//## Complex Complex.ccos(); static KMETHOD Complex_ccos(KonohaContext *kctx, KonohaStack *sfp) { kComplex *kc = (kComplex *) sfp[0].asObject; double _Complex z = kc->z; double ret = ccos(z); KReturnFloatValue(ret); }
char *proobraz(char* input) { input = registr(input); input= ficha(input); for (int i=0;i<strlen(input);i++) { ssin(i,input); ccos(i,input); aasin(i,input); aacos(i,input); aatan(i,input); cceil(i,input); cch(i,input); eexp(i,input); aabs(i,input); ffloor(i,input); lln(i,input); llog(i,input); ssh(i,input); ssqrt(i,input); ttan(i,input); tth(i,input); cctg(i,input); aactg(i,input); ccth(i,input); } return input; }
//## Complex Complex.ccosl(); static KMETHOD Complex_ccosl(KonohaContext *kctx, KonohaStack *sfp) { kComplex *kc = (kComplex *) sfp[0].asObject; long double _Complex zl = (long double _Complex)kc->z; #if !defined(__CYGWIN__) long double ret = ccosl(zl); #else long double ret = ccos(zl); #endif KReturnFloatValue(ret); }
int main() { double complex v, z; double a = 0.0, b = 0.0; puts("Calculate the arc cosine of a complex number, cacos(z)\n"); puts("Enter the real and imaginary parts of a complex number:"); if (scanf("%lf %lf", &a, &b) == 2) { z = a + b * I; printf("z = %.2f %+.2f*I.\n", creal(z), cimag(z)); v = cacos(z); printf("The cacos(z) function yields %.2f %+.2f*I.\n", creal(v), cimag(v)); printf("The inverse function, ccos(cacos(z)), yields %.2f %+.2f*I.\n", creal(ccos(v)), cimag(ccos(v))); } else printf("Invalid input. \n"); return 0; }
int main() { _Complex double *c1, *c2, *sum, *prod, *c1csin, *c2csin, *c1ccos, *c2ccos; c1 = (_Complex double *) malloc (sizeof(_Complex double)); c2 = (_Complex double *) malloc (sizeof(_Complex double)); sum = (_Complex double *) malloc (sizeof(_Complex double)); prod = (_Complex double *) malloc (sizeof(_Complex double)); c1csin = (_Complex double *) malloc (sizeof(_Complex double)); c2csin = (_Complex double *) malloc (sizeof(_Complex double)); c1ccos = (_Complex double *) malloc (sizeof(_Complex double)); c2ccos = (_Complex double *) malloc (sizeof(_Complex double)); *c1 = 1.3 + 2.5i; *c2 = -2.7 + 0.3i; printf("c1 = %g + %gi\n", creal(*c1), cimag(*c1)); printf("c2 = %g + %gi\n", creal(*c2), cimag(*c2)); *sum = *c1 + *c2; *prod = *c1 * (*c2); printf("c1 + c2 = %g + %gi\n", creal(*sum), cimag(*sum)); printf("c1 * c2 = %g + %gi\n", creal(*prod), cimag(*prod)); *c1csin = csin(*c1); *c2csin = csin(*c1); printf("csin(c1) = %g + %gi\n", creal(*c1csin), cimag(*c1csin)); printf("csin(c2) = %g + %gi\n", creal(*c1csin), cimag(*c1csin)); *c1ccos = ccos(*c1); *c2ccos = ccos(*c1); printf("ccos(c1) = %g + %gi\n", creal(*c1ccos), cimag(*c1ccos)); printf("ccos(c2) = %g + %gi\n", creal(*c1ccos), cimag(*c1ccos)); return 0; }
