/zeroing a stats struct * and for obtaining a vacuum cycle ID if necessary. */ static void btvacuumscan(IndexVacuumInfo *info, IndexBulkDeleteResult *stats, IndexBulkDeleteCallback callback, void *callback_state, BTCycleId cycleid) { Relation rel = info->index; BTVacState vstate; BlockNumber num_pages; BlockNumber blkno; bool needLock; /* * Reset counts that will be incremented during the scan; needed in case * of multiple scans during a single VACUUM command */ stats->estimated_count = false; stats->num_index_tuples = 0; stats->pages_deleted = 0; /* Set up info to pass down to btvacuumpage */ vstate.info = info; vstate.stats = stats; vstate.callback = callback; vstate.callback_state = callback_state; vstate.cycleid = cycleid; vstate.lastBlockVacuumed = BTREE_METAPAGE; /* Initialise at first block */ vstate.lastBlockLocked = BTREE_METAPAGE; vstate.totFreePages = 0; /* Create a temporary memory context to run _bt_pagedel in */ vstate.pagedelcontext = AllocSetContextCreate(CurrentMemoryContext, "_bt_pagedel", ALLOCSET_DEFAULT_SIZES); /* * The outer loop iterates over all index pages except the metapage, in * physical order (we hope the kernel will cooperate in providing * read-ahead for speed). It is critical that we visit all leaf pages, * including ones added after we start the scan, else we might fail to * delete some deletable tuples. Hence, we must repeatedly check the * relation length. We must acquire the relation-extension lock while * doing so to avoid a race condition: if someone else is extending the * relation, there is a window where bufmgr/smgr have created a new * all-zero page but it hasn't yet been write-locked by _bt_getbuf(). If * we manage to scan such a page here, we'll improperly assume it can be * recycled. Taking the lock synchronizes things enough to prevent a * problem: either num_pages won't include the new page, or _bt_getbuf * already has write lock on the buffer and it will be fully initialized * before we can examine it. (See also vacuumlazy.c, which has the same * issue.) Also, we need not worry if a page is added immediately after * we look; the page splitting code already has write-lock on the left * page before it adds a right page, so we must already have processed any * tuples due to be moved into such a page. * * We can skip locking for new or temp relations, however, since no one * else could be accessing them. */ needLock = !RELATION_IS_LOCAL(rel); blkno = BTREE_METAPAGE + 1; for (;;) { /* Get the current relation length */ if (needLock) LockRelationForExtension(rel, ExclusiveLock); num_pages = RelationGetNumberOfBlocks(rel); if (needLock) UnlockRelationForExtension(rel, ExclusiveLock); /* Quit if we've scanned the whole relation */ if (blkno >= num_pages) break; /* Iterate over pages, then loop back to recheck length */ for (; blkno < num_pages; blkno++) { btvacuumpage(&vstate, blkno, blkno); } } /* * Check to see if we need to issue one final WAL record for this index, * which may be needed for correctness on a hot standby node when non-MVCC * index scans could take place. * * If the WAL is replayed in hot standby, the replay process needs to get * cleanup locks on all index leaf pages, just as we've been doing here. * However, we won't issue any WAL records about pages that have no items * to be deleted. For pages between pages we've vacuumed, the replay code * will take locks under the direction of the lastBlockVacuumed fields in * the XLOG_BTREE_VACUUM WAL records. To cover pages after the last one * we vacuum, we need to issue a dummy XLOG_BTREE_VACUUM WAL record * against the last leaf page in the index, if that one wasn't vacuumed. */ if (XLogStandbyInfoActive() && vstate.lastBlockVacuumed < vstate.lastBlockLocked) { Buffer buf; /* * The page should be valid, but we can't use _bt_getbuf() because we * want to use a nondefault buffer access strategy. Since we aren't * going to delete any items, getting cleanup lock again is probably * overkill, but for consistency do that anyway. */ buf = ReadBufferExtended(rel, MAIN_FORKNUM, vstate.lastBlockLocked, RBM_NORMAL, info->strategy); LockBufferForCleanup(buf); _bt_checkpage(rel, buf); _bt_delitems_vacuum(rel, buf, NULL, 0, vstate.lastBlockVacuumed); _bt_relbuf(rel, buf); } MemoryContextDelete(vstate.pagedelcontext); /* update statistics */ stats->num_pages = num_pages; stats->pages_free = vstate.totFreePages; }
