Beispiel #1
0
void
mec_reset(struct mec_softc *sc)
{
	bus_space_tag_t st = sc->sc_st;
	bus_space_handle_t sh = sc->sc_sh;
	uint64_t address, control;
	int i;

	/* Reset chip. */
	bus_space_write_8(st, sh, MEC_MAC_CONTROL, MEC_MAC_CORE_RESET);
	delay(1000);
	bus_space_write_8(st, sh, MEC_MAC_CONTROL, 0);
	delay(1000);

	/* Set Ethernet address. */
	address = 0;
	for (i = 0; i < ETHER_ADDR_LEN; i++) {
		address = address << 8;
		address += sc->sc_ac.ac_enaddr[i];
	}
	bus_space_write_8(st, sh, MEC_STATION, address);

	/* Default to 100/half and let auto-negotiation work its magic. */
	control = MEC_MAC_SPEED_SELECT | MEC_MAC_FILTER_MATCHMULTI |
	    MEC_MAC_IPG_DEFAULT;

	bus_space_write_8(st, sh, MEC_MAC_CONTROL, control);
	bus_space_write_8(st, sh, MEC_DMA_CONTROL, 0);

	DPRINTF(MEC_DEBUG_RESET, ("mec: control now %llx\n",
	    bus_space_read_8(st, sh, MEC_MAC_CONTROL)));
}
Beispiel #2
0
/*
 * This is called from the psycho and sbus drivers.  It does not directly
 * attach to the nexus because it shares register space with the bridge in
 * question.
 */
void
sparc64_counter_init(const char *name, bus_space_tag_t tag,
    bus_space_handle_t handle, bus_addr_t offset)
{
	struct timecounter *tc;
	struct ct_softc *sc;

	printf("initializing counter-timer\n");
	/*
	 * Turn off interrupts from both counters.  Set the limit to the
	 * maximum value (although that should not change anything with
	 * CTLR_INTEN and CTLR_PERIODIC off).
	 */
	bus_space_write_8(tag, handle, offset + CTR_CT0 + CTR_LIMIT,
	    COUNTER_MASK);
	bus_space_write_8(tag, handle, offset + CTR_CT1 + CTR_LIMIT,
	    COUNTER_MASK);
	/* Register as a time counter. */
	tc = malloc(sizeof(*tc), M_DEVBUF, M_WAITOK | M_ZERO);
	sc = malloc(sizeof(*sc), M_DEVBUF, M_WAITOK);
	sc->sc_tag = tag;
	sc->sc_handle = handle;
	sc->sc_offset = offset + CTR_CT0;
	tc->tc_get_timecount = counter_get_timecount;
	tc->tc_counter_mask = COUNTER_MASK;
	tc->tc_frequency = COUNTER_FREQ;
	tc->tc_name = strdup(name, M_DEVBUF);
	tc->tc_priv = sc;
	tc->tc_quality = COUNTER_QUALITY;
	tc_init(tc);
}
Beispiel #3
0
int
mec_init(struct ifnet *ifp)
{
	struct mec_softc *sc = ifp->if_softc;
	bus_space_tag_t st = sc->sc_st;
	bus_space_handle_t sh = sc->sc_sh;
	struct mec_rxdesc *rxd;
	int i;

	/* Cancel any pending I/O. */
	mec_stop(ifp);

	/* Reset device. */
	mec_reset(sc);

	/* Setup filter for multicast or promisc mode. */
	mec_setfilter(sc);

	/* Set the TX ring pointer to the base address. */
	bus_space_write_8(st, sh, MEC_TX_RING_BASE, MEC_CDTXADDR(sc, 0));

	sc->sc_txpending = 0;
	sc->sc_txdirty = 0;
	sc->sc_txlast = MEC_NTXDESC - 1;

	/* Put RX buffers into FIFO. */
	for (i = 0; i < MEC_NRXDESC; i++) {
		rxd = &sc->sc_rxdesc[i];
		rxd->rxd_stat = 0;
		MEC_RXSTATSYNC(sc, i, BUS_DMASYNC_PREREAD);
		MEC_RXBUFSYNC(sc, i, ETHER_MAX_LEN, BUS_DMASYNC_PREREAD);
		bus_space_write_8(st, sh, MEC_MCL_RX_FIFO, MEC_CDRXADDR(sc, i));
	}
	sc->sc_rxptr = 0;

#if 0	/* XXX no info */
	bus_space_write_8(st, sh, MEC_TIMER, 0);
#endif

	/*
	 * MEC_DMA_TX_INT_ENABLE will be set later otherwise it causes
	 * spurious interrupts when TX buffers are empty.
	 */
	bus_space_write_8(st, sh, MEC_DMA_CONTROL,
	    (MEC_RXD_DMAOFFSET << MEC_DMA_RX_DMA_OFFSET_SHIFT) |
	    (MEC_NRXDESC << MEC_DMA_RX_INT_THRESH_SHIFT) |
	    MEC_DMA_TX_DMA_ENABLE | /* MEC_DMA_TX_INT_ENABLE | */
	    MEC_DMA_RX_DMA_ENABLE | MEC_DMA_RX_INT_ENABLE);

	timeout_add(&sc->sc_tick_ch, hz);

	ifp->if_flags |= IFF_RUNNING;
	ifp->if_flags &= ~IFF_OACTIVE;
	mec_start(ifp);

	mii_mediachg(&sc->sc_mii);

	return 0;
}
Beispiel #4
0
void __inline bcon_set_cursor_pos( uint32 x, uint32 y )
{
  uint32 offset = x+(y*TERM_COLS);

  bus_space_write_8( cur_io_type, cur_io_base, cur_index_off, 15 );
  bus_space_write_8( cur_io_type, cur_io_base, cur_data_off, (offset&0x00FF) );
  bus_space_write_8( cur_io_type, cur_io_base, cur_index_off, 14 );
  bus_space_write_8( cur_io_type, cur_io_base, cur_data_off, (offset >> 8) );
}
Beispiel #5
0
void
obio_intr_init(void)
{
	int cpuid = cpu_number();
	bus_space_write_8(&obio_tag, obio_h, CIU_IP2_EN0(cpuid), 0);
	bus_space_write_8(&obio_tag, obio_h, CIU_IP3_EN0(cpuid), 0);
	bus_space_write_8(&obio_tag, obio_h, CIU_IP2_EN1(cpuid), 0);
	bus_space_write_8(&obio_tag, obio_h, CIU_IP3_EN1(cpuid), 0);
}
Beispiel #6
0
void bcon_clear_line( int y )
{
  int i;

  for( i = 0; i < TERM_COLS*2; i += 2 ) {
    bus_space_write_8( vid_io_type, vid_io_base, (y*TERM_COLS*2)+i, ' ' );
    bus_space_write_8( vid_io_type, vid_io_base, (y*TERM_COLS*2)+i+1, bcon_attrs );
  }

