void s3hexClearOutflows(struct CALModel2D* s3hex, int i, int j)
{
  int n;
  for (n=0; n<s3hex->sizeof_X; n++)
    {
      if (calGet2Dr(s3hex, Q.fh[n], i, j) > 0.0)
        calSet2Dr(s3hex, Q.fh[n], i, j, 0.0);
      if (calGet2Dr(s3hex, Q.fp[n], i, j) > 0.0)
        calSet2Dr(s3hex, Q.fp[n], i, j, 0.0);
    }
}
//first elementary process
void sciddicaTFlowsComputation(struct CALModel2D* sciddicaT, int i, int j)
{
	CALbyte eliminated_cells[5]={CAL_FALSE,CAL_FALSE,CAL_FALSE,CAL_FALSE,CAL_FALSE};
	CALbyte again;
	CALint cells_count;
	CALreal average;
	CALreal m;
	CALreal u[5];
	CALint n;
	CALreal z, h;


	if (calGet2Dr(sciddicaT, Q.h, i, j) <= P.epsilon)
		return;

	m = calGet2Dr(sciddicaT, Q.h, i, j) - P.epsilon;
	u[0] = calGet2Dr(sciddicaT, Q.z, i, j) + P.epsilon;
	for (n=1; n<sciddicaT->sizeof_X; n++)
	{
		z = calGetX2Dr(sciddicaT, Q.z, i, j, n);
		h = calGetX2Dr(sciddicaT, Q.h, i, j, n);
		u[n] = z + h;
	}

	//computes outflows
	do{
		again = CAL_FALSE;
		average = m;
		cells_count = 0;

		for (n=0; n<sciddicaT->sizeof_X; n++)
			if (!eliminated_cells[n]){
				average += u[n];
				cells_count++;
			}

			if (cells_count != 0)
				average /= cells_count;

			for (n=0; n<sciddicaT->sizeof_X; n++)
				if( (average<=u[n]) && (!eliminated_cells[n]) ){
					eliminated_cells[n]=CAL_TRUE;
					again=CAL_TRUE;
				}

	}while (again);

	for (n=1; n<sciddicaT->sizeof_X; n++)
		if (eliminated_cells[n])
			calSet2Dr(sciddicaT, Q.f[n-1], i, j, 0.0);
		else
			calSet2Dr(sciddicaT, Q.f[n-1], i, j, (average-u[n])*P.r);
}
void sciddicaTSimulationInit(struct CALModel2D* sciddicaT)
{
	CALreal z, h;
	CALint i, j;

	//initializing substates to 0
	calInitSubstate2Dr(sciddicaT, Q.f[0], 0);
	calInitSubstate2Dr(sciddicaT, Q.f[1], 0);
	calInitSubstate2Dr(sciddicaT, Q.f[2], 0);
	calInitSubstate2Dr(sciddicaT, Q.f[3], 0);

	//sciddicaT parameters setting
	P.r = P_R;
	P.epsilon = P_EPSILON;

	//sciddicaT source initialization
	for (i=0; i<sciddicaT->rows; i++)
		for (j=0; j<sciddicaT->columns; j++)
		{
			h = calGet2Dr(sciddicaT, Q.h, i, j);

			if ( h > 0.0 ) {
				z = calGet2Dr(sciddicaT, Q.z, i, j);
				calSet2Dr(sciddicaT, Q.z, i, j, z-h);
			}
		}
}
Beispiel #4
0
// SciddicaT simulation init function
void sciddicaTSimulationInit(struct CALModel2D* host_CA) {
	CALreal z, h;
	CALint i, j;

	//initializing substates to 0
	calInitSubstate2Dr(host_CA, Q.f[0], 0);
	calInitSubstate2Dr(host_CA, Q.f[1], 0);
	calInitSubstate2Dr(host_CA, Q.f[2], 0);
	calInitSubstate2Dr(host_CA, Q.f[3], 0);

	//sciddicaT parameters setting
	P.r = P_R;
	P.epsilon = P_EPSILON;

	//sciddicaT source initialization
	for (i = 0; i < host_CA->rows; i++)
		for (j = 0; j < host_CA->columns; j++) {
			h = calGet2Dr(host_CA, Q.h, i, j);

			if (h > 0.0) {
				z = calGet2Dr(host_CA, Q.z, i, j);
				calSet2Dr(host_CA, Q.z, i, j, z - h);

