CVector3 CSplineInterpolatorVector3::getAt(F32 key){ S32 i; if(mDirty) calcTangents(); if(keys.size() == 0) return CVector3(0.0, 0.0, 0.0); if(key < keys[0]) return nodes[0]; for(i = 0 ; i < keys.size() - 1 ; i++){ if(key >= keys[i] && key < keys[i+1]){ F32 s = keys[i]; F32 e = keys[i+1]; if(s == e)return nodes[i]; F32 f = (key - s) / (e - s); return intepolate(i, f); } } return nodes[nodes.size() - 1]; }
sF32 fCurve::evalDerivative(sF32 frame) const { if (frame < m_firstFrame || m_keys.size() == 1 || m_type == constant) return 0; else if (frame >= m_lastFrame) return 0; else { keyVectorCIt key0, key1; key0 = findKeyByFrame(frame); key1 = key0 + 1; frame -= key0->frame; const sInt tLength = key1->frame - key0->frame; if (m_type == linear) return (key1->value - key0->value) / tLength; const sF32 t = (tLength > 1) ? frame / tLength : 0.0f, tt = t * t; const sF32 h1 = 6.0f * tt - 6.0f * t, h3=3.0f * tt - 4.0f * t + 1.0f, h4=3.0f * tt - 2.0f * t; // h2' is just -h1', so not evaluated here sF32 dd0, ds1; calcTangents(key0, dd0, ds1); return key0->value * h1 - key1->value * h1 + dd0 * h3 + ds1 * h4; } }
sF32 fCurve::evaluate(sF32 frame) const { if (frame <= m_firstFrame || m_keys.size() == 1) return m_keys.front().value; else if (frame >= m_lastFrame) return m_keys.back().value; else { keyVectorCIt key0, key1; key0 = findKeyByFrame(frame); if (m_type == constant) return key0->value; key1 = key0 + 1; frame -= key0->frame; const sInt tLength = key1->frame - key0->frame; const sF32 t = (tLength > 1) ? frame / tLength : 0.0f; if (m_type == linear) return key0->value + t * (key1->value - key0->value); const sF32 tt = t * t, ttt = tt * t; const sF32 h2 = 3.0f * tt - 2.0f * ttt, h1 = 1.0f - h2, h3 = ttt - 2.0f * tt + t, h4 = ttt - tt; sF32 dd0, ds1; calcTangents(key0, dd0, ds1); return key0->value * h1 + key1->value * h2 + dd0 * h3 + ds1 * h4; } }
//----------------------------------------------------------------------------- //! SLMesh::shapeInit sets the transparency flag of the AABB void SLMesh::shapeInit(SLSceneView* sv) { (void)sv; // avoid unused parameter warning if (P && N) { // loop through material faces and check for opaqueness & transparency for (SLuint m = 0; m < numM; ++m) { // check if the mesh has it own material if (M[m].mat) SLMaterial::current = M[m].mat; else M[m].mat = SLMaterial::current; // be sure that we have a material at this point assert(SLMaterial::current && "No current material set!"); // set transparent flag of the mesh if (!_aabb.hasAlpha() && M[m].mat->hasAlpha()) _aabb.hasAlpha(true); // build tangents for bump mapping if (M[m].mat->needsTangents() && Tc && T==0) calcTangents(); } } }
void calcTangents(VertexArray& vertices) { assert(!(vertices.size() % 3)); for (GLuint i = 0; i < vertices.size(); i += 3) calcTangents( std::array<Vertex4f*, 3> { &vertices[i], &vertices[i + 1], &vertices[i + 2] }); }
void fCurve::convertToBezier(cubicBezierCurve2D& t) const { if (getNKeys()>1) { t.resize(getNKeys()-1); cubicBezierSegment2D *seg = t.segment; for (keyVectorCIt it = m_keys.begin(); (it + 1) != m_keys.end(); ++it) { const sF32 v0 = it->value, v1 = (m_type != constant) ? (it + 1)->value : it->value; const sInt f0 = it->frame, f1 = (it + 1) -> frame; sF32 dd0, ds1; calcTangents(it, dd0, ds1); seg->A=vector2(f0, v0); seg->B=vector2((2.0f * f0 + f1) / 3.0f, v0 + dd0 / 3.0f); seg->C=vector2((f0 + 2.0f * f1) / 3.0f, v1 - ds1 / 3.0f); seg->D=vector2(f1, v1); seg++; } } }
int _main_(int /*_argc*/, char** /*_argv*/) { uint32_t width = 1280; uint32_t height = 720; uint32_t debug = BGFX_DEBUG_TEXT; uint32_t reset = BGFX_RESET_VSYNC; bgfx::init(); bgfx::reset(width, height, reset); // Enable debug text. bgfx::setDebug(debug); // Set clear color palette for index 0 bgfx::setClearColor(0, UINT32_C(0x00000000) ); // Set clear color palette for index 1 bgfx::setClearColor(1, UINT32_C(0x303030ff) ); // Set geometry pass view clear state. bgfx::setViewClear(RENDER_PASS_GEOMETRY_ID , BGFX_CLEAR_COLOR|BGFX_CLEAR_DEPTH , 1.0f , 0 , 1 ); // Set light pass view clear state. bgfx::setViewClear(RENDER_PASS_LIGHT_ID , BGFX_CLEAR_COLOR|BGFX_CLEAR_DEPTH , 1.0f , 0 , 0 ); // Create vertex stream declaration. PosNormalTangentTexcoordVertex::init(); PosTexCoord0Vertex::init(); DebugVertex::init(); calcTangents(s_cubeVertices , BX_COUNTOF(s_cubeVertices) , PosNormalTangentTexcoordVertex::ms_decl , s_cubeIndices , BX_COUNTOF(s_cubeIndices) ); // Create static vertex buffer. bgfx::VertexBufferHandle vbh = bgfx::createVertexBuffer( bgfx::makeRef(s_cubeVertices, sizeof(s_cubeVertices) ) , PosNormalTangentTexcoordVertex::ms_decl ); // Create static index buffer. bgfx::IndexBufferHandle ibh = bgfx::createIndexBuffer(bgfx::makeRef(s_cubeIndices, sizeof(s_cubeIndices) ) ); // Create texture sampler uniforms. bgfx::UniformHandle s_texColor = bgfx::createUniform("s_texColor", bgfx::UniformType::Uniform1iv); bgfx::UniformHandle s_texNormal = bgfx::createUniform("s_texNormal", bgfx::UniformType::Uniform1iv); bgfx::UniformHandle s_albedo = bgfx::createUniform("s_albedo", bgfx::UniformType::Uniform1iv); bgfx::UniformHandle s_normal = bgfx::createUniform("s_normal", bgfx::UniformType::Uniform1iv); bgfx::UniformHandle s_depth = bgfx::createUniform("s_depth", bgfx::UniformType::Uniform1iv); bgfx::UniformHandle s_light = bgfx::createUniform("s_light", bgfx::UniformType::Uniform1iv); bgfx::UniformHandle u_mtx = bgfx::createUniform("u_mtx", bgfx::UniformType::Uniform4x4fv); bgfx::UniformHandle u_lightPosRadius = bgfx::createUniform("u_lightPosRadius", bgfx::UniformType::Uniform4fv); bgfx::UniformHandle u_lightRgbInnerR = bgfx::createUniform("u_lightRgbInnerR", bgfx::UniformType::Uniform4fv); // Create program from shaders. bgfx::ProgramHandle geomProgram = loadProgram("vs_deferred_geom", "fs_deferred_geom"); bgfx::ProgramHandle lightProgram = loadProgram("vs_deferred_light", "fs_deferred_light"); bgfx::ProgramHandle combineProgram = loadProgram("vs_deferred_combine", "fs_deferred_combine"); bgfx::ProgramHandle debugProgram = loadProgram("vs_deferred_debug", "fs_deferred_debug"); bgfx::ProgramHandle lineProgram = loadProgram("vs_deferred_debug_line", "fs_deferred_debug_line"); // Load diffuse texture. bgfx::TextureHandle textureColor = loadTexture("fieldstone-rgba.dds"); // Load normal texture. bgfx::TextureHandle textureNormal = loadTexture("fieldstone-n.dds"); bgfx::TextureHandle gbufferTex[3] = { BGFX_INVALID_HANDLE, BGFX_INVALID_HANDLE, BGFX_INVALID_HANDLE }; bgfx::FrameBufferHandle gbuffer = BGFX_INVALID_HANDLE; bgfx::FrameBufferHandle lightBuffer = BGFX_INVALID_HANDLE; // Imgui. imguiCreate(); const int64_t timeOffset = bx::getHPCounter(); const bgfx::RendererType::Enum renderer = bgfx::getRendererType(); const float texelHalf = bgfx::RendererType::Direct3D9 == renderer ? 0.5f : 0.0f; s_originBottomLeft = bgfx::RendererType::OpenGL == renderer || bgfx::RendererType::OpenGLES == renderer; // Get renderer capabilities info. const bgfx::Caps* caps = bgfx::getCaps(); uint32_t oldWidth = 0; uint32_t oldHeight = 0; uint32_t oldReset = reset; int32_t scrollArea = 0; int32_t numLights = 512; float lightAnimationSpeed = 0.3f; bool animateMesh = true; bool showScissorRects = false; bool showGBuffer = true; float view[16]; float initialPos[3] = { 0.0f, 0.0f, -15.0f }; cameraCreate(); cameraSetPosition(initialPos); cameraSetVerticalAngle(0.0f); cameraGetViewMtx(view); entry::MouseState mouseState; while (!entry::processEvents(width, height, debug, reset, &mouseState) ) { int64_t now = bx::getHPCounter(); static int64_t last = now; const int64_t frameTime = now - last; last = now; const double freq = double(bx::getHPFrequency() ); const double toMs = 1000.0/freq; const float deltaTime = float(frameTime/freq); float time = (float)( (now-timeOffset)/freq); // Use debug font to print information about this example. bgfx::dbgTextClear(); bgfx::dbgTextPrintf(0, 1, 0x4f, "bgfx/examples/21-deferred"); bgfx::dbgTextPrintf(0, 2, 0x6f, "Description: MRT rendering and deferred shading."); bgfx::dbgTextPrintf(0, 3, 0x0f, "Frame: % 7.3f[ms]", double(frameTime)*toMs); if (2 > caps->maxFBAttachments) { // When multiple render targets (MRT) is not supported by GPU, // implement alternative code path that doesn't use MRT. bool blink = uint32_t(time*3.0f)&1; bgfx::dbgTextPrintf(0, 5, blink ? 0x1f : 0x01, " MRT not supported by GPU. "); // Set view 0 default viewport. bgfx::setViewRect(0, 0, 0, width, height); // This dummy draw call is here to make sure that view 0 is cleared // if no other draw calls are submitted to view 0. bgfx::submit(0); } else { if (oldWidth != width || oldHeight != height || oldReset != reset || !bgfx::isValid(gbuffer) ) { // Recreate variable size render targets when resolution changes. oldWidth = width; oldHeight = height; oldReset = reset; if (bgfx::isValid(gbuffer) ) { bgfx::destroyFrameBuffer(gbuffer); } const uint32_t samplerFlags = 0 | BGFX_TEXTURE_RT | BGFX_TEXTURE_MIN_POINT | BGFX_TEXTURE_MAG_POINT | BGFX_TEXTURE_MIP_POINT | BGFX_TEXTURE_U_CLAMP | BGFX_TEXTURE_V_CLAMP ; gbufferTex[0] = bgfx::createTexture2D(width, height, 1, bgfx::TextureFormat::BGRA8, samplerFlags); gbufferTex[1] = bgfx::createTexture2D(width, height, 1, bgfx::TextureFormat::BGRA8, samplerFlags); gbufferTex[2] = bgfx::createTexture2D(width, height, 1, bgfx::TextureFormat::D24, samplerFlags); gbuffer = bgfx::createFrameBuffer(BX_COUNTOF(gbufferTex), gbufferTex, true); if (bgfx::isValid(lightBuffer) ) { bgfx::destroyFrameBuffer(lightBuffer); } lightBuffer = bgfx::createFrameBuffer(width, height, bgfx::TextureFormat::BGRA8, samplerFlags); } imguiBeginFrame(mouseState.m_mx , mouseState.m_my , (mouseState.m_buttons[entry::MouseButton::Left ] ? IMGUI_MBUT_LEFT : 0) | (mouseState.m_buttons[entry::MouseButton::Right ] ? IMGUI_MBUT_RIGHT : 0) , 0 , width , height ); imguiBeginScrollArea("Settings", width - width / 5 - 10, 10, width / 5, height / 3, &scrollArea); imguiSeparatorLine(); imguiSlider("Num lights", numLights, 1, 2048); if (imguiCheck("Show G-Buffer.", showGBuffer) ) { showGBuffer = !showGBuffer; } if (imguiCheck("Show light scissor.", showScissorRects) ) { showScissorRects = !showScissorRects; } if (imguiCheck("Animate mesh.", animateMesh) ) { animateMesh = !animateMesh; } imguiSlider("Lights animation speed", lightAnimationSpeed, 0.0f, 0.4f, 0.01f); imguiEndScrollArea(); imguiEndFrame(); // Update camera. cameraUpdate(deltaTime, mouseState); cameraGetViewMtx(view); // Setup views float vp[16]; float invMvp[16]; { bgfx::setViewRect(RENDER_PASS_GEOMETRY_ID, 0, 0, width, height); bgfx::setViewRect(RENDER_PASS_LIGHT_ID, 0, 0, width, height); bgfx::setViewRect(RENDER_PASS_COMBINE_ID, 