}
Beispiel #7
0
void __inline bcon_write_char( int c, int attributes )
{
  uint32 offset = _get_cur_offset();

  bus_space_write_8( vid_io_type, vid_io_base, offset*2, (c&0xFF) );
  bus_space_write_8( vid_io_type, vid_io_base, (offset*2)+1, attributes );

  offset++;
  bus_space_write_8( cur_io_type, cur_io_base, cur_index_off, 15 );
  bus_space_write_8( cur_io_type, cur_io_base, cur_data_off, (offset&0x00FF) );
  bus_space_write_8( cur_io_type, cur_io_base, cur_index_off, 14 );
  bus_space_write_8( cur_io_type, cur_io_base, cur_data_off, (offset >> 8) );
}
Beispiel #8
0
static uint32 __inline _get_cur_offset()
{
  uint32 offset, offset_h, offset_l;

  bus_space_write_8( cur_io_type, cur_io_base, cur_index_off, 14 );
  bus_space_read_8( cur_io_type, cur_io_base, cur_data_off, offset_h );
  offset_h <<= 8;
  bus_space_write_8( cur_io_type, cur_io_base, cur_index_off, 15 );
  bus_space_read_8( cur_io_type, cur_io_base, cur_data_off, offset_l );
  offset = offset_h|offset_l;

  return offset;
}
Beispiel #9
0
static void
thunder_pem_slix_s2m_regx_acc_modify(struct thunder_pem_softc *sc,
    int sli_group, int slix)
{
	uint64_t regval;
	bus_space_handle_t handle = 0;

	KASSERT(slix >= 0 && slix <= SLI_ACC_REG_CNT, ("Invalid SLI index"));

	if (sli_group == 0)
		handle = sli0_s2m_regx_base;
	else if (sli_group == 1)
		handle = sli1_s2m_regx_base;
	else
		device_printf(sc->dev, "SLI group is not correct\n");

	if (handle) {
		/* Clear lower 32-bits of the SLIx register */
		regval = bus_space_read_8(sc->reg_bst, handle,
		    PEM_CFG_SLIX_TO_REG(slix));
		regval &= ~(0xFFFFFFFFUL);
		bus_space_write_8(sc->reg_bst, handle,
		    PEM_CFG_SLIX_TO_REG(slix), regval);
	}
}
Beispiel #10
0
static int
thunder_pem_link_init(struct thunder_pem_softc *sc)
{
	uint64_t regval;

	/* check whether PEM is safe to access. */
	regval = bus_space_read_8(sc->reg_bst, sc->reg_bsh, PEM_ON_REG);
	if ((regval & PEM_CFG_LINK_MASK) != PEM_CFG_LINK_RDY) {
		device_printf(sc->dev, "PEM%d is not ON\n", sc->id);
		return (ENXIO);
	}

	regval = bus_space_read_8(sc->reg_bst, sc->reg_bsh, PEM_CTL_STATUS);
	regval |= PEM_LINK_ENABLE;
	bus_space_write_8(sc->reg_bst, sc->reg_bsh, PEM_CTL_STATUS, regval);

	/* Wait 1ms as per Cavium specification */
	DELAY(1000);

	regval = thunder_pem_config_reg_read(sc, PCIERC_CFG032);

	if (((regval & PEM_LINK_DLLA) == 0) || ((regval & PEM_LINK_LT) != 0)) {
		device_printf(sc->dev, "PCIe RC: Port %d Link Timeout\n",
		    sc->id);
		return (ENXIO);
	}

	return (0);
}
Beispiel #11
0
int
mec_mii_readreg(struct device *self, int phy, int reg)
{
	struct mec_softc *sc = (void *)self;
	bus_space_tag_t st = sc->sc_st;
	bus_space_handle_t sh = sc->sc_sh;
	uint32_t val;
	int i;

	if (mec_mii_wait(sc) != 0)
		return 0;

	bus_space_write_4(st, sh, MEC_PHY_ADDRESS,
	    (phy << MEC_PHY_ADDR_DEVSHIFT) | (reg & MEC_PHY_ADDR_REGISTER));
	bus_space_write_8(st, sh, MEC_PHY_READ_INITIATE, 1);
	delay(25);

	for (i = 0; i < 20; i++) {
		delay(30);

		val = bus_space_read_4(st, sh, MEC_PHY_DATA);

		if ((val & MEC_PHY_DATA_BUSY) == 0)
			return val & MEC_PHY_DATA_VALUE;
	}
	return 0;
}
Beispiel #12
0
void
mec_stop(struct ifnet *ifp)
{
	struct mec_softc *sc = ifp->if_softc;
	struct mec_txsoft *txs;
	int i;

	DPRINTF(MEC_DEBUG_STOP, ("mec_stop\n"));

	ifp->if_timer = 0;
	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);

	timeout_del(&sc->sc_tick_ch);
	mii_down(&sc->sc_mii);

	/* Disable DMA. */
	bus_space_write_8(sc->sc_st, sc->sc_sh, MEC_DMA_CONTROL, 0);

	/* Release any TX buffers. */
	for (i = 0; i < MEC_NTXDESC; i++) {
		txs = &sc->sc_txsoft[i];
		if ((txs->txs_flags & MEC_TXS_TXDPTR1) != 0) {
			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
			m_freem(txs->txs_mbuf);
			txs->txs_mbuf = NULL;
		}
	}
}
Beispiel #13
0
void
macebusattach(struct device *parent, struct device *self, void *aux)
{
	u_int32_t creg;
	uint i;

	/*
	 * Map and setup CRIME control registers.
	 */
	if (bus_space_map(&crimebus_tag, 0x00000000, 0x400, 0, &crime_h)) {
		printf(": can't map CRIME control registers\n");
		return;
	}

	creg = bus_space_read_8(&crimebus_tag, crime_h, CRIME_REVISION);
	printf(": crime rev %d.%d\n", (creg & 0xf0) >> 4, creg & 0xf);

	bus_space_write_8(&crimebus_tag, crime_h, CRIME_CPU_ERROR_STAT, 0);
	bus_space_write_8(&crimebus_tag, crime_h, CRIME_MEM_ERROR_STAT, 0);

	bus_space_write_8(&crimebus_tag, crime_h, CRIME_INT_MASK, 0);
	bus_space_write_8(&crimebus_tag, crime_h, CRIME_INT_SOFT, 0);
	bus_space_write_8(&crimebus_tag, crime_h, CRIME_INT_HARD, 0);
	bus_space_write_8(&crimebus_tag, crime_h, CRIME_INT_STAT, 0);

	/*
	 * Map and setup MACE ISA control registers.
	 */
	if (bus_space_map(&macebus_tag, MACE_ISA_OFFS, 0x400, 0, &mace_h)) {
		printf("%s: can't map MACE control registers\n",
		    self->dv_xname);
		return;
	}

	bus_space_write_8(&macebus_tag, mace_h, MACE_ISA_INT_MASK, 0);
	bus_space_write_8(&macebus_tag, mace_h, MACE_ISA_INT_STAT, 0);

