Beispiel #1
0
int main (void)
{

    /* ====================================================================== */
    /* input matrix A definition */
    /* ====================================================================== */

    int A [ALEN] = {

    	0, 1, 4,		/* row indices of nonzeros in column 0 */
	2, 4,			/* row indices of nonzeros in column 1 */
	0, 1, 2, 3,		/* row indices of nonzeros in column 2 */
	1, 3} ;			/* row indices of nonzeros in column 3 */

    int p [ ] = {

    	0,			/* column 0 is in A [0..2] */
	3,			/* column 1 is in A [3..4] */ 
	5,			/* column 2 is in A [5..8] */
	9,			/* column 3 is in A [9..10] */
	A_NNZ} ;		/* number of nonzeros in A */

    /* ====================================================================== */
    /* input matrix B definition */
    /* ====================================================================== */

    int B [ ] = {		/* Note: only strictly lower triangular part */
    				/* is included, since symamd ignores the */
				/* diagonal and upper triangular part of B. */

    	1,			/* row indices of nonzeros in column 0 */
    	2, 3,			/* row indices of nonzeros in column 1 */
    				/* row indices of nonzeros in column 2 (none) */
    	4			/* row indices of nonzeros in column 3 */
    	} ;			/* row indices of nonzeros in column 4 (none) */

    int q [ ] = {

    	0,			/* column 0 is in B [0] */
	1,			/* column 1 is in B [1..2] */ 
	3,			/* column 2 is empty */
	3,			/* column 3 is in B [3] */
	4,			/* column 4 is empty */
	B_NNZ} ;		/* number of nonzeros in strictly lower B */

    /* ====================================================================== */
    /* other variable definitions */
    /* ====================================================================== */

    int perm [B_N+1] ;		/* note the size is N+1 */
    int stats [CCOLAMD_STATS] ;	/* for ccolamd and csymamd output statistics */

    int row, col, pp, length, ok ;

    /* ====================================================================== */
    /* dump the input matrix A */
    /* ====================================================================== */

    printf ("ccolamd %d-by-%d input matrix:\n", A_NROW, A_NCOL) ;
    for (col = 0 ; col < A_NCOL ; col++)
    {
	length = p [col+1] - p [col] ;
    	printf ("Column %d, with %d entries:\n", col, length) ;
	for (pp = p [col] ; pp < p [col+1] ; pp++)
	{
	    row = A [pp] ;
	    printf ("    row %d\n", row) ;
	}
    }

    /* ====================================================================== */
    /* order the matrix.  Note that this destroys A and overwrites p */
    /* ====================================================================== */

    ok = ccolamd (A_NROW, A_NCOL, ALEN, A, p, (double *) NULL, stats, NULL) ;
    ccolamd_report (stats) ;

    if (!ok)
    {
	printf ("ccolamd error!\n") ;
	exit (1) ;
    }

    /* ====================================================================== */
    /* print the column ordering */
    /* ====================================================================== */

    printf ("ccolamd column ordering:\n") ;
    printf ("1st column: %d\n", p [0]) ;
    printf ("2nd column: %d\n", p [1]) ;
    printf ("3rd column: %d\n", p [2]) ;
    printf ("4th column: %d\n", p [3]) ;

    /* ====================================================================== */
    /* dump the strictly lower triangular part of symmetric input matrix B */
    /* ====================================================================== */

    printf ("\n\ncsymamd %d-by-%d input matrix:\n", B_N, B_N) ;
    printf ("Entries in strictly lower triangular part:\n") ;
    for (col = 0 ; col < B_N ; col++)
    {
	length = q [col+1] - q [col] ;
    	printf ("Column %d, with %d entries:\n", col, length) ;
	for (pp = q [col] ; pp < q [col+1] ; pp++)
	{
	    row = B [pp] ;
	    printf ("    row %d\n", row) ;
	}
    }

    /* ====================================================================== */
    /* order the matrix B.  Note that this does not modify B or q. */
    /* ====================================================================== */

    ok = csymamd (B_N, B, q, perm, (double *) NULL, stats, &calloc, &free,
	    NULL, -1) ;
    csymamd_report (stats) ;

    if (!ok)
    {
	printf ("csymamd error!\n") ;
	exit (1) ;
    }

    /* ====================================================================== */
    /* print the symmetric ordering */
    /* ====================================================================== */

    printf ("csymamd column ordering:\n") ;
    printf ("1st row/column: %d\n", perm [0]) ;
    printf ("2nd row/column: %d\n", perm [1]) ;
    printf ("3rd row/column: %d\n", perm [2]) ;
    printf ("4th row/column: %d\n", perm [3]) ;
    printf ("5th row/column: %d\n", perm [4]) ;

    return (0) ;
}
Beispiel #2
0
static int ccolamd_interface
(
    cholmod_sparse *A,
    size_t alen,
    Int *Perm,
    Int *Cmember,
    Int *fset,
    Int fsize,
    cholmod_sparse *C,
    cholmod_common *Common
)
{
    double knobs [CCOLAMD_KNOBS] ;
    Int *Cp = NULL ;
    Int ok, k, nrow, ncol, stats [CCOLAMD_STATS] ;

    nrow = A->nrow ;
    ncol = A->ncol ;