/* * btvacuumscan --- scan the index for VACUUMing purposes * * This combines the functions of looking for leaf tuples that are deletable * according to the vacuum callback, looking for empty pages that can be * deleted, and looking for old deleted pages that can be recycled. Both * btbulkdelete and btvacuumcleanup invoke this (the latter only if no * btbulkdelete call occurred). * * The caller is responsible for initially allocating/zeroing a stats struct * and for obtaining a vacuum cycle ID if necessary. */ static void btvacuumscan(IndexVacuumInfo *info, IndexBulkDeleteResult *stats, IndexBulkDeleteCallback callback, void *callback_state, BTCycleId cycleid) { Relation rel = info->index; BTVacState vstate; BlockNumber num_pages; BlockNumber blkno; bool needLock; /* * Reset counts that will be incremented during the scan; needed in case * of multiple scans during a single VACUUM command */ stats->estimated_count = false; stats->num_index_tuples = 0; stats->pages_deleted = 0; /* Set up info to pass down to btvacuumpage */ vstate.info = info; vstate.stats = stats; vstate.callback = callback; vstate.callback_state = callback_state; vstate.cycleid = cycleid; vstate.lastBlockVacuumed = BTREE_METAPAGE; /* Initialise at first block */ vstate.lastUsedPage = BTREE_METAPAGE; vstate.totFreePages = 0; /* Create a temporary memory context to run _bt_pagedel in */ vstate.pagedelcontext = AllocSetContextCreate(CurrentMemoryContext, "_bt_pagedel", ALLOCSET_DEFAULT_MINSIZE, ALLOCSET_DEFAULT_INITSIZE, ALLOCSET_DEFAULT_MAXSIZE); /* * The outer loop iterates over all index pages except the metapage, in * physical order (we hope the kernel will cooperate in providing * read-ahead for speed). It is critical that we visit all leaf pages, * including ones added after we start the scan, else we might fail to * delete some deletable tuples. Hence, we must repeatedly check the * relation length. We must acquire the relation-extension lock while * doing so to avoid a race condition: if someone else is extending the * relation, there is a window where bufmgr/smgr have created a new * all-zero page but it hasn't yet been write-locked by _bt_getbuf(). If * we manage to scan such a page here, we'll improperly assume it can be * recycled. Taking the lock synchronizes things enough to prevent a * problem: either num_pages won't include the new page, or _bt_getbuf * already has write lock on the buffer and it will be fully initialized * before we can examine it. (See also vacuumlazy.c, which has the same * issue.) Also, we need not worry if a page is added immediately after * we look; the page splitting code already has write-lock on the left * page before it adds a right page, so we must already have processed any * tuples due to be moved into such a page. * * We can skip locking for new or temp relations, however, since no one * else could be accessing them. */ needLock = !RELATION_IS_LOCAL(rel); blkno = BTREE_METAPAGE + 1; for (;;) { /* Get the current relation length */ if (needLock) LockRelationForExtension(rel, ExclusiveLock); num_pages = RelationGetNumberOfBlocks(rel); if (needLock) UnlockRelationForExtension(rel, ExclusiveLock); /* Quit if we've scanned the whole relation */ if (blkno >= num_pages) break; /* Iterate over pages, then loop back to recheck length */ for (; blkno < num_pages; blkno++) { btvacuumpage(&vstate, blkno, blkno); } } /* * InHotStandby we need to scan right up to the end of the index for * correct locking, so we may need to write a WAL record for the final * block in the index if it was not vacuumed. It's possible that VACUUMing * has actually removed zeroed pages at the end of the index so we need to * take care to issue the record for last actual block and not for the * last block that was scanned. Ignore empty indexes. */ if (XLogStandbyInfoActive() && num_pages > 1 && vstate.lastBlockVacuumed < (num_pages - 1)) { Buffer buf; /* * We can't use _bt_getbuf() here because it always applies * _bt_checkpage(), which will barf on an all-zero page. We want to * recycle all-zero pages, not fail. Also, we want to use a * nondefault buffer access strategy. */ buf = ReadBufferExtended(rel, MAIN_FORKNUM, num_pages - 1, RBM_NORMAL, info->strategy); LockBufferForCleanup(buf); _bt_delitems_vacuum(rel, buf, NULL, 0, vstate.lastBlockVacuumed); _bt_relbuf(rel, buf); } MemoryContextDelete(vstate.pagedelcontext); /* update statistics */ stats->num_pages = num_pages; stats->pages_free = vstate.totFreePages; }