	/*
	 * On O2 systems all interrupts are handled by the macebus interrupt
	 * handler. Register all except clock.
	 */
	set_intr(INTPRI_MACEIO, CR_INT_0, macebus_iointr);
	register_splx_handler(macebus_splx);

	/* Set up a handler called when clock interrupts go off. */
	set_intr(INTPRI_MACEAUX, CR_INT_5, macebus_aux);

	/*
	 * Attach subdevices.
	 */
	for (i = 0; i < nitems(macebus_children); i++)
		config_found_sm(self, macebus_children + i,
		    macebusprint, macebussubmatch);
}
Beispiel #14
0
uint64_t
cn30xxfpa_int_summary(void)
{
	struct cn30xxfpa_softc *sc = &cn30xxfpa_softc;
	uint64_t summary;

	summary = bus_space_read_8(sc->sc_regt, sc->sc_regh, FPA_INT_SUM_OFFSET);
	bus_space_write_8(sc->sc_regt, sc->sc_regh, FPA_INT_SUM_OFFSET, summary);
	return summary;
}
Beispiel #15
0
/*
 * Write to the command FIFO.
 */
static inline void
impact_cmd_fifo_write(struct impact_screen *scr, uint64_t reg, uint32_t val,
    int exec)
{
	uint64_t cmd;

	cmd = IMPACTSR_CFIFO_WRITE | (reg << IMPACTSR_CFIFO_REG_SHIFT);
	if (exec)
		cmd |= IMPACTSR_CFIFO_EXEC;
	bus_space_write_8(scr->iot, scr->ioh, IMPACTSR_CFIFO, cmd | val);
}
Beispiel #16
0
void
cn30xxfpa_int_enable(struct cn30xxfpa_softc *sc, int enable)
{
	const uint64_t int_xxx =
	    FPA_INT_ENB_Q7_PERR | FPA_INT_ENB_Q7_COFF | FPA_INT_ENB_Q7_UND |
	    FPA_INT_ENB_Q6_PERR | FPA_INT_ENB_Q6_COFF | FPA_INT_ENB_Q6_UND |
	    FPA_INT_ENB_Q5_PERR | FPA_INT_ENB_Q5_COFF | FPA_INT_ENB_Q5_UND |
	    FPA_INT_ENB_Q4_PERR | FPA_INT_ENB_Q4_COFF | FPA_INT_ENB_Q4_UND |
	    FPA_INT_ENB_Q3_PERR | FPA_INT_ENB_Q3_COFF | FPA_INT_ENB_Q3_UND |
	    FPA_INT_ENB_Q2_PERR | FPA_INT_ENB_Q2_COFF | FPA_INT_ENB_Q2_UND |
	    FPA_INT_ENB_Q1_PERR | FPA_INT_ENB_Q1_COFF | FPA_INT_ENB_Q1_UND |
	    FPA_INT_ENB_Q0_PERR | FPA_INT_ENB_Q0_COFF | FPA_INT_ENB_Q0_UND |
	    FPA_INT_ENB_FED1_DBE | FPA_INT_ENB_FED1_SBE |
	    FPA_INT_ENB_FED0_DBE | FPA_INT_ENB_FED0_SBE;

	bus_space_write_8(sc->sc_regt, sc->sc_regh, FPA_INT_SUM_OFFSET,
	    int_xxx);
	if (enable)
		bus_space_write_8(sc->sc_regt, sc->sc_regh, FPA_INT_ENB_OFFSET,
		    int_xxx);
}
Beispiel #17
0
void
octohci_attach(struct device *parent, struct device *self, void *aux)
{
	struct octohci_softc *sc = (struct octohci_softc *)self;
	struct octuctl_attach_args *aa = aux;
	char *devname;
	uint64_t port_ctl;
	int rc;
	int s;

	sc->sc_ohci.iot = aa->aa_bust;
	sc->sc_ohci.sc_bus.pipe_size = sizeof(struct usbd_pipe);
	sc->sc_ohci.sc_bus.dmatag = aa->aa_dmat;

	rc = bus_space_map(sc->sc_ohci.iot, UCTL_OHCI_BASE, UCTL_OHCI_SIZE,
	    0, &sc->sc_ohci.ioh);
	KASSERT(rc == 0);

	port_ctl = bus_space_read_8(aa->aa_octuctl_bust, aa->aa_ioh,
	    UCTL_OHCI_CTL);
	port_ctl &= ~UCTL_OHCI_CTL_L2C_ADDR_MSB_MASK;
	port_ctl |= (1 << UCTL_OHCI_CTL_L2C_DESC_EMOD_SHIFT);
	port_ctl |= (1 << UCTL_OHCI_CTL_L2C_BUFF_EMOD_SHIFT);
	bus_space_write_8(aa->aa_octuctl_bust, aa->aa_ioh, UCTL_OHCI_CTL,
	    port_ctl);

	s = splusb();

	sc->sc_ohci.sc_id_vendor = 0;
	strlcpy(sc->sc_ohci.sc_vendor, "Octeon", sizeof(sc->sc_ohci.sc_vendor));

	sc->sc_ih = octeon_intr_establish(CIU_INT_USB, IPL_USB, ohci_intr,
	    (void *)&sc->sc_ohci, devname);
	KASSERT(sc->sc_ih != NULL);

	if ((ohci_checkrev(&sc->sc_ohci) != USBD_NORMAL_COMPLETION) ||
	    (ohci_handover(&sc->sc_ohci) != USBD_NORMAL_COMPLETION))
		goto failed;

	/* ignore interrupts for now */
	sc->sc_ohci.sc_bus.dying = 1;
	config_defer(self, octohci_attach_deferred);

	splx(s);
	return;

failed:
	octeon_intr_disestablish(sc->sc_ih);
	bus_space_unmap(sc->sc_ohci.iot, sc->sc_ohci.ioh, UCTL_OHCI_SIZE);
	splx(s);
	return;
}
Beispiel #18
0
static void
cn30xxfpa_init_regs(struct cn30xxfpa_softc *sc)
{

	bus_space_write_8(sc->sc_regt, sc->sc_regh, FPA_CTL_STATUS_OFFSET,
	    FPA_CTL_STATUS_ENB);