0, 0, width, height); bgfx::setViewRect(RENDER_PASS_DEBUG_LIGHTS_ID, 0, 0, width, height); bgfx::setViewRect(RENDER_PASS_DEBUG_GBUFFER_ID, 0, 0, width, height); bgfx::setViewFrameBuffer(RENDER_PASS_LIGHT_ID, lightBuffer); float proj[16]; mtxProj(proj, 60.0f, float(width)/float(height), 0.1f, 100.0f); bgfx::setViewFrameBuffer(RENDER_PASS_GEOMETRY_ID, gbuffer); bgfx::setViewTransform(RENDER_PASS_GEOMETRY_ID, view, proj); bx::mtxMul(vp, view, proj); bx::mtxInverse(invMvp, vp); bx::mtxOrtho(proj, 0.0f, 1.0f, 1.0f, 0.0f, 0.0f, 100.0f); bgfx::setViewTransform(RENDER_PASS_LIGHT_ID, NULL, proj); bgfx::setViewTransform(RENDER_PASS_COMBINE_ID, NULL, proj); const float aspectRatio = float(height)/float(width); const float size = 10.0f; bx::mtxOrtho(proj, -size, size, size*aspectRatio, -size*aspectRatio, 0.0f, 1000.0f); bgfx::setViewTransform(RENDER_PASS_DEBUG_GBUFFER_ID, NULL, proj); bx::mtxOrtho(proj, 0.0f, (float)width, 0.0f, (float)height, 0.0f, 1000.0f); bgfx::setViewTransform(RENDER_PASS_DEBUG_LIGHTS_ID, NULL, proj); } const uint32_t dim = 11; const float offset = (float(dim-1) * 3.0f) * 0.5f; // Draw into geometry pass. for (uint32_t yy = 0; yy < dim; ++yy) { for (uint32_t xx = 0; xx < dim; ++xx) { float mtx[16]; if (animateMesh) { bx::mtxRotateXY(mtx, time*1.023f + xx*0.21f, time*0.03f + yy*0.37f); } else { bx::mtxIdentity(mtx); } mtx[12] = -offset + float(xx)*3.0f; mtx[13] = -offset + float(yy)*3.0f; mtx[14] = 0.0f; // Set transform for draw call. bgfx::setTransform(mtx); // Set vertex and fragment shaders. bgfx::setProgram(geomProgram); // Set vertex and index buffer. bgfx::setVertexBuffer(vbh); bgfx::setIndexBuffer(ibh); // Bind textures. bgfx::setTexture(0, s_texColor, textureColor); bgfx::setTexture(1, s_texNormal, textureNormal); // Set render states. bgfx::setState(0 | BGFX_STATE_RGB_WRITE | BGFX_STATE_ALPHA_WRITE | BGFX_STATE_DEPTH_WRITE | BGFX_STATE_DEPTH_TEST_LESS | BGFX_STATE_MSAA ); // Submit primitive for rendering to view 0. bgfx::submit(RENDER_PASS_GEOMETRY_ID); } } // Draw lights into light buffer. for (int32_t light = 0; light < numLights; ++light) { Sphere lightPosRadius; float lightTime = time * lightAnimationSpeed * (sinf(light/float(numLights) * bx::piHalf ) * 0.5f + 0.5f); lightPosRadius.m_center[0] = sinf( ( (lightTime + light*0.47f) + bx::piHalf*1.37f ) )*offset; lightPosRadius.m_center[1] = cosf( ( (lightTime + light*0.69f) + bx::piHalf*1.49f ) )*offset; lightPosRadius.m_center[2] = sinf( ( (lightTime + light*0.37f) + bx::piHalf*1.57f ) )*2.0f; lightPosRadius.m_radius = 2.0f; Aabb aabb; sphereToAabb(aabb, lightPosRadius); float box[8][3] = { { aabb.m_min[0], aabb.m_min[1], aabb.m_min[2] }, { aabb.m_min[0], aabb.m_min[1], aabb.m_max[2] }, { aabb.m_min[0], aabb.m_max[1], aabb.m_min[2] }, { aabb.m_min[0], aabb.m_max[1], aabb.m_max[2] }, { aabb.m_max[0], aabb.m_min[1], aabb.m_min[2] }, { aabb.m_max[0], aabb.m_min[1], aabb.m_max[2] }, { aabb.m_max[0], aabb.m_max[1], aabb.m_min[2] }, { aabb.m_max[0], aabb.m_max[1], aabb.m_max[2] }, }; float xyz[3]; bx::vec3MulMtxH(xyz, box[0], vp); float minx = xyz[0]; float miny = xyz[1]; float maxx = xyz[0]; float maxy = xyz[1]; float maxz = xyz[2]; for (uint32_t ii = 1; ii < 8; ++ii) { bx::vec3MulMtxH(xyz, box[ii], vp); minx = bx::fmin(minx, xyz[0]); miny = bx::fmin(miny, xyz[1]); maxx = bx::fmax(maxx, xyz[0]); maxy = bx::fmax(maxy, xyz[1]); maxz = bx::fmax(maxz, xyz[2]); } // Cull light if it's fully behind camera. if (maxz >= 0.0f) { float x0 = bx::fclamp( (minx * 0.5f + 0.5f) * width, 0.0f, (float)width); float y0 = bx::fclamp( (miny * 0.5f + 0.5f) * height, 0.0f, (float)height); float x1 = bx::fclamp( (maxx * 0.5f + 0.5f) * width, 0.0f, (float)width); float y1 = bx::fclamp( (maxy * 0.5f + 0.5f) * height, 0.0f, (float)height); if (showScissorRects) { bgfx::TransientVertexBuffer tvb; bgfx::TransientIndexBuffer tib; if (bgfx::allocTransientBuffers(&tvb, DebugVertex::ms_decl, 4, &tib, 8) ) { uint32_t abgr = 0x8000ff00; DebugVertex* vertex = (DebugVertex*)tvb.data; vertex->m_x = x0; vertex->m_y = y0; vertex->m_z = 0.0f; vertex->m_abgr = abgr; ++vertex; vertex->m_x = x1; vertex->m_y = y0; vertex->m_z = 0.0f; vertex->m_abgr = abgr; ++vertex; vertex->m_x = x1; vertex->m_y = y1; vertex->m_z = 0.0f; vertex->m_abgr = abgr; ++vertex; vertex->m_x = x0; vertex->m_y = y1; vertex->m_z = 0.0f; vertex->m_abgr = abgr; uint16_t* indices = (uint16_t*)tib.data; *indices++ = 0; *indices++ = 1; *indices++ = 1; *indices++ = 2; *indices++ = 2; *indices++ = 3; *indices++ = 3; *indices++ = 0; bgfx::setProgram(lineProgram); bgfx::setVertexBuffer(&tvb); bgfx::setIndexBuffer(&tib); bgfx::setState(0 | BGFX_STATE_RGB_WRITE | BGFX_STATE_PT_LINES | BGFX_STATE_BLEND_ALPHA ); bgfx::submit(RENDER_PASS_DEBUG_LIGHTS_ID); } } uint8_t val = light&7; float lightRgbInnerR[4] = { val & 0x1 ? 1.0f : 0.25f, val & 0x2 ? 1.0f : 0.25f, val & 0x4 ? 