Beispiel #1
0
void _init( void ) {
	pcb_t *pcb;
	context_t *context;
	status_t stat;

	/*
	** BOILERPLATE CODE - taken from basic framework
	**
	** Initialize interrupt stuff.
	*/

	__init_interrupts();	// IDT and PIC initialization

	/*
	** Console I/O system.
	*/

	c_io_init();
	c_setscroll( 0, 7, 99, 99 );
	c_puts_at( 0, 6, "================================================================================" );

	/*
	** 20103-SPECIFIC CODE STARTS HERE
	*/

	/*
	** Initialize various OS modules
	*/

	c_puts( "Starting module init: " );

	_q_init();		// must be first
	_pcb_init();
	_stack_init();
	_sio_init();
	_syscall_init();
	_sched_init();
	_clock_init();
	//_pci_init();
	build_lapic_info();
	_paging_init();

	c_puts( "\n" );

	c_puts(" Ending init\n");
	initSMP();

	/*
	** Create the initial system ESP
	**
	** This will be the address of the next-to-last
	** longword in the system stack.
	*/

	_system_esp = ((uint32_t *) ( (&_system_stack) + 1)) - 2;

	/*
	** Install the ISRs
	*/

	__install_isr( INT_VEC_TIMER, _isr_clock );
	__install_isr( INT_VEC_SYSCALL, _isr_syscall );
	__install_isr( INT_VEC_SERIAL_PORT_1, _isr_sio );

	/*
	** Create the initial process
	**
	** Code mostly stolen from _sys_fork() and _sys_exec();
	** if either of those routines change, SO MUST THIS!!!
	**
	** First, get a PCB and a stack
	*/

	stat = _pcb_alloc( &pcb );
	if( stat != E_SUCCESS ) {
		_kpanic( "_init", "first pcb alloc status %s", stat );
	}

	stat = _stack_alloc( &(pcb->stack) );
	if( stat != E_SUCCESS ) {
		_kpanic( "_init", "first stack alloc status %s", stat );
	}

	/*
	** Next, set up various PCB fields
	*/

	pcb->pid  = PID_INIT;
	pcb->ppid = PID_INIT;
	pcb->prio = PRIO_MAXIMUM;

	/*
	** Set up the initial process context.
	*/

	context = _setup_stack( pcb->stack, (uint32_t) init );

	// Finally, set up the process' ESP

	context->esp = (uint32_t) context;

	// Make it the "current" process

	_current = pcb;
	_current->context = context;

	/*
	** Starting up the idle routine is the responsibility
	** of the initial user process.
	*/

	/*
	** Turn on the SIO receiver (the transmitter will be turned
	** on/off as characters are being sent)
	*/

	_sio_enable( SIO_RX );

	/*
	** END OF 20103-SPECIFIC CODE
	**
	** Finally, report that we're all done.
	*/


	c_puts( "System initialization complete.\n" );

}
Beispiel #2
0
void _init( void ) {
	pcb_t *pcb;

	/*
	** BOILERPLATE CODE - taken from basic framework
	**
	** Initialize interrupt stuff.
	*/

	__init_interrupts();	// IDT and PIC initialization
	// Ignore the 0x2A interrupt which happens when removing or inserting a
	// flash drive.
	__install_isr( 0x2A,  _ignore_isr );

	/*
	** Console I/O system.
	*/

	c_io_init();
	c_clearscreen();
#ifdef ISR_DEBUGGING_CODE
	c_setscroll( 0, 7, 99, 99 );
	c_puts_at( 0, 6, "================================================================================" );
#endif

	/*
	** 20123-SPECIFIC CODE STARTS HERE
	*/

	/*
	** Initialize various OS modules
	**
	** Note:  the clock, SIO, and syscall modules also install
	** their ISRs.
	*/

	c_puts( "Module init: " );

	_q_init();		// must be first
	_pcb_init();
	_stack_init();
	_sio_init();
	_sys_init();
	_sched_init();
	_clock_init();
	_pci_init();
	_disk_init();
	_net_init();

	c_puts( "\n" );
	c_puts("Launching the shell. Please be patient\n");
	__delay(1000);
	c_clearscreen();