/* XXX */
#ifdef OCTEON_ETH_DEBUG
	bus_space_write_8(sc->sc_regt, sc->sc_regh, FPA_INT_ENB_OFFSET,
	    FPA_INT_ENB_Q7_PERR | FPA_INT_ENB_Q7_COFF | FPA_INT_ENB_Q7_UND |
	    FPA_INT_ENB_Q6_PERR | FPA_INT_ENB_Q6_COFF | FPA_INT_ENB_Q6_UND |
	    FPA_INT_ENB_Q5_PERR | FPA_INT_ENB_Q5_COFF | FPA_INT_ENB_Q5_UND |
	    FPA_INT_ENB_Q4_PERR | FPA_INT_ENB_Q4_COFF | FPA_INT_ENB_Q4_UND |
	    FPA_INT_ENB_Q3_PERR | FPA_INT_ENB_Q3_COFF | FPA_INT_ENB_Q3_UND |
	    FPA_INT_ENB_Q2_PERR | FPA_INT_ENB_Q2_COFF | FPA_INT_ENB_Q2_UND |
	    FPA_INT_ENB_Q1_PERR | FPA_INT_ENB_Q1_COFF | FPA_INT_ENB_Q1_UND |
	    FPA_INT_ENB_Q0_PERR | FPA_INT_ENB_Q0_COFF | FPA_INT_ENB_Q0_UND |
	    FPA_INT_ENB_FED1_DBE | FPA_INT_ENB_FED1_SBE |
	    FPA_INT_ENB_FED0_DBE | FPA_INT_ENB_FED0_SBE);
#endif
}
Beispiel #19
0
/*
 * Establish an interrupt handler called from the dispatcher.
 * The interrupt function established should return zero if there was nothing
 * to serve (no int) and non-zero when an interrupt was serviced.
 *
 * Interrupts are numbered from 1 and up where 1 maps to HW int 0.
 * XXX There is no reason to keep this... except for hardcoded interrupts
 * XXX in kernel configuration files...
 */
void *
macebus_intr_establish(int irq, uint32_t mace_irqmask, int type, int level,
    int (*ih_fun)(void *), void *ih_arg, const char *ih_what)
{
	struct crime_intrhand **p, *q, *ih;
	int s;

#ifdef DIAGNOSTIC
	if (irq >= CRIME_NINTS || irq < 0)
		panic("intr_establish: illegal irq %d", irq);
#endif

	ih = malloc(sizeof *ih, M_DEVBUF, M_NOWAIT);
	if (ih == NULL)
		return NULL;

	ih->ih.ih_next = NULL;
	ih->ih.ih_fun = ih_fun;
	ih->ih.ih_arg = ih_arg;
	ih->ih.ih_level = level;
	ih->ih.ih_irq = irq;
	ih->mace_irqmask = mace_irqmask;
	evcount_attach(&ih->ih.ih_count, ih_what, &ih->ih.ih_irq);

	s = splhigh();

	/*
	 * Figure out where to put the handler.
	 * This is O(N^2), but we want to preserve the order, and N is
	 * generally small.
	 */
	for (p = &crime_intrhand[irq]; (q = *p) != NULL;
	    p = (struct crime_intrhand **)&q->ih.ih_next)
		;
	*p = ih;

	crime_intem |= 1UL << irq;
	macebus_intr_makemasks();

	/* enable further MACE sources if necessary */
	if (mace_irqmask != 0) {
		mace_intem |= mace_irqmask;
		bus_space_write_8(&macebus_tag, mace_h, MACE_ISA_INT_MASK,
		    mace_intem);
	}

	splx(s);	/* causes hw mask update */

	return (ih);
}
Beispiel #20
0
static uint64_t
thunder_pem_config_reg_read(struct thunder_pem_softc *sc, int reg)
{
	uint64_t data;

	/* Write to ADDR register */
	bus_space_write_8(sc->reg_bst, sc->reg_bsh, PEM_CFG_RD,
	    PEM_CFG_RD_REG_ALIGN(reg));
	bus_space_barrier(sc->reg_bst, sc->reg_bsh, PEM_CFG_RD, 8,
	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
	/* Read from DATA register */
	data = PEM_CFG_RD_REG_DATA(bus_space_read_8(sc->reg_bst, sc->reg_bsh,
	    PEM_CFG_RD));

	return (data);
}
Beispiel #21
0
void
mec_setfilter(struct mec_softc *sc)
{
	struct arpcom *ec = &sc->sc_ac;
	struct ifnet *ifp = &sc->sc_ac.ac_if;
	struct ether_multi *enm;
	struct ether_multistep step;
	bus_space_tag_t st = sc->sc_st;
	bus_space_handle_t sh = sc->sc_sh;
	uint64_t mchash;
	uint32_t control, hash;
	int mcnt;

	control = bus_space_read_8(st, sh, MEC_MAC_CONTROL);
	control &= ~MEC_MAC_FILTER_MASK;

	if (ifp->if_flags & IFF_PROMISC) {
		control |= MEC_MAC_FILTER_PROMISC;
		bus_space_write_8(st, sh, MEC_MULTICAST, 0xffffffffffffffffULL);
		bus_space_write_8(st, sh, MEC_MAC_CONTROL, control);
		return;
	}

	mcnt = 0;
	mchash = 0;
	ETHER_FIRST_MULTI(step, ec, enm);
	while (enm != NULL) {
		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
			/* Set allmulti for a range of multicast addresses. */
			control |= MEC_MAC_FILTER_ALLMULTI;
			bus_space_write_8(st, sh, MEC_MULTICAST,
			    0xffffffffffffffffULL);
			bus_space_write_8(st, sh, MEC_MAC_CONTROL, control);
			return;
		}

#define mec_calchash(addr)	(ether_crc32_be((addr), ETHER_ADDR_LEN) >> 26)

		hash = mec_calchash(enm->enm_addrlo);
		mchash |= 1 << hash;
		mcnt++;
		ETHER_NEXT_MULTI(step, enm);
	}

	ifp->if_flags &= ~IFF_ALLMULTI;

	if (mcnt > 0)
		control |= MEC_MAC_FILTER_MATCHMULTI;

	bus_space_write_8(st, sh, MEC_MULTICAST, mchash);
	bus_space_write_8(st, sh, MEC_MAC_CONTROL, control);
}
Beispiel #22
0
static void
le_lebuffer_copytodesc(struct lance_softc *sc, void *fromv, int off, int len)
{
	struct le_lebuffer_softc *lesc = (struct le_lebuffer_softc *)sc;
	caddr_t from = fromv;

	for (; len >= 8; len -= 8, off += 8, from += 8)
		bus_space_write_8(lesc->sc_buft, lesc->sc_bufh, off,
		    be64dec(from));
	for (; len >= 4; len -= 4, off += 4, from += 4)
		bus_space_write_4(lesc->sc_buft, lesc->sc_bufh, off,
		    be32dec(from));
	for (; len >= 2; len -= 2, off += 2, from += 2)
		bus_space_write_2(lesc->sc_buft, lesc->sc_bufh, off,
		    be16dec(from));
	if (len == 1)
		bus_space_write_1(lesc->sc_buft, lesc->sc_bufh, off,
		    *from);
}
Beispiel #23
0
/*
 * cfi_cmd - write a CFI command word.
 *
 * The offset 'off' is given for 64-bit port width and will be scaled
 * down to the actual port width of the chip.
 * The command word will be constructed out of 'val' regarding port- and
 * chip width.
 */
void
cfi_cmd(struct cfi * const cfi, bus_size_t off, uint32_t val)
{
	const bus_space_tag_t bst = cfi->cfi_bst;
	bus_space_handle_t bsh = cfi->cfi_bsh;
	uint64_t cmd;
	int cw, pw;

	off >>= 3 - cfi->cfi_portwidth;

	pw = 1 << cfi->cfi_portwidth;
	cw = 1 << cfi->cfi_chipwidth;
	cmd = 0;
	while (pw > 0) {
		cmd <<= cw << 3;
		cmd += val;
		pw -= cw;
	}