    /* ---------------------------------------------------------------------- */
    /* copy (and transpose) the input matrix A into the ccolamd workspace */
    /* ---------------------------------------------------------------------- */

    /* C = A (:,f)', which also packs A if needed. */
    /* workspace: Iwork (nrow if no fset; MAX (nrow,ncol) if fset non-NULL) */
    ok = CHOLMOD(transpose_unsym) (A, 0, NULL, fset, fsize, C, Common) ;

    /* ---------------------------------------------------------------------- */
    /* order the matrix (destroys the contents of C->i and C->p) */
    /* ---------------------------------------------------------------------- */

    /* get parameters */
#ifdef LONG
    ccolamd_l_set_defaults (knobs) ;
#else
    ccolamd_set_defaults (knobs) ;
#endif

    if (Common->current < 0 || Common->current >= CHOLMOD_MAXMETHODS)
    {
	/* this is the CHOLMOD default, not the CCOLAMD default */
	knobs [CCOLAMD_DENSE_ROW] = -1 ;
    }
    else
    {
	/* get the knobs from the Common parameters */
	knobs [CCOLAMD_DENSE_COL] =Common->method[Common->current].prune_dense ;
	knobs [CCOLAMD_DENSE_ROW] =Common->method[Common->current].prune_dense2;
	knobs [CCOLAMD_AGGRESSIVE]=Common->method[Common->current].aggressive ;
	knobs [CCOLAMD_LU]        =Common->method[Common->current].order_for_lu;
    }

    if (ok)
    {

#ifdef LONG
	ccolamd_l (ncol, nrow, alen, C->i, C->p, knobs, stats, Cmember) ;
#else
	ccolamd (ncol, nrow, alen, C->i, C->p, knobs, stats, Cmember) ;
#endif

	ok = stats [CCOLAMD_STATUS] ;

	ok = (ok == CCOLAMD_OK || ok == CCOLAMD_OK_BUT_JUMBLED) ;
	/* permutation returned in C->p, if the ordering succeeded */
	Cp = C->p ;
	for (k = 0 ; k < nrow ; k++)
	{
	    Perm [k] = Cp [k] ;
	}
    }

    return (ok) ;
}
Beispiel #3
0
/* ************************************************************************* */
Ordering Ordering::ColamdConstrained(const VariableIndex& variableIndex,
    std::vector<int>& cmember) {
  gttic(Ordering_COLAMDConstrained);

  gttic(Prepare);
  const size_t nEntries = variableIndex.nEntries(), nFactors =
      variableIndex.nFactors(), nVars = variableIndex.size();
  // Convert to compressed column major format colamd wants it in (== MATLAB format!)
  const size_t Alen = ccolamd_recommended((int) nEntries, (int) nFactors,
      (int) nVars); /* colamd arg 3: size of the array A */
  vector<int> A = vector<int>(Alen); /* colamd arg 4: row indices of A, of size Alen */
  vector<int> p = vector<int>(nVars + 1); /* colamd arg 5: column pointers of A, of size n_col+1 */

  // Fill in input data for COLAMD
  p[0] = 0;
  int count = 0;
  vector<Key> keys(nVars); // Array to store the keys in the order we add them so we can retrieve them in permuted order
  size_t index = 0;
  for (auto key_factors: variableIndex) {
    // Arrange factor indices into COLAMD format
    const VariableIndex::Factors& column = key_factors.second;
    for(size_t factorIndex: column) {
      A[count++] = (int) factorIndex; // copy sparse column
    }
    p[index + 1] = count;  // column j (base 1) goes from A[j-1] to A[j]-1
    // Store key in array and increment index
    keys[index] = key_factors.first;
    ++index;
  }

  assert((size_t)count == variableIndex.nEntries());

  //double* knobs = NULL; /* colamd arg 6: parameters (uses defaults if NULL) */
  double knobs[CCOLAMD_KNOBS];
  ccolamd_set_defaults(knobs);
  knobs[CCOLAMD_DENSE_ROW] = -1;
  knobs[CCOLAMD_DENSE_COL] = -1;

  int stats[CCOLAMD_STATS]; /* colamd arg 7: colamd output statistics and error codes */

  gttoc(Prepare);

  // call colamd, result will be in p
  /* returns (1) if successful, (0) otherwise*/
  if (nVars > 0) {
    gttic(ccolamd);
    int rv = ccolamd((int) nFactors, (int) nVars, (int) Alen, &A[0], &p[0],
        knobs, stats, &cmember[0]);
    if (rv != 1)
      throw runtime_error(
          (boost::format("ccolamd failed with return value %1%") % rv).str());
  }

  //  ccolamd_report(stats);

  // Convert elimination ordering in p to an ordering
  gttic(Fill_Ordering);
  Ordering result;
  result.resize(nVars);
  for (size_t j = 0; j < nVars; ++j)
    result[j] = keys[p[j]];
  gttoc(Fill_Ordering);

  return result;
}