1.0f : 0.25f, 0.8f, }; // Draw light. bgfx::setUniform(u_lightPosRadius, &lightPosRadius); bgfx::setUniform(u_lightRgbInnerR, lightRgbInnerR); bgfx::setUniform(u_mtx, invMvp); const uint16_t scissorHeight = uint16_t(y1-y0); bgfx::setScissor(uint16_t(x0), height-scissorHeight-uint16_t(y0), uint16_t(x1-x0), scissorHeight); bgfx::setTexture(0, s_normal, gbuffer, 1); bgfx::setTexture(1, s_depth, gbuffer, 2); bgfx::setProgram(lightProgram); bgfx::setState(0 | BGFX_STATE_RGB_WRITE | BGFX_STATE_ALPHA_WRITE | BGFX_STATE_BLEND_ADD ); screenSpaceQuad( (float)width, (float)height, texelHalf, s_originBottomLeft); bgfx::submit(RENDER_PASS_LIGHT_ID); } } // Combine color and light buffers. bgfx::setTexture(0, s_albedo, gbuffer, 0); bgfx::setTexture(1, s_light, lightBuffer, 0); bgfx::setProgram(combineProgram); bgfx::setState(0 | BGFX_STATE_RGB_WRITE | BGFX_STATE_ALPHA_WRITE ); screenSpaceQuad( (float)width, (float)height, texelHalf, s_originBottomLeft); bgfx::submit(RENDER_PASS_COMBINE_ID); if (showGBuffer) { const float aspectRatio = float(width)/float(height); // Draw debug GBuffer. for (uint32_t ii = 0; ii < BX_COUNTOF(gbufferTex); ++ii) { float mtx[16]; bx::mtxSRT(mtx , aspectRatio, 1.0f, 1.0f , 0.0f, 0.0f, 0.0f , -7.9f - BX_COUNTOF(gbufferTex)*0.1f*0.5f + ii*2.1f*aspectRatio, 4.0f, 0.0f ); bgfx::setTransform(mtx); bgfx::setProgram(debugProgram); bgfx::setVertexBuffer(vbh); bgfx::setIndexBuffer(ibh, 0, 6); bgfx::setTexture(0, s_texColor, gbufferTex[ii]); bgfx::setState(BGFX_STATE_RGB_WRITE); bgfx::submit(RENDER_PASS_DEBUG_GBUFFER_ID); } } } // Advance to next frame. Rendering thread will be kicked to // process submitted rendering primitives. bgfx::frame(); } // Cleanup. cameraDestroy(); imguiDestroy(); if (bgfx::isValid(gbuffer) ) { bgfx::destroyFrameBuffer(gbuffer); bgfx::destroyFrameBuffer(lightBuffer); } bgfx::destroyIndexBuffer(ibh); bgfx::destroyVertexBuffer(vbh); bgfx::destroyProgram(geomProgram); bgfx::destroyProgram(lightProgram); bgfx::destroyProgram(combineProgram); bgfx::destroyProgram(debugProgram); bgfx::destroyProgram(lineProgram); bgfx::destroyTexture(textureColor); bgfx::destroyTexture(textureNormal); bgfx::destroyUniform(s_texColor); bgfx::destroyUniform(s_texNormal); bgfx::destroyUniform(s_albedo); bgfx::destroyUniform(s_normal); bgfx::destroyUniform(s_depth); bgfx::destroyUniform(s_light); bgfx::destroyUniform(u_lightPosRadius); bgfx::destroyUniform(u_lightRgbInnerR); bgfx::destroyUniform(u_mtx); // Shutdown bgfx. bgfx::shutdown(); return 0; }
int _main_(int /*_argc*/, char** /*_argv*/) { uint32_t width = 1280; uint32_t height = 720; uint32_t debug = BGFX_DEBUG_TEXT; uint32_t reset = BGFX_RESET_VSYNC; bgfx::init(); bgfx::reset(width, height, reset); // Enable debug text. bgfx::setDebug(debug); // Set view 0 clear state. bgfx::setViewClear(0 , BGFX_CLEAR_COLOR|BGFX_CLEAR_DEPTH , 0x303030ff , 1.0f , 0 ); // Get renderer capabilities info. const bgfx::Caps* caps = bgfx::getCaps(); bool instancingSupported = 0 != (caps->supported & BGFX_CAPS_INSTANCING); // Create vertex stream declaration. PosNormalTangentTexcoordVertex::init(); calcTangents(s_cubeVertices , BX_COUNTOF(s_cubeVertices) , PosNormalTangentTexcoordVertex::ms_decl , s_cubeIndices , BX_COUNTOF(s_cubeIndices) ); // Create static vertex buffer. bgfx::VertexBufferHandle vbh = bgfx::createVertexBuffer( bgfx::makeRef(s_cubeVertices, sizeof(s_cubeVertices) ) , PosNormalTangentTexcoordVertex::ms_decl ); // Create static index buffer. bgfx::IndexBufferHandle ibh = bgfx::createIndexBuffer(bgfx::makeRef(s_cubeIndices, sizeof(s_cubeIndices) ) ); // Create texture sampler uniforms. bgfx::UniformHandle s_texColor = bgfx::createUniform("s_texColor", bgfx::UniformType::Int1); bgfx::UniformHandle s_texNormal = bgfx::createUniform("s_texNormal", bgfx::UniformType::Int1); uint16_t numLights = 4; bgfx::UniformHandle u_lightPosRadius = bgfx::createUniform("u_lightPosRadius", bgfx::UniformType::Vec4, numLights); bgfx::UniformHandle u_lightRgbInnerR = bgfx::createUniform("u_lightRgbInnerR", bgfx::UniformType::Vec4, numLights); // Create program from shaders. bgfx::ProgramHandle program = loadProgram(instancingSupported ? "vs_bump_instanced" : "vs_bump", "fs_bump"); // Load diffuse texture. bgfx::TextureHandle textureColor = loadTexture("fieldstone-rgba.dds"); // Load normal texture. bgfx::TextureHandle textureNormal = loadTexture("fieldstone-n.dds"); int64_t timeOffset = bx::getHPCounter(); while (!entry::processEvents(width, height, debug, reset) ) { // Set view 0 default viewport. bgfx::setViewRect(0, 0, 0, width, height); // This dummy draw call is here to make sure that view 0 is cleared // if no other draw calls are submitted to view 0. bgfx::touch(0); int64_t now = bx::getHPCounter(); static int64_t last = now; const int64_t frameTime = now - last; last = now; const double freq = double(bx::getHPFrequency() ); const double toMs = 1000.0/freq; float time = (float)( (now-timeOffset)/freq); // Use debug font to print information about this example. bgfx::dbgTextClear(); bgfx::dbgTextPrintf(0, 1, 0x4f, "bgfx/examples/06-bump"); bgfx::dbgTextPrintf(0, 2, 0x6f, "Description: Loading textures."); bgfx::dbgTextPrintf(0, 3, 0x0f, "Frame: % 7.3f[ms]", double(frameTime)*toMs); float at[3] = { 0.0f, 0.0f, 0.0f }; float eye[3] = { 0.0f, 0.0f, -7.0f }; // Set view and projection matrix for view 0. const bgfx::HMD* hmd = bgfx::getHMD(); if (NULL != hmd && 0 != (hmd->flags & BGFX_HMD_RENDERING) ) { float view[16]; bx::mtxQuatTranslationHMD(view, hmd->eye[0].rotation, eye); float proj[16]; bx::mtxProj(proj, hmd->eye[0].fov, 0.1f, 100.0f); bgfx::setViewTransform(0, view, proj); // Set view 0 default viewport. // // Use HMD's width/height since HMD's internal frame buffer size // might be much larger than window