	DPRINTF(("%s: %p %x %x %" PRIx64 "\n", __func__, bst, bsh, off, cmd));

	switch (cfi->cfi_portwidth) {
	case 0:
		bus_space_write_1(bst, bsh, off, cmd);
		break;
	case 1:
		bus_space_write_2(bst, bsh, off, cmd);
		break;
	case 2:
		bus_space_write_4(bst, bsh, off, cmd);
		break;
#ifdef NOTYET
	case 3:
		bus_space_write_8(bst, bsh, off, cmd);
		break;
#endif
	default:
		panic("%s: bad portwidth %d bytes\n",
			__func__, 1 << cfi->cfi_portwidth);
	}
}
Beispiel #24
0
void
mec_statchg(struct device *self)
{
	struct mec_softc *sc = (void *)self;
	bus_space_tag_t st = sc->sc_st;
	bus_space_handle_t sh = sc->sc_sh;
	uint32_t control;

	control = bus_space_read_8(st, sh, MEC_MAC_CONTROL);
	control &= ~(MEC_MAC_IPGT | MEC_MAC_IPGR1 | MEC_MAC_IPGR2 |
	    MEC_MAC_FULL_DUPLEX | MEC_MAC_SPEED_SELECT);

	/* Must also set IPG here for duplex stuff... */
	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0) {
		control |= MEC_MAC_FULL_DUPLEX;
	} else {
		/* Set IPG. */
		control |= MEC_MAC_IPG_DEFAULT;
	}

	bus_space_write_8(st, sh, MEC_MAC_CONTROL, control);
}
Beispiel #25
0
/*
 * Macebus auxilary functions run each clock interrupt.
 */
uint32_t
macebus_aux(uint32_t hwpend, struct trapframe *cf)
{
	u_int64_t mask;

	mask = bus_space_read_8(&macebus_tag, mace_h, MACE_ISA_MISC_REG);
	mask |= MACE_ISA_MISC_RLED_OFF | MACE_ISA_MISC_GLED_OFF;

	/* GREEN - Idle */
	/* AMBER - System mode */
	/* RED   - User mode */
	if (cf->sr & SR_KSU_USER) {
		mask &= ~MACE_ISA_MISC_RLED_OFF;
	} else if (curproc == NULL ||
	    curproc == curcpu()->ci_schedstate.spc_idleproc) {
		mask &= ~MACE_ISA_MISC_GLED_OFF;
	} else {
		mask &= ~(MACE_ISA_MISC_RLED_OFF | MACE_ISA_MISC_GLED_OFF);
	}
	bus_space_write_8(&macebus_tag, mace_h, MACE_ISA_MISC_REG, mask);

	return 0;	/* Real clock int handler will claim the interrupt. */
}
Beispiel #26
0
void
mec_rxintr(struct mec_softc *sc, uint32_t stat)
{
	bus_space_tag_t st = sc->sc_st;
	bus_space_handle_t sh = sc->sc_sh;
	struct ifnet *ifp = &sc->sc_ac.ac_if;
	struct mbuf *m;
	struct mec_rxdesc *rxd;
	uint64_t rxstat;
	u_int len;
	int i, last;

	DPRINTF(MEC_DEBUG_RXINTR, ("mec_rxintr: called\n"));

	bus_space_write_8(st, sh, MEC_RX_ALIAS, 0);

	last = (stat & MEC_INT_RX_MCL_FIFO_ALIAS) >> 8;
	/* XXX does alias count mod 32 even if 16 descs are set up? */
	last &= MEC_NRXDESC_MASK;

	if (stat & MEC_INT_RX_FIFO_UNDERFLOW)
		last = (last - 1) & MEC_NRXDESC_MASK;

	DPRINTF(MEC_DEBUG_RXINTR, ("mec_rxintr: rxptr %d last %d\n",
	    sc->sc_rxptr, last));
	for (i = sc->sc_rxptr; i != last; i = MEC_NEXTRX(i)) {

		MEC_RXSTATSYNC(sc, i, BUS_DMASYNC_POSTREAD);
		rxd = &sc->sc_rxdesc[i];
		rxstat = rxd->rxd_stat;

		DPRINTF(MEC_DEBUG_RXINTR,
		    ("mec_rxintr: rxstat = 0x%llx, rxptr = %d\n",
		    rxstat, i));
		DPRINTF(MEC_DEBUG_RXINTR, ("mec_rxintr: rxfifo = 0x%x\n",
		    (u_int)bus_space_read_8(st, sh, MEC_RX_FIFO)));

		if ((rxstat & MEC_RXSTAT_RECEIVED) == 0) {
			/* Status not received but FIFO counted? Drop it! */
			goto dropit;
		}

		len = rxstat & MEC_RXSTAT_LEN;

		if (len < ETHER_MIN_LEN ||
		    len > ETHER_MAX_LEN) {
			/* Invalid length packet; drop it. */
			DPRINTF(MEC_DEBUG_RXINTR,
			    ("mec_rxintr: wrong packet\n"));
 dropit:
			ifp->if_ierrors++;
			rxd->rxd_stat = 0;
			MEC_RXSTATSYNC(sc, i, BUS_DMASYNC_PREREAD);
			bus_space_write_8(st, sh, MEC_MCL_RX_FIFO,
			    MEC_CDRXADDR(sc, i));
			continue;
		}

		if (rxstat &
		    (MEC_RXSTAT_BADPACKET |
		     MEC_RXSTAT_LONGEVENT |
		     MEC_RXSTAT_INVALID   |
		     MEC_RXSTAT_CRCERROR  |
		     MEC_RXSTAT_VIOLATION)) {
			printf("%s: mec_rxintr: status = 0x%llx\n",
			    sc->sc_dev.dv_xname, rxstat);
			goto dropit;
		}

		/*
		 * Now allocate an mbuf (and possibly a cluster) to hold
		 * the received packet.
		 */
		MGETHDR(m, M_DONTWAIT, MT_DATA);
		if (m == NULL) {
			printf("%s: unable to allocate RX mbuf\n",
			    sc->sc_dev.dv_xname);
			goto dropit;
		}
		if (len > (MHLEN - ETHER_ALIGN)) {
			MCLGET(m, M_DONTWAIT);
			if ((m->m_flags & M_EXT) == 0) {
				printf("%s: unable to allocate RX cluster\n",
				    sc->sc_dev.dv_xname);
				m_freem(m);
				m = NULL;
				goto dropit;
			}
		}