	/*
	** Create the initial system ESP
	**
	** This will be the address of the next-to-last
	** longword in the system stack.
	*/

	_system_esp = ((uint32_t *) ( (&_system_stack) + 1)) - 2;

	/*
	** Create the initial process
	**
	** Code mostly stolen from _sys_fork(); if that routine
	** changes, SO MUST THIS!!!
	*/

	// allocate a PCB and stack

	pcb = _create_process( NULL );
	if( pcb == NULL ) {
		_kpanic( "_init", "init() creation failed", FAILURE );
	}

	// initialize the stack with the standard context

	pcb->context = _create_stack( pcb->stack );
	if( pcb->context == NULL ) {
		_kpanic( "_init", "init() stack setup failed", FAILURE );
	}

	// define the entry point for init()

	pcb->context->eip = (uint32_t) init;

	// set up various PCB fields

	pcb->pid = pcb->ppid = PID_INIT;	// next PID is initially 1
	pcb->prio = PRIO_HIGH;
	pcb->children = 1000;

	// remember this PCB for use in reparenting orphan processes

	_init_pcb = pcb;

	// make it the first process

	_schedule( pcb );
	_dispatch();

	/*
	** Turn on the SIO receiver (the transmitter will be turned
	** on/off as characters are being sent)
	*/

	_sio_enable( SIO_RX );

	/*
	** END OF 20123-SPECIFIC CODE
	**
	** Finally, report that we're all done.
	*/

	c_puts( "System initialization complete.\n" );

}
Beispiel #3
0
int main( void ) {
	c_puts( "Clearing screen\n");

	c_clearscreen();

	_interrupt_init();


	_pci_alloc_device_list(&pciDevices);

	status_t status = _pci_scan(pciDevices);

	if(status != E_SUCCESS){
		c_printf("PCI bus scan failed with error 0x%x\n", status);
		while(1);
	}


	c_printf("Detected %d PCI devices\n", pciDevices->size);


	//bcm_driver_init(pciDevices);
	status = i8255x_driver_init(pciDevices);

	c_io_init();	//HACK: To avoid updating c_io for the moment

	if(status != E_SUCCESS){
		c_printf("ERROR: Failed to initialize network card!\n");
	}
	else{
		c_printf("SUCCESS: Network card initialized\n");
	}

	pci_device_t* dev = pciDevices->first;

	struct ethframe frame;
	frame.header.proto = htons(0xcafe);
	int j=0;
	for(; j<ETH_ALEN; j++){
		frame.header.dest[j] = 0xff;
		frame.header.source[j] = j;
	}



	while(dev!=NULL){
		char scan = c_getchar();

		switch(scan){
			case 0x34:		//Left arrow
				if(dev->prev == NULL){
					dev=pciDevices->last;
				}
				else{
					dev = dev->prev;
				}
				c_clearscreen();
				c_moveto(0,1);
				_pci_print_config(dev);
				break;
			case 0x36:		//Right arrow
				if(dev->next == NULL){
					dev = pciDevices->first;
				}
				else{
					dev = dev->next;
				}
				c_clearscreen();
				c_moveto(0,1);
				_pci_print_config(dev);
				break;
			case 0x0A:		//Enter key
				//Mask device's interrupt
				//_pci_mask_inta(dev);
				c_clearscreen();
				//_pci_read_config(dev->address, &dev->config);
				c_moveto(0, 24);
				c_printf("> ");
				readline((char*)frame.data);

				c_moveto(0,24);
				c_printf("> Sending...                                                 ");
				c_moveto(0,24);
				i8255x_driver_transmit((uint8_t*)&frame, sizeof(struct ethframe), 0);
				c_moveto(0,1);
				c_moveto(0,24);
				c_printf(">                                                 ");

				//_pci_print_config(dev);
				//c_printf("MASKED");
				break;
			default:
				c_printf_at(78, 0, "%x", (int)scan);
				break;
		}
		//__delay(2);
	}



	return( 0 );
}
Beispiel #4
0
void _init( void ) {
    Pcb *pcb;

    //
    // BOILERPLATE CODE - taken from basic framework
    //
    // Initialize interrupt stuff.
    //