void cmplx (double _Complex z) { cabs (z); /* { dg-warning "incompatible implicit" } */ /* { dg-message "include ..complex.h.." "" { target *-*-* } 129 } */ cacos (z); /* { dg-warning "incompatible implicit" } */ /* { dg-message "include ..complex.h.." "" { target *-*-* } 131 } */ cacosh (z); /* { dg-warning "incompatible implicit" } */ /* { dg-message "include ..complex.h.." "" { target *-*-* } 133 } */ carg (z); /* { dg-warning "incompatible implicit" } */ /* { dg-message "include ..complex.h.." "" { target *-*-* } 135 } */ casin (z); /* { dg-warning "incompatible implicit" } */ /* { dg-message "include ..complex.h.." "" { target *-*-* } 137 } */ casinh (z); /* { dg-warning "incompatible implicit" } */ /* { dg-message "include ..complex.h.." "" { target *-*-* } 139 } */ catan (z); /* { dg-warning "incompatible implicit" } */ /* { dg-message "include ..complex.h.." "" { target *-*-* } 141 } */ catanh (z); /* { dg-warning "incompatible implicit" } */ /* { dg-message "include ..complex.h.." "" { target *-*-* } 143 } */ ccos (z); /* { dg-warning "incompatible implicit" } */ /* { dg-message "include ..complex.h.." "" { target *-*-* } 145 } */ ccosh (z); /* { dg-warning "incompatible implicit" } */ /* { dg-message "include ..complex.h.." "" { target *-*-* } 147 } */ cexp (z); /* { dg-warning "incompatible implicit" } */ /* { dg-message "include ..complex.h.." "" { target *-*-* } 149 } */ cimag (z); /* { dg-warning "incompatible implicit" } */ /* { dg-message "include ..complex.h.." "" { target *-*-* } 151 } */ clog (z); /* { dg-warning "incompatible implicit" } */ /* { dg-message "include ..complex.h.." "" { target *-*-* } 153 } */ conj (z); /* { dg-warning "incompatible implicit" } */ /* { dg-message "include ..complex.h.." "" { target *-*-* } 155 } */ cpow (z, z); /* { dg-warning "incompatible implicit" } */ /* { dg-message "include ..complex.h.." "" { target *-*-* } 157 } */ cproj (z); /* { dg-warning "incompatible implicit" } */ /* { dg-message "include ..complex.h.." "" { target *-*-* } 159 } */ creal (z); /* { dg-warning "incompatible implicit" } */ /* { dg-message "include ..complex.h.." "" { target *-*-* } 161 } */ csin (z); /* { dg-warning "incompatible implicit" } */ /* { dg-message "include ..complex.h.." "" { target *-*-* } 163 } */ csinh (z); /* { dg-warning "incompatible implicit" } */ /* { dg-message "include ..complex.h.." "" { target *-*-* } 165 } */ csqrt (z); /* { dg-warning "incompatible implicit" } */ /* { dg-message "include ..complex.h.." "" { target *-*-* } 167 } */ ctan (z); /* { dg-warning "incompatible implicit" } */ /* { dg-message "include ..complex.h.." "" { target *-*-* } 169 } */ ctanh (z); /* { dg-warning "incompatible implicit" } */ /* { dg-message "include ..complex.h.." "" { target *-*-* } 171 } */ }
void test06 ( ) /******************************************************************************/ /* Purpose: TEST06: intrinsic functions for double complex variables. Licensing: This code is distributed under the GNU LGPL license. Modified: 07 November 2010 Author: John Burkardt */ { double complex a = {1.0 + 2.0 * I}; printf ( "\n" ); printf ( "TEST06\n" ); printf ( " Apply intrinsic functions to DOUBLE COMPLEX variables\n" ); /* Print them. */ printf ( "\n" ); /* Note that "I" by itself is NOT a complex number, nor is it the imaginary unit. You have to cast it to ( complex ) or ( double complex ) or multiply it by a float or double before it results in a numerical result. */ printf ( " ( double complex ) I = (%14.6g,%14.6g)\n", ( double complex ) I ); printf ( " a = (%14.6g,%14.6g)\n", a ); printf ( " - a = (%14.6g,%14.6g)\n", - a ); printf ( " a + 3