		/*
		 * Note MEC chip seems to insert 2 byte padding at the start of
		 * RX buffer, but we copy whole buffer to avoid unaligned copy.
		 */
		MEC_RXBUFSYNC(sc, i, len + ETHER_ALIGN, BUS_DMASYNC_POSTREAD);
		memcpy(mtod(m, caddr_t), rxd->rxd_buf,
		    ETHER_ALIGN + len - ETHER_CRC_LEN);
		MEC_RXBUFSYNC(sc, i, ETHER_MAX_LEN, BUS_DMASYNC_PREREAD);
		m->m_data += ETHER_ALIGN;

		/* Put RX buffer into FIFO again. */
		rxd->rxd_stat = 0;
		MEC_RXSTATSYNC(sc, i, BUS_DMASYNC_PREREAD);
		bus_space_write_8(st, sh, MEC_MCL_RX_FIFO, MEC_CDRXADDR(sc, i));

		m->m_pkthdr.rcvif = ifp;
		m->m_pkthdr.len = m->m_len = len - ETHER_CRC_LEN;

		ifp->if_ipackets++;

#if NBPFILTER > 0
		/*
		 * Pass this up to any BPF listeners, but only
		 * pass it up the stack if it is for us.
		 */
		if (ifp->if_bpf)
			bpf_mtap(ifp->if_bpf, m, BPF_DIRECTION_IN);
#endif

		/* Pass it on. */
		ether_input_mbuf(ifp, m);
	}

	/* Update RX pointer. */
	sc->sc_rxptr = i;

	bus_space_write_8(st, sh, MEC_RX_ALIAS,
	    (MEC_NRXDESC << MEC_DMA_RX_INT_THRESH_SHIFT) |
	    MEC_DMA_RX_INT_ENABLE);
}
Beispiel #27
0
void
mec_start(struct ifnet *ifp)
{
	struct mec_softc *sc = ifp->if_softc;
	struct mbuf *m0;
	struct mec_txdesc *txd;
	struct mec_txsoft *txs;
	bus_dmamap_t dmamap;
	bus_space_tag_t st = sc->sc_st;
	bus_space_handle_t sh = sc->sc_sh;
	uint64_t txdaddr;
	int error, firsttx, nexttx, opending;
	int len, bufoff, buflen, unaligned, txdlen;

	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
		return;

	/*
	 * Remember the previous txpending and the first transmit descriptor.
	 */
	opending = sc->sc_txpending;
	firsttx = MEC_NEXTTX(sc->sc_txlast);

	DPRINTF(MEC_DEBUG_START,
	    ("mec_start: opending = %d, firsttx = %d\n", opending, firsttx));

	for (;;) {
		/* Grab a packet off the queue. */
		IFQ_POLL(&ifp->if_snd, m0);
		if (m0 == NULL)
			break;

		if (sc->sc_txpending == MEC_NTXDESC) {
			break;
		}

		/*
		 * Get the next available transmit descriptor.
		 */
		nexttx = MEC_NEXTTX(sc->sc_txlast);
		txd = &sc->sc_txdesc[nexttx];
		txs = &sc->sc_txsoft[nexttx];

		buflen = 0;
		bufoff = 0;
		txdaddr = 0; /* XXX gcc */
		txdlen = 0; /* XXX gcc */

		len = m0->m_pkthdr.len;

		DPRINTF(MEC_DEBUG_START,
		    ("mec_start: len = %d, nexttx = %d\n", len, nexttx));

		IFQ_DEQUEUE(&ifp->if_snd, m0);
		if (len < ETHER_PAD_LEN) {
			/*
			 * I don't know if MEC chip does auto padding,
			 * so if the packet is small enough,
			 * just copy it to the buffer in txdesc.
			 * Maybe this is the simple way.
			 */
			DPRINTF(MEC_DEBUG_START, ("mec_start: short packet\n"));

			bufoff = MEC_TXD_BUFSTART(ETHER_PAD_LEN);
			m_copydata(m0, 0, m0->m_pkthdr.len,
			    txd->txd_buf + bufoff);
			memset(txd->txd_buf + bufoff + len, 0,
			    ETHER_PAD_LEN - len);
			len = buflen = ETHER_PAD_LEN;

			txs->txs_flags = MEC_TXS_TXDBUF | buflen;
		} else {
			/*
			 * If the packet won't fit the buffer in txdesc,
			 * we have to use concatenate pointer to handle it.
			 * While MEC can handle up to three segments to
			 * concatenate, MEC requires that both the second and
			 * third segments have to be 8 byte aligned.
			 * Since it's unlikely for mbuf clusters, we use
			 * only the first concatenate pointer. If the packet
			 * doesn't fit in one DMA segment, allocate new mbuf
			 * and copy the packet to it.
			 *
			 * Besides, if the start address of the first segments
			 * is not 8 byte aligned, such part have to be copied
			 * to the txdesc buffer. (XXX see below comments)
	                 */
			DPRINTF(MEC_DEBUG_START, ("mec_start: long packet\n"));

			dmamap = txs->txs_dmamap;
			if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
			    BUS_DMA_WRITE | BUS_DMA_NOWAIT) != 0) {
				struct mbuf *m;

				DPRINTF(MEC_DEBUG_START,
				    ("mec_start: re-allocating mbuf\n"));
				MGETHDR(m, M_DONTWAIT, MT_DATA);
				if (m == NULL) {
					printf("%s: unable to allocate "
					    "TX mbuf\n", sc->sc_dev.dv_xname);
					break;
				}
				if (len > (MHLEN - ETHER_ALIGN)) {
					MCLGET(m, M_DONTWAIT);
					if ((m->m_flags & M_EXT) == 0) {
						printf("%s: unable to allocate "
						    "TX cluster\n",
						    sc->sc_dev.dv_xname);
						m_freem(m);
						break;
					}
				}
				/*
				 * Each packet has the Ethernet header, so
				 * in many cases the header isn't 4-byte aligned
				 * and data after the header is 4-byte aligned.
				 * Thus adding 2-byte offset before copying to
				 * new mbuf avoids unaligned copy and this may
				 * improve performance.
				 * As noted above, unaligned part has to be
				 * copied to txdesc buffer so this may cause
				 * extra copy ops, but for now MEC always
				 * requires some data in txdesc buffer,
				 * so we always have to copy some data anyway.
				 */
				m->m_data += ETHER_ALIGN;
				m_copydata(m0, 0, len, mtod(m, caddr_t));
				m->m_pkthdr.len = m->m_len = len;
				m_freem(m0);
				m0 = m;
				error = bus_dmamap_load_mbuf(sc->sc_dmat,
				    dmamap, m, BUS_DMA_WRITE | BUS_DMA_NOWAIT);
				if (error) {
					printf("%s: unable to load TX buffer, "
					    "error = %d\n",
					    sc->sc_dev.dv_xname, error);
					m_freem(m);
					break;
				}
			}