    __init_interrupts();	// IDT and PIC initialization

    //
    // I/O system.
    //

    c_io_init();
    c_clearscreen();
    c_setscroll( 0, 7, 99, 99 );
    c_puts_at( 0, 6, "================================================================================" );

    c_puts( "Init: " );

    //
    // 20073-SPECIFIC CODE STARTS HERE
    //

    //
    // Initialize various OS modules
    //

    _init_queues();		// must be first
    _init_memory();
    _init_processes();
    _init_stacks();
    _init_sio();
    _init_clock();
    _init_syscalls();

    c_puts( "\n" );

    //
    // Create the initial process
    //
    // Code mostly stolen from _sys_fork() and _sys_exec();
    // if either of those routines change, SO MUST THIS!!!
    //

    //
    // First, get a PCB and a stack
    //

    pcb = _get_pcb();
    if( pcb == 0 ) {
        _kpanic( "_init - can't allocate first pcb" );
    }

    pcb->stack = _get_stack();
    if( pcb->stack == 0 ) {
        _kpanic( "_init - can't allocate first stack" );
    }

    //
    // Next, set up various PCB fields
    //

    pcb->pid  = g_next_pid++;
    pcb->prio = PRI_NORMAL;

    //
    // Set up the initial process context.
    //
    // See _sys_exec() for an explanation of how this works.
    //

    pcb->context = _setup_stack( pcb->stack, (unsigned int) first_main );

    // Initialize memory segment. Equals that of the kernel's in the GDT.
    pcb->seg.mem.offset = 0x0;
    pcb->seg.mem.length = 0xFFFFFFFF;

    // Initialize LDT entries for this PCB
    // This is a "kernel" process, so we will just copy over the
    // descriptors from the GDT and stick them into this process' LDT.
    __copy_gdt_entry( &(pcb->seg.ldt.cseg), (GDT_INDEX(GDT_CODE)) );
    __copy_gdt_entry( &(pcb->seg.ldt.dseg), (GDT_INDEX(GDT_DATA)) );

    // Allocate a slot in the GDT for the LDT descriptor,
    // and initialize this PCB's LDT register variable.
    pcb->seg.ldtr = SEL_SETINDEX(_gdt_alloc()) | SEL_GDT | SEL_RPL(0);

    // Initialize the LDT descriptor located in the GDT
    __gdt_set_entry( SEL_GETINDEX(pcb->seg.ldtr),
                     (u32_t)&(pcb->seg.ldt), sizeof(ldt_t),
                     ACC_PRES | ACC_DPL(0) | ACC_SYS | SYS_LDT );

    //
    // Give it to the scheduler.
    //

    _schedule( pcb );

    //
    // Do it all again for the idle process.
    //

    pcb = _get_pcb();
    if( pcb == 0 ) {
        _kpanic( "_init - can't allocate idle pcb" );
    }

    pcb->stack = _get_stack();
    if( pcb->stack == 0 ) {
        _kpanic( "_init - can't allocate idle stack" );
    }

    pcb->pid  = g_next_pid++;
    pcb->prio = PRI_MINIMUM;

    pcb->context = _setup_stack( pcb->stack, (unsigned int) idle_main );

    pcb->seg.mem.offset = 0x0;
    pcb->seg.mem.length = 0xFFFFFFFF;

    __copy_gdt_entry( &(pcb->seg.ldt.cseg), (GDT_INDEX(GDT_CODE)) );
    __copy_gdt_entry( &(pcb->seg.ldt.dseg), (GDT_INDEX(GDT_DATA)) );

    pcb->seg.ldtr = SEL_SETINDEX(_gdt_alloc()) | SEL_GDT | SEL_RPL(0);

    __gdt_set_entry( SEL_GETINDEX(pcb->seg.ldtr),
                     (u32_t)&(pcb->seg.ldt), sizeof(ldt_t),
                     ACC_PRES | ACC_DPL(0) | ACC_SYS | SYS_LDT );

    _schedule( pcb );

    //
    // Dispatch the initial current process
    //

    _dispatch();

    //
    // END OF 20073-SPECIFIC CODE
    //
    // Finally, report that we're all done.
    //

    c_puts( "System initialization complete.\n" );

}