size. bgfx::setViewRect(0, 0, 0, hmd->width, hmd->height); } else { float view[16]; bx::mtxLookAt(view, eye, at); float proj[16]; bx::mtxProj(proj, 60.0f, float(width)/float(height), 0.1f, 100.0f); bgfx::setViewTransform(0, view, proj); // Set view 0 default viewport. bgfx::setViewRect(0, 0, 0, width, height); } float lightPosRadius[4][4]; for (uint32_t ii = 0; ii < numLights; ++ii) { lightPosRadius[ii][0] = sinf( (time*(0.1f + ii*0.17f) + ii*bx::piHalf*1.37f ) )*3.0f; lightPosRadius[ii][1] = cosf( (time*(0.2f + ii*0.29f) + ii*bx::piHalf*1.49f ) )*3.0f; lightPosRadius[ii][2] = -2.5f; lightPosRadius[ii][3] = 3.0f; } bgfx::setUniform(u_lightPosRadius, lightPosRadius, numLights); float lightRgbInnerR[4][4] = { { 1.0f, 0.7f, 0.2f, 0.8f }, { 0.7f, 0.2f, 1.0f, 0.8f }, { 0.2f, 1.0f, 0.7f, 0.8f }, { 1.0f, 0.4f, 0.2f, 0.8f }, }; bgfx::setUniform(u_lightRgbInnerR, lightRgbInnerR, numLights); const uint16_t instanceStride = 64; const uint16_t numInstances = 3; if (instancingSupported) { // Write instance data for 3x3 cubes. for (uint32_t yy = 0; yy < 3; ++yy) { const bgfx::InstanceDataBuffer* idb = bgfx::allocInstanceDataBuffer(numInstances, instanceStride); if (NULL != idb) { uint8_t* data = idb->data; for (uint32_t xx = 0; xx < 3; ++xx) { float* mtx = (float*)data; bx::mtxRotateXY(mtx, time*0.023f + xx*0.21f, time*0.03f + yy*0.37f); mtx[12] = -3.0f + float(xx)*3.0f; mtx[13] = -3.0f + float(yy)*3.0f; mtx[14] = 0.0f; data += instanceStride; } // Set instance data buffer. bgfx::setInstanceDataBuffer(idb, numInstances); // Set vertex and index buffer. bgfx::setVertexBuffer(vbh); bgfx::setIndexBuffer(ibh); // Bind textures. bgfx::setTexture(0, s_texColor, textureColor); bgfx::setTexture(1, s_texNormal, textureNormal); // Set render states. bgfx::setState(0 | BGFX_STATE_RGB_WRITE | BGFX_STATE_ALPHA_WRITE | BGFX_STATE_DEPTH_WRITE | BGFX_STATE_DEPTH_TEST_LESS | BGFX_STATE_MSAA ); // Submit primitive for rendering to view 0. bgfx::submit(0, program); } } } else { for (uint32_t yy = 0; yy < 3; ++yy) { for (uint32_t xx = 0; xx < 3; ++xx) { float mtx[16]; bx::mtxRotateXY(mtx, time*0.023f + xx*0.21f, time*0.03f + yy*0.37f); mtx[12] = -3.0f + float(xx)*3.0f; mtx[13] = -3.0f + float(yy)*3.0f; mtx[14] = 0.0f; // Set transform for draw call. bgfx::setTransform(mtx); // Set vertex and index buffer. bgfx::setVertexBuffer(vbh); bgfx::setIndexBuffer(ibh); // Bind textures. bgfx::setTexture(0, s_texColor, textureColor); bgfx::setTexture(1, s_texNormal, textureNormal); // Set render states. bgfx::setState(0 | BGFX_STATE_RGB_WRITE | BGFX_STATE_ALPHA_WRITE | BGFX_STATE_DEPTH_WRITE | BGFX_STATE_DEPTH_TEST_LESS | BGFX_STATE_MSAA ); // Submit primitive for rendering to view 0. bgfx::submit(0, program); } } } // Advance to next frame. Rendering thread will be kicked to // process submitted rendering primitives. bgfx::frame(); } // Cleanup. bgfx::destroyIndexBuffer(ibh); bgfx::destroyVertexBuffer(vbh); bgfx::destroyProgram(program); bgfx::destroyTexture(textureColor); bgfx::destroyTexture(textureNormal); bgfx::destroyUniform(s_texColor); bgfx::destroyUniform(s_texNormal); bgfx::destroyUniform(u_lightPosRadius); bgfx::destroyUniform(u_lightRgbInnerR); // Shutdown bgfx. bgfx::shutdown(); return 0; }
int _main_(int _argc, char** _argv) { uint32_t width = 1280; uint32_t height = 720; uint32_t debug = BGFX_DEBUG_TEXT; uint32_t reset = BGFX_RESET_NONE; bgfx::init(); bgfx::reset(width, height); // Enable debug text. bgfx::setDebug(debug); // Set view 0 clear state. bgfx::setViewClear(0 , BGFX_CLEAR_COLOR_BIT|BGFX_CLEAR_DEPTH_BIT , 0x303030ff , 1.0f , 0 ); // Setup root path for binary shaders. Shader binaries are different // for each renderer. switch (bgfx::getRendererType() ) { default: case bgfx::RendererType::Direct3D9: s_shaderPath = "shaders/dx9/"; break; case bgfx::RendererType::Direct3D11: s_shaderPath = "shaders/dx11/"; break; case bgfx::RendererType::OpenGL: s_shaderPath = "shaders/glsl/"; break; case bgfx::RendererType::OpenGLES2: case bgfx::RendererType::OpenGLES3: s_shaderPath = "shaders/gles/"; break; } // Create vertex stream declaration. s_PosNormalTangentTexcoordDecl.begin(); s_PosNormalTangentTexcoordDecl.add(bgfx::Attrib::Position, 3, bgfx::AttribType::Float); s_PosNormalTangentTexcoordDecl.add(bgfx::Attrib::Normal, 4, bgfx::AttribType::Uint8, true, true); s_PosNormalTangentTexcoordDecl.add(bgfx::Attrib::Tangent, 4, bgfx::AttribType::Uint8, true, true); s_PosNormalTangentTexcoordDecl.add(bgfx::Attrib::TexCoord0, 2, bgfx::AttribType::Int16, true, true); s_PosNormalTangentTexcoordDecl.end(); const bgfx::Memory* mem; calcTangents(s_cubeVertices, countof(s_cubeVertices), s_PosNormalTangentTexcoordDecl, s_cubeIndices, countof(s_cubeIndices) ); // Create static vertex buffer. mem = bgfx::makeRef(s_cubeVertices, sizeof(s_cubeVertices) ); bgfx::VertexBufferHandle vbh = bgfx::createVertexBuffer(mem, s_PosNormalTangentTexcoordDecl); // Create static index buffer. mem = bgfx::makeRef(s_cubeIndices, sizeof(s_cubeIndices) ); bgfx::IndexBufferHandle ibh = bgfx::createIndexBuffer(mem); // Create texture sampler uniforms. bgfx::UniformHandle u_texColor = bgfx::createUniform("u_texColor", bgfx::UniformType::Uniform1iv); bgfx::UniformHandle u_texNormal = bgfx::createUniform("u_texNormal", bgfx::UniformType::Uniform1iv); uint16_t numLights = 4; bgfx::UniformHandle