			/* Handle unaligned part. */
			txdaddr = MEC_TXD_ROUNDUP(dmamap->dm_segs[0].ds_addr);
			txs->txs_flags = MEC_TXS_TXDPTR1;
			unaligned =
			    dmamap->dm_segs[0].ds_addr & (MEC_TXD_ALIGN - 1);
			DPRINTF(MEC_DEBUG_START,
			    ("mec_start: ds_addr = 0x%x, unaligned = %d\n",
			    (u_int)dmamap->dm_segs[0].ds_addr, unaligned));
			if (unaligned != 0) {
				buflen = MEC_TXD_ALIGN - unaligned;
				bufoff = MEC_TXD_BUFSTART(buflen);
				DPRINTF(MEC_DEBUG_START,
				    ("mec_start: unaligned, "
				    "buflen = %d, bufoff = %d\n",
				    buflen, bufoff));
				memcpy(txd->txd_buf + bufoff,
				    mtod(m0, caddr_t), buflen);
				txs->txs_flags |= MEC_TXS_TXDBUF | buflen;
			}
#if 1
			else {
				/*
				 * XXX needs hardware info XXX
				 * It seems MEC always requires some data
				 * in txd_buf[] even if buffer is
				 * 8-byte aligned otherwise DMA abort error
				 * occurs later...
				 */
				buflen = MEC_TXD_ALIGN;
				bufoff = MEC_TXD_BUFSTART(buflen);
				memcpy(txd->txd_buf + bufoff,
				    mtod(m0, caddr_t), buflen);
				DPRINTF(MEC_DEBUG_START,
				    ("mec_start: aligned, "
				    "buflen = %d, bufoff = %d\n",
				    buflen, bufoff));
				txs->txs_flags |= MEC_TXS_TXDBUF | buflen;
				txdaddr += MEC_TXD_ALIGN;
			}
#endif
			txdlen  = len - buflen;
			DPRINTF(MEC_DEBUG_START,
			    ("mec_start: txdaddr = 0x%llx, txdlen = %d\n",
			    txdaddr, txdlen));

			/*
			 * Sync the DMA map for TX mbuf.
			 *
			 * XXX unaligned part doesn't have to be sync'ed,
			 *     but it's harmless...
			 */
			bus_dmamap_sync(sc->sc_dmat, dmamap, 0,
			    dmamap->dm_mapsize,	BUS_DMASYNC_PREWRITE);
		}

#if NBPFILTER > 0
		/*
		 * Pass packet to bpf if there is a listener.
		 */
		if (ifp->if_bpf)
			bpf_mtap(ifp->if_bpf, m0, BPF_DIRECTION_OUT);
#endif

		/*
		 * Setup the transmit descriptor.
		 */

		/* TXINT bit will be set later on the last packet. */
		txd->txd_cmd = (len - 1);
		/* But also set TXINT bit on a half of TXDESC. */
		if (sc->sc_txpending == (MEC_NTXDESC / 2))
			txd->txd_cmd |= MEC_TXCMD_TXINT;

		if (txs->txs_flags & MEC_TXS_TXDBUF)
			txd->txd_cmd |= TXCMD_BUFSTART(MEC_TXDESCSIZE - buflen);
		if (txs->txs_flags & MEC_TXS_TXDPTR1) {
			txd->txd_cmd |= MEC_TXCMD_PTR1;
			txd->txd_ptr[0] = TXPTR_LEN(txdlen - 1) | txdaddr;
			/*
			 * Store a pointer to the packet so we can
			 * free it later.
			 */
			txs->txs_mbuf = m0;
		} else {
			txd->txd_ptr[0] = 0;
			/*
			 * In this case all data are copied to buffer in txdesc,
			 * we can free TX mbuf here.
			 */
			m_freem(m0);
		}

		DPRINTF(MEC_DEBUG_START,
		    ("mec_start: txd_cmd = 0x%llx, txd_ptr = 0x%llx\n",
		    txd->txd_cmd, txd->txd_ptr[0]));
		DPRINTF(MEC_DEBUG_START,
		    ("mec_start: len = %d (0x%04x), buflen = %d (0x%02x)\n",
		    len, len, buflen, buflen));

		/* Sync TX descriptor. */
		MEC_TXDESCSYNC(sc, nexttx,
		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);

		/* Advance the TX pointer. */
		sc->sc_txpending++;
		sc->sc_txlast = nexttx;
	}

	if (sc->sc_txpending == MEC_NTXDESC) {
		/* No more slots; notify upper layer. */
		ifp->if_flags |= IFF_OACTIVE;
	}

	if (sc->sc_txpending != opending) {
		/*
		 * Cause a TX interrupt to happen on the last packet
		 * we enqueued.
		 */
		sc->sc_txdesc[sc->sc_txlast].txd_cmd |= MEC_TXCMD_TXINT;
		MEC_TXCMDSYNC(sc, sc->sc_txlast,
		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);

		/* Start TX. */
		bus_space_write_8(st, sh, MEC_TX_RING_PTR,
		    MEC_NEXTTX(sc->sc_txlast));

		/*
		 * If the transmitter was idle,
		 * reset the txdirty pointer and re-enable TX interrupt.
		 */
		if (opending == 0) {
			sc->sc_txdirty = firsttx;
			bus_space_write_8(st, sh, MEC_TX_ALIAS,
			    MEC_TX_ALIAS_INT_ENABLE);
		}

		/* Set a watchdog timer in case the chip flakes out. */
		ifp->if_timer = 5;
	}
}
Beispiel #28
0
void
mec_txintr(struct mec_softc *sc, uint32_t stat)
{
	struct ifnet *ifp = &sc->sc_ac.ac_if;
	struct mec_txdesc *txd;
	struct mec_txsoft *txs;
	bus_dmamap_t dmamap;
	uint64_t txstat;
	int i, last;
	u_int col;

	ifp->if_flags &= ~IFF_OACTIVE;

	DPRINTF(MEC_DEBUG_TXINTR, ("mec_txintr: called\n"));

	bus_space_write_8(sc->sc_st, sc->sc_sh, MEC_TX_ALIAS, 0);
	last = (stat & MEC_INT_TX_RING_BUFFER_ALIAS) >> 16;

	DPRINTF(MEC_DEBUG_TXINTR, ("mec_txintr: dirty %d last %d\n",
	    sc->sc_txdirty, last));
	for (i = sc->sc_txdirty; i != last && sc->sc_txpending != 0;
	    i = MEC_NEXTTX(i), sc->sc_txpending--) {
		txd = &sc->sc_txdesc[i];