#ifdef ACTIVE_CELLS
				//adds the cell (i, j) to the set of active ones
				calAddActiveCell2D(host_CA, i, j);
#endif
			}
		}
}
Beispiel #5
0
//transition function
void sciddicaT_transition_function(struct CALModel2D* sciddicaT, int i, int j)
{
    CALbyte eliminated_cells[5]= {CAL_FALSE,CAL_FALSE,CAL_FALSE,CAL_FALSE,CAL_FALSE};
    CALbyte again;
    CALint cells_count;
    CALreal average;
    CALreal m;
    CALreal u[5];
    CALint n;
    CALreal z, h;
    CALreal f;


    m = calGet2Dr(sciddicaT, Q.h, i, j) - P.epsilon;
    u[0] = calGet2Dr(sciddicaT, Q.z, i, j) + P.epsilon;
    for (n=1; n<sciddicaT->sizeof_X; n++)
    {
        z = calGetX2Dr(sciddicaT, Q.z, i, j, n);
        h = calGetX2Dr(sciddicaT, Q.h, i, j, n);
        u[n] = z + h;
    }

    //computes outflows
    do {
        again = CAL_FALSE;
        average = m;
        cells_count = 0;

        for (n=0; n<sciddicaT->sizeof_X; n++)
            if (!eliminated_cells[n]) {
                average += u[n];
                cells_count++;
            }

        if (cells_count != 0)
            average /= cells_count;

        for (n=0; n<sciddicaT->sizeof_X; n++)
            if( (average<=u[n]) && (!eliminated_cells[n]) ) {
                eliminated_cells[n]=CAL_TRUE;
                again=CAL_TRUE;
            }

    } while (again);


    for (n=1; n<sciddicaT->sizeof_X; n++)
        if (!eliminated_cells[n])
        {
            f = (average-u[n])*P.r;
            calSet2Dr (sciddicaT,Q.h,i,j,   calGetNext2Dr (sciddicaT,Q.h,i,j)   - f );
            calSetX2Dr(sciddicaT,Q.h,i,j,n, calGetNextX2Dr(sciddicaT,Q.h,i,j,n) + f );

#ifdef ACTIVE_CELLS
            //adds the cell (i, j, n) to the set of active ones
            calAddActiveCellX2D(sciddicaT, i, j, n);
#endif
        }
}
void doErosion(struct CALModel2D* s3hex, int i, int j, CALreal	erosion_depth)
{
	CALreal z, d, h, p, runup;

	z = calGet2Dr(s3hex,Q.z,i,j);
	d = calGet2Dr(s3hex,Q.d,i,j);
	h = calGet2Dr(s3hex,Q.h,i,j);
	p = calGet2Dr(s3hex,Q.p,i,j);

	if (h > 0)
		runup =  p/h + erosion_depth;
	else
		runup = erosion_depth;

	calSetCurrent2Dr(s3hex,Q.z,i,j, (z - erosion_depth));
	calSetCurrent2Dr(s3hex,Q.d,i,j, (d - erosion_depth));
	calSet2Dr(s3hex,Q.h,i,j, (h + erosion_depth));
	calSet2Dr(s3hex,Q.p,i,j, (h + erosion_depth)*runup);
}
//second (and last) elementary process
void sciddicaTWidthUpdate(struct CALModel2D* sciddicaT, int i, int j)
{
	CALreal h_next;
	CALint n;

	h_next = calGet2Dr(sciddicaT, Q.h, i, j);
	for(n=1; n<sciddicaT->sizeof_X; n++)
		h_next +=  calGetX2Dr(sciddicaT, Q.f[NUMBER_OF_OUTFLOWS - n], i, j, n) - calGet2Dr(sciddicaT, Q.f[n-1], i, j);

	calSet2Dr(sciddicaT, Q.h, i, j, h_next);
}
void s3hexWidthAndPotentialUpdate(struct CALModel2D* s3hex, int i, int j)
{
  CALreal h_next, p_next;
  CALint n, m;

	h_next = calGet2Dr(s3hex, Q.h, i, j) - calGet2Dr(s3hex, Q.fh[0], i, j);
	for(n=1; n<s3hex->sizeof_X; n++)
      {
        if (n <= 3) m = n+3; else m = n-3;
		h_next +=  calGetX2Dr(s3hex, Q.fh[m], i, j, n);
      }
	calSet2Dr(s3hex, Q.h, i, j, h_next);