u_lightPosRadius = bgfx::createUniform("u_lightPosRadius", bgfx::UniformType::Uniform4fv, numLights); bgfx::UniformHandle u_lightRgbInnerR = bgfx::createUniform("u_lightRgbInnerR", bgfx::UniformType::Uniform4fv, numLights); // Load vertex shader. mem = loadShader("vs_bump"); bgfx::VertexShaderHandle vsh = bgfx::createVertexShader(mem); // Load fragment shader. mem = loadShader("fs_bump"); bgfx::FragmentShaderHandle fsh = bgfx::createFragmentShader(mem); // Create program from shaders. bgfx::ProgramHandle program = bgfx::createProgram(vsh, fsh); // We can destroy vertex and fragment shader here since // their reference is kept inside bgfx after calling createProgram. // Vertex and fragment shader will be destroyed once program is^ // destroyed. bgfx::destroyVertexShader(vsh); bgfx::destroyFragmentShader(fsh); // Load diffuse texture. mem = loadTexture("fieldstone-rgba.dds"); bgfx::TextureHandle textureColor = bgfx::createTexture(mem); // Load normal texture. mem = loadTexture("fieldstone-n.dds"); bgfx::TextureHandle textureNormal = bgfx::createTexture(mem); while (!processEvents(width, height, debug, reset) ) { // Set view 0 default viewport. bgfx::setViewRect(0, 0, 0, width, height); // This dummy draw call is here to make sure that view 0 is cleared // if no other draw calls are submitted to view 0. bgfx::submit(0); int64_t now = bx::getHPCounter(); static int64_t last = now; const int64_t frameTime = now - last; last = now; const double freq = double(bx::getHPFrequency() ); const double toMs = 1000.0/freq; float time = (float)(now/freq); // Use debug font to print information about this example. bgfx::dbgTextClear(); bgfx::dbgTextPrintf(0, 1, 0x4f, "bgfx/examples/06-bump"); bgfx::dbgTextPrintf(0, 2, 0x6f, "Description: Loading textures."); bgfx::dbgTextPrintf(0, 3, 0x0f, "Frame: % 7.3f[ms]", double(frameTime)*toMs); float at[3] = { 0.0f, 0.0f, 0.0f }; float eye[3] = { 0.0f, 0.0f, -7.0f }; float view[16]; float proj[16]; mtxLookAt(view, eye, at); mtxProj(proj, 60.0f, 16.0f/9.0f, 0.1f, 100.0f); float lightPosRadius[4][4]; for (uint32_t ii = 0; ii < numLights; ++ii) { lightPosRadius[ii][0] = sin( (time*(0.1f + ii*0.17f) + float(ii*M_PI_2)*1.37f ) )*3.0f; lightPosRadius[ii][1] = cos( (time*(0.2f + ii*0.29f) + float(ii*M_PI_2)*1.49f ) )*3.0f; lightPosRadius[ii][2] = -2.5f; lightPosRadius[ii][3] = 3.0f; } bgfx::setUniform(u_lightPosRadius, lightPosRadius, numLights); float lightRgbInnerR[4][4] = { { 1.0f, 0.7f, 0.2f, 0.8f }, { 0.7f, 0.2f, 1.0f, 0.8f }, { 0.2f, 1.0f, 0.7f, 0.8f }, { 1.0f, 0.4f, 0.2f, 0.8f }, }; bgfx::setUniform(u_lightRgbInnerR, lightRgbInnerR, numLights); // Set view and projection matrix for view 0. bgfx::setViewTransform(0, view, proj); const uint16_t instanceStride = 64; const bgfx::InstanceDataBuffer* idb = bgfx::allocInstanceDataBuffer(9, instanceStride); if (NULL != idb) { uint8_t* data = idb->data; // Write instance data for 3x3 cubes. for (uint32_t yy = 0; yy < 3; ++yy) { for (uint32_t xx = 0; xx < 3; ++xx) { float* mtx = (float*)data; mtxRotateXY(mtx, time*0.023f + xx*0.21f, time*0.03f + yy*0.37f); mtx[12] = -3.0f + float(xx)*3.0f; mtx[13] = -3.0f + float(yy)*3.0f; mtx[14] = 0.0f; float* color = (float*)&data[64]; color[0] = sin(time+float(xx)/11.0f)*0.5f+0.5f; color[1] = cos(time+float(yy)/11.0f)*0.5f+0.5f; color[2] = sin(time*3.0f)*0.5f+0.5f; color[3] = 1.0f; data += instanceStride; } } uint16_t numInstances = (uint16_t)( (data - idb->data)/instanceStride); // Set vertex and fragment shaders. bgfx::setProgram(program); // Set vertex and index buffer. bgfx::setVertexBuffer(vbh); bgfx::setIndexBuffer(ibh); // Set instance data buffer. bgfx::setInstanceDataBuffer(idb, numInstances); // Bind textures. bgfx::setTexture(0, u_texColor, textureColor); bgfx::setTexture(1, u_texNormal, textureNormal); // Set render states. bgfx::setState(0 |BGFX_STATE_RGB_WRITE |BGFX_STATE_ALPHA_WRITE |BGFX_STATE_DEPTH_WRITE |BGFX_STATE_DEPTH_TEST_LESS |BGFX_STATE_MSAA ); // Submit primitive for rendering to view 0. bgfx::submit(0); } // Advance to next frame. Rendering thread will be kicked to // process submitted rendering primitives. bgfx::frame(); } // Cleanup. bgfx::destroyIndexBuffer(ibh); bgfx::destroyVertexBuffer(vbh); bgfx::destroyProgram(program); bgfx::destroyTexture(textureColor); bgfx::destroyTexture(textureNormal); bgfx::destroyUniform(u_texColor); bgfx::destroyUniform(u_texNormal); bgfx::destroyUniform(u_lightPosRadius); bgfx::destroyUniform(u_lightRgbInnerR); // Shutdown bgfx. bgfx::shutdown(); return 0; }
void fCurve::getActualTangents(sInt i, sF32& dd0, sF32& ds1) const { calcTangents(m_keys.begin() + i, dd0, ds1); }