		MEC_TXDESCSYNC(sc, i,
		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);

		txstat = txd->txd_stat;
		DPRINTF(MEC_DEBUG_TXINTR,
		    ("mec_txintr: dirty = %d, txstat = 0x%llx\n",
		    i, txstat));
		if ((txstat & MEC_TXSTAT_SENT) == 0) {
			MEC_TXCMDSYNC(sc, i, BUS_DMASYNC_PREREAD);
			break;
		}

		if ((txstat & MEC_TXSTAT_SUCCESS) == 0) {
			printf("%s: TX error: txstat = 0x%llx\n",
			    sc->sc_dev.dv_xname, txstat);
			ifp->if_oerrors++;
			continue;
		}

		txs = &sc->sc_txsoft[i];
		if ((txs->txs_flags & MEC_TXS_TXDPTR1) != 0) {
			dmamap = txs->txs_dmamap;
			bus_dmamap_sync(sc->sc_dmat, dmamap, 0,
			    dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
			bus_dmamap_unload(sc->sc_dmat, dmamap);
			m_freem(txs->txs_mbuf);
			txs->txs_mbuf = NULL;
		}

		col = (txstat & MEC_TXSTAT_COLCNT) >> MEC_TXSTAT_COLCNT_SHIFT;
		ifp->if_collisions += col;
		ifp->if_opackets++;
	}

	/* Update the dirty TX buffer pointer. */
	sc->sc_txdirty = i;
	DPRINTF(MEC_DEBUG_INTR,
	    ("mec_txintr: sc_txdirty = %2d, sc_txpending = %2d\n",
	    sc->sc_txdirty, sc->sc_txpending));

	/* Cancel the watchdog timer if there are no pending TX packets. */
	if (sc->sc_txpending == 0)
		ifp->if_timer = 0;
	else if (!(stat & MEC_INT_TX_EMPTY))
		bus_space_write_8(sc->sc_st, sc->sc_sh, MEC_TX_ALIAS,
		    MEC_TX_ALIAS_INT_ENABLE);
}
Beispiel #29
0
/*
 * Interrupt dispatcher.
 */
uint32_t
obio_iointr(uint32_t hwpend, struct trap_frame *frame)
{
	struct cpu_info *ci = curcpu();
	int cpuid = cpu_number();
	uint64_t imr, isr, mask;
	int ipl;
	int bit;
	struct intrhand *ih;
	int rc;
	uint64_t sum0 = CIU_IP2_SUM0(cpuid);
	uint64_t en0 = CIU_IP2_EN0(cpuid);

	isr = bus_space_read_8(&obio_tag, obio_h, sum0);
	imr = bus_space_read_8(&obio_tag, obio_h, en0);
	bit = 63;

	isr &= imr;
	if (isr == 0)
		return 0;	/* not for us */

	/*
	 * Mask all pending interrupts.
	 */
	bus_space_write_8(&obio_tag, obio_h, en0, imr & ~isr);

	/*
	 * If interrupts are spl-masked, mask them and wait for splx()
	 * to reenable them when necessary.
	 */
	if ((mask = isr & obio_imask[cpuid][frame->ipl]) != 0) {
		isr &= ~mask;
		imr &= ~mask;
	}

	/*
	 * Now process allowed interrupts.
	 */
	if (isr != 0) {
		int lvl, bitno;
		uint64_t tmpisr;

		__asm__ (".set noreorder\n");
		ipl = ci->ci_ipl;
		__asm__ ("sync\n\t.set reorder\n");

		/* Service higher level interrupts first */
		for (lvl = NIPLS - 1; lvl != IPL_NONE; lvl--) {
			tmpisr = isr & (obio_imask[cpuid][lvl] ^ obio_imask[cpuid][lvl - 1]);
			if (tmpisr == 0)
				continue;
			for (bitno = bit, mask = 1UL << bitno; mask != 0;
			    bitno--, mask >>= 1) {
				if ((tmpisr & mask) == 0)
					continue;

				rc = 0;
				for (ih = (struct intrhand *)obio_intrhand[bitno];
					ih != NULL;
				    ih = ih->ih_next) {
#ifdef MULTIPROCESSOR
					u_int32_t sr;
#endif
					splraise(ih->ih_level);
#ifdef MULTIPROCESSOR
					if (ih->ih_level < IPL_IPI) {
						sr = getsr();
						ENABLEIPI();
						if (ipl < IPL_SCHED)
							__mp_lock(&kernel_lock);
					}
#endif
					if ((*ih->ih_fun)(ih->ih_arg) != 0) {
						rc = 1;
						atomic_add_uint64(&ih->ih_count.ec_count, 1);
					}
#ifdef MULTIPROCESSOR
					if (ih->ih_level < IPL_IPI) {
						if (ipl < IPL_SCHED)
							__mp_unlock(&kernel_lock);
						setsr(sr);
					}
#endif
					__asm__ (".set noreorder\n");
					ci->ci_ipl = ipl;
					__asm__ ("sync\n\t.set reorder\n");
				}
				if (rc == 0)
					printf("spurious crime interrupt %d\n", bitno);

				isr ^= mask;
				if ((tmpisr ^= mask) == 0)
					break;
			}
		}

		/*
		 * Reenable interrupts which have been serviced.
		 */
		bus_space_write_8(&obio_tag, obio_h, en0, imr);
	}
Beispiel #30
0
int
mec_intr(void *arg)
{
	struct mec_softc *sc = arg;
	bus_space_tag_t st = sc->sc_st;
	bus_space_handle_t sh = sc->sc_sh;
	struct ifnet *ifp = &sc->sc_ac.ac_if;
	uint32_t statreg, statack, dmac;
	int handled, sent;

	DPRINTF(MEC_DEBUG_INTR, ("mec_intr: called\n"));

	handled = sent = 0;

	for (;;) {
		statreg = bus_space_read_8(st, sh, MEC_INT_STATUS);

		DPRINTF(MEC_DEBUG_INTR,
		    ("mec_intr: INT_STAT = 0x%x\n", statreg));

		statack = statreg & MEC_INT_STATUS_MASK;
		if (statack == 0)
			break;
		bus_space_write_8(st, sh, MEC_INT_STATUS, statack);

		handled = 1;

		if (statack &
		    (MEC_INT_RX_THRESHOLD |
		     MEC_INT_RX_FIFO_UNDERFLOW)) {
			mec_rxintr(sc, statreg);
		}

		dmac = bus_space_read_8(st, sh, MEC_DMA_CONTROL);
		DPRINTF(MEC_DEBUG_INTR,
		    ("mec_intr: DMA_CONT = 0x%x\n", dmac));

		if (statack &
		    (MEC_INT_TX_EMPTY |
		     MEC_INT_TX_PACKET_SENT |
		     MEC_INT_TX_ABORT)) {
			mec_txintr(sc, statreg);
			sent = 1;
		}

		if (statack &
		    (MEC_INT_TX_LINK_FAIL |
		     MEC_INT_TX_MEM_ERROR |
		     MEC_INT_TX_ABORT |
		     MEC_INT_RX_DMA_UNDERFLOW)) {
			printf("%s: mec_intr: interrupt status = 0x%x\n",
			    sc->sc_dev.dv_xname, statreg);
		}
	}

	if (sent) {
		/* Try to get more packets going. */
		mec_start(ifp);
	}

	return handled;
}