    p_next = calGet2Dr(s3hex, Q.p, i, j) - calGet2Dr(s3hex, Q.fp[0], i, j);
	for(n=1; n<s3hex->sizeof_X; n++)
      {
        if (n <= 3) m = n+3; else m = n-3;
		p_next +=  calGetX2Dr(s3hex, Q.fp[m], i, j, n);
      }
	calSet2Dr(s3hex, Q.p, i, j, p_next);
}
void s3hexEnergyLoss(struct CALModel2D* s3hex, int i, int j)
{
	CALreal h, runup;

	if (calGet2Dr(s3hex,Q.h,i,j) <= P.adh)
		return;

	h = calGet2Dr(s3hex,Q.h,i,j);
	if (h > P.adh) {
		runup = calGet2Dr(s3hex,Q.p,i,j) / h - P.rl;
		if (runup < h)
			runup = h;
		calSet2Dr(s3hex,Q.p,i,j,h*runup);
	}
}
void s3hexFlowsComputation(struct CALModel2D* s3hex, int i, int j)
{
	CALbyte eliminated_cells[7]={CAL_FALSE,CAL_FALSE,CAL_FALSE,CAL_FALSE,CAL_FALSE, CAL_FALSE, CAL_FALSE};
	CALbyte again;
	CALint cells_count;
	CALreal average;
	CALreal m;
	CALreal u[7], delta_H[7], delta_z[7];
	CALint n;
	CALreal z_0, h_0, z_n, h_n, runup_0, z_0_plus_runup_0, sum;
	CALreal f;


	if (calGet2Dr(s3hex,Q.h,i,j) <= P.adh)
		return;

	z_0 = calGet2Dr(s3hex, Q.z, i, j);
	h_0 = calGet2Dr(s3hex, Q.h, i, j);
	runup_0 = calGet2Dr(s3hex, Q.p, i, j) / h_0;
	z_0_plus_runup_0 = z_0 + runup_0;

	m = runup_0;
	u[0] = z_0;
	delta_z[0] = 0;
	delta_H[0] = 0;
	for (n=1; n<s3hex->sizeof_X; n++)
	{
		z_n = calGetX2Dr(s3hex, Q.z, i, j, n);
		h_n = calGetX2Dr(s3hex, Q.h, i, j, n);

		u[n] = z_n + h_n;
		delta_z[n] = z_0 - z_n;
		delta_H[n] = z_0_plus_runup_0 - u[n];
	}

	for (n=1; n<s3hex->sizeof_X; n++)
		eliminated_cells[n] = (delta_H[n] < P.f);
	//computes outflows
	do{
		again = CAL_FALSE;
		average = m;
		cells_count = 0;

		for (n=0; n<s3hex->sizeof_X; n++)
			if (!eliminated_cells[n]){
				average += u[n];
				cells_count++;
			}

			if (cells_count != 0)
				average /= cells_count;

			for (n=0; n<s3hex->sizeof_X; n++)
				if( (average<=u[n]) && (!eliminated_cells[n]) ){
					eliminated_cells[n]=CAL_TRUE;
					again=CAL_TRUE;
				}

	}while (again);


	sum = 0;
	for (n=0; n<s3hex->sizeof_X; n++)
		if (!eliminated_cells[n])
			sum += average - u[n];

	for (n=1; n<s3hex->sizeof_X; n++)
		if (!eliminated_cells[n])
		{
			//f = (h_0 - P.adh) * ((average-u[n])/sum) * P.r;
			f = h_0 * ((average-u[n])/sum) * P.r;
			calSet2Dr (s3hex,Q.h,i,j,   calGetNext2Dr (s3hex,Q.h,i,j)   - f );
			calSetX2Dr(s3hex,Q.h,i,j,n, calGetNextX2Dr(s3hex,Q.h,i,j,n) + f );

			calSet2Dr (s3hex,Q.p,i,j,   calGetNext2Dr (s3hex,Q.p,i,j)   - runup_0 * f );
			calSetX2Dr(s3hex,Q.p,i,j,n, calGetNextX2Dr(s3hex,Q.p,i,j,n) + (z_0_plus_runup_0 - u[n]) * f );

#ifdef ACTIVE_CELLS
			//adds the cell (i, j, n) to the set of active ones
            calAddActiveCellX2D(s3hex, i, j, n);
#endif
		}
}