int main(int _argc, const char* _argv[]) { bx::CommandLine cmdLine(_argc, _argv); const char* filePath = cmdLine.findOption('f'); if (NULL == filePath) { help("Input file name must be specified."); return EXIT_FAILURE; } const char* outFilePath = cmdLine.findOption('o'); if (NULL == outFilePath) { help("Output file name must be specified."); return EXIT_FAILURE; } float scale = 1.0f; const char* scaleArg = cmdLine.findOption('s', "scale"); if (NULL != scaleArg) { scale = (float)atof(scaleArg); } cmdLine.hasArg(s_obbSteps, '\0', "obb"); s_obbSteps = bx::uint32_min(bx::uint32_max(s_obbSteps, 1), 90); uint32_t packNormal = 0; cmdLine.hasArg(packNormal, '\0', "packnormal"); uint32_t packUv = 0; cmdLine.hasArg(packUv, '\0', "packuv"); bool ccw = cmdLine.hasArg("ccw"); bool flipV = cmdLine.hasArg("flipv"); bool hasTangent = cmdLine.hasArg("tangent"); FILE* file = fopen(filePath, "r"); if (NULL == file) { printf("Unable to open input file '%s'.", filePath); exit(EXIT_FAILURE); } int64_t parseElapsed = -bx::getHPCounter(); int64_t triReorderElapsed = 0; uint32_t size = (uint32_t)fsize(file); char* data = new char[size+1]; size = (uint32_t)fread(data, 1, size, file); data[size] = '\0'; fclose(file); // https://en.wikipedia.org/wiki/Wavefront_.obj_file Vector3Array positions; Vector3Array normals; Vector3Array texcoords; Index3Map indexMap; TriangleArray triangles; GroupArray groups; uint32_t num = 0; Group group; group.m_startTriangle = 0; group.m_numTriangles = 0; char commandLine[2048]; uint32_t len = sizeof(commandLine); int argc; char* argv[64]; const char* next = data; do { next = tokenizeCommandLine(next, commandLine, len, argc, argv, countof(argv), '\n'); if (0 < argc) { if (0 == strcmp(argv[0], "#") ) { if (2 < argc && 0 == strcmp(argv[2], "polygons") ) { } } else if (0 == strcmp(argv[0], "f") ) { Triangle triangle; for (uint32_t edge = 0, numEdges = argc-1; edge < numEdges; ++edge) { Index3 index; index.m_texcoord = -1; index.m_normal = -1; index.m_vertexIndex = -1; char* vertex = argv[edge+1]; char* texcoord = strchr(vertex, '/'); if (NULL != texcoord) { *texcoord++ = '\0'; char* normal = strchr(texcoord, '/'); if (NULL != normal) { *normal++ = '\0'; index.m_normal = atoi(normal)-1; } index.m_texcoord = atoi(texcoord)-1; } index.m_position = atoi(vertex)-1; uint64_t hash0 = index.m_position; uint64_t hash1 = uint64_t(index.m_texcoord)<<20; uint64_t hash2 = uint64_t(index.m_normal)<<40; uint64_t hash = hash0^hash1^hash2; std::pair<Index3Map::iterator, bool> result = indexMap.insert(std::make_pair(hash, index) ); if (!result.second) { Index3& oldIndex = result.first->second; BX_UNUSED(oldIndex); BX_CHECK(oldIndex.m_position == index.m_position && oldIndex.m_texcoord == index.m_texcoord && oldIndex.m_normal == index.m_normal , "Hash collision!" ); } switch (edge) { case 0: case 1: case 2: triangle.m_index[edge] = hash; if (2 == edge) { if (ccw) { std::swap(triangle.m_index[1], triangle.m_index[2]); } triangles.push_back(triangle); } break; default: if (ccw) { triangle.m_index[2] = triangle.m_index[1]; triangle.m_index[1] = hash; } else { triangle.m_index[1] = triangle.m_index[2]; triangle.m_index[2] = hash; } triangles.push_back(triangle); break; } } } else if (0 == strcmp(argv[0], "g") ) { EXPECT(1 < argc); group.m_name = argv[1]; } else if (*argv[0] == 'v') { group.m_numTriangles = (uint32_t)(triangles.size() ) - group.m_startTriangle; if (0 < group.m_numTriangles) { groups.push_back(group); group.m_startTriangle = (uint32_t)(triangles.size() ); group.m_numTriangles = 0; } if (0 == strcmp(argv[0], "vn") ) { Vector3 normal; normal.x = (float)atof(argv[1]); normal.y = (float)atof(argv[2]); normal.z = (float)atof(argv[3]); normals.push_back(normal); } else if (0 == strcmp(argv[0], "vp") ) { static bool once = true; if (once) { once = false; printf("warning: 'parameter space vertices' are unsupported.\n"); } } else if (0 == strcmp(argv[0], "vt") ) { Vector3 texcoord; texcoord.x = (float)atof(argv[1]); texcoord.y = 0.0f; texcoord.z = 0.0f; switch (argc) { case 4: texcoord.z = (float)atof(argv[3]); // fallthrough case 3: texcoord.y = (float)atof(argv[2]); break; default: break; } texcoords.push_back(texcoord); } else { float px = (float)atof(argv[1]); float py = (float)atof(argv[2]); float pz = (float)atof(argv[3]); float pw = 1.0f; if (argc > 4) { pw = (float)atof(argv[4]); } float invW = scale/pw; px *= invW; py *= invW; pz *= invW; Vector3 pos; pos.x = px; pos.y = py; pos.z = pz; positions.push_back(pos); } } else if (0 == strcmp(argv[0], "usemtl") ) { std::string material(argv[1]); if (material != group.m_material) { group.m_numTriangles = (uint32_t)(triangles.size() ) - group.m_startTriangle; if (0 < group.m_numTriangles) { groups.push_back(group); group.m_startTriangle = (uint32_t)(triangles.size() ); group.m_numTriangles = 0; } } group.m_material = material; } // unsupported tags // else if (0 == strcmp(argv[0], "mtllib") ) // { // } // else if (0 == strcmp(argv[0], "o") ) // { // } // else if (0 == strcmp(argv[0], "s") ) // { // } } ++num; } while ('\0' != *next); group.m_numTriangles = (uint32_t)(triangles.size() ) - group.m_startTriangle; if (0 < group.m_numTriangles) { groups.push_back(group); group.m_startTriangle = (uint32_t)(triangles.size() ); group.m_numTriangles = 0; } delete [] data; int64_t now = bx::getHPCounter(); parseElapsed += now; int64_t convertElapsed = -now; struct GroupSortByMaterial { bool operator()(const Group& _lhs, const Group& _rhs) { return _lhs.m_material < _rhs.m_material; } }; std::sort(groups.begin(), groups.end(), GroupSortByMaterial() ); bool hasColor = false; bool hasNormal; bool hasTexcoord; { Index3Map::const_iterator it = indexMap.begin(); hasNormal = -1 != it->second.m_normal; hasTexcoord = -1 != it->second.m_texcoord; if (!hasTexcoord && texcoords.size() == positions.size() ) { hasTexcoord = true; for (Index3Map::iterator it = indexMap.begin(), itEnd = indexMap.end(); it != itEnd; ++it) { it->second.m_texcoord = it->second.m_position; } } if (!hasNormal && normals.size() == positions.size() ) { hasNormal = true; for (Index3Map::iterator it = indexMap.begin(), itEnd = indexMap.end(); it != itEnd; ++it) { it->second.m_normal = it->second.m_position; } } } bgfx::VertexDecl decl; decl.begin(); decl.add(bgfx::Attrib::Position, 3, bgfx::AttribType::Float); if (hasColor) { decl.add(bgfx::Attrib::Color0, 4, bgfx::AttribType::Uint8, true); } if (hasTexcoord) { switch (packUv) { default: case 0: decl.add(bgfx::Attrib::TexCoord0, 2, bgfx::AttribType::Float); break; case 1: decl.add(bgfx::Attrib::TexCoord0, 2, bgfx::AttribType::Half); break; } } if (hasNormal) { hasTangent &= hasTexcoord; switch (packNormal) { default: case 0: decl.add(bgfx::Attrib::Normal, 3, bgfx::AttribType::Float); if (hasTangent) { decl.add(bgfx::Attrib::Tangent, 4, bgfx::AttribType::Float); } break; case 1: decl.add(bgfx::Attrib::Normal, 4, bgfx::AttribType::Uint8, true, true); if (hasTangent) { decl.add(bgfx::Attrib::Tangent, 4, bgfx::AttribType::Uint8, true, true); } break; } } decl.end(); uint32_t stride = decl.getStride(); uint8_t* vertexData = new uint8_t[triangles.size() * 3 * stride]; uint16_t* indexData = new uint16_t[triangles.size() * 3]; int32_t numVertices = 0; int32_t numIndices = 0; int32_t numPrimitives = 0; uint8_t* vertices = vertexData; uint16_t* indices = indexData; std::string material = groups.begin()->m_material; PrimitiveArray primitives; bx::CrtFileWriter writer; if (0 != writer.open(outFilePath) ) { printf("Unable to open output file '%s'.", outFilePath); exit(EXIT_FAILURE); } Primitive prim; prim.m_startVertex = 0; prim.m_startIndex = 0; uint32_t positionOffset = decl.getOffset(bgfx::Attrib::Position); uint32_t color0Offset = decl.getOffset(bgfx::Attrib::Color0); uint32_t ii = 0; for (GroupArray::const_iterator groupIt = groups.begin(); groupIt != groups.end(); ++groupIt, ++ii) { for (uint32_t tri = groupIt->m_startTriangle, end = tri + groupIt->m_numTriangles; tri < end; ++tri) { if (material != groupIt->m_material || 65533 < numVertices) { prim.m_numVertices = numVertices - prim.m_startVertex; prim.m_numIndices = numIndices - prim.m_startIndex; if (0 < prim.m_numVertices) { primitives.push_back(prim); } triReorderElapsed -= bx::getHPCounter(); for (PrimitiveArray::const_iterator primIt = primitives.begin(); primIt != primitives.end(); ++primIt) { const Primitive& prim = *primIt; triangleReorder(indexData + prim.m_startIndex, prim.m_numIndices, numVertices, 32); } triReorderElapsed += bx::getHPCounter(); if (hasTangent) { calcTangents(vertexData, numVertices, decl, indexData, numIndices); } write(&writer, vertexData, numVertices, decl, indexData, numIndices, material, primitives); primitives.clear(); for (Index3Map::iterator indexIt = indexMap.begin(); indexIt != indexMap.end(); ++indexIt) { indexIt->second.m_vertexIndex = -1; } vertices = vertexData; indices = indexData; numVertices = 0; numIndices = 0; prim.m_startVertex = 0; prim.m_startIndex = 0; ++numPrimitives; material = groupIt->m_material; } Triangle& triangle = triangles[tri]; for (uint32_t edge = 0; edge < 3; ++edge) { uint64_t hash = triangle.m_index[edge]; Index3& index = indexMap[hash]; if (index.m_vertexIndex == -1) { index.m_vertexIndex = numVertices++; float* position = (float*)(vertices + positionOffset); memcpy(position, &positions[index.m_position], 3*sizeof(float) ); if (hasColor) { uint32_t* color0 = (uint32_t*)(vertices + color0Offset); *color0 = rgbaToAbgr(numVertices%255, numIndices%255, 0, 0xff); } if (hasTexcoord) { float uv[2]; memcpy(uv, &texcoords[index.m_texcoord], 2*sizeof(float) ); if (flipV) { uv[1] = -uv[1]; } bgfx::vertexPack(uv, true, bgfx::Attrib::TexCoord0, decl, vertices); } if (hasNormal) { float normal[4]; vec3Norm(normal, (float*)&normals[index.m_normal]); bgfx::vertexPack(normal, true, bgfx::Attrib::Normal, decl, vertices); } vertices += stride; } *indices++ = (uint16_t)index.m_vertexIndex; ++numIndices; } } if (0 < numVertices) { prim.m_numVertices = numVertices - prim.m_startVertex; prim.m_numIndices = numIndices - prim.m_startIndex; prim.m_name = groupIt->m_name; primitives.push_back(prim); prim.m_startVertex = numVertices; prim.m_startIndex = numIndices; } BX_TRACE("%3d: s %5d, n %5d, %s\n" , ii , groupIt->m_startTriangle , groupIt->m_numTriangles , groupIt->m_material.c_str() ); } if (0 < primitives.size() ) { triReorderElapsed -= bx::getHPCounter(); for (PrimitiveArray::const_iterator primIt = primitives.begin(); primIt != primitives.end(); ++primIt) { const Primitive& prim = *primIt; triangleReorder(indexData + prim.m_startIndex, prim.m_numIndices, numVertices, 32); } triReorderElapsed += bx::getHPCounter(); if (hasTangent) { calcTangents(vertexData, numVertices, decl, indexData, numIndices); } write(&writer, vertexData, numVertices, decl, indexData, numIndices, material, primitives); } printf("size: %d\n", uint32_t(writer.seek() ) ); writer.close(); delete [] indexData; delete [] vertexData; now = bx::getHPCounter(); convertElapsed += now; printf("parse %f [s]\ntri reorder %f [s]\nconvert %f [s]\n# %d, g %d, p %d, v %d, i %d\n" , double(parseElapsed)/bx::getHPFrequency() , double(triReorderElapsed)/bx::getHPFrequency() , double(convertElapsed)/bx::getHPFrequency() , num , uint32_t(groups.size() ) , numPrimitives , numVertices , numIndices ); return EXIT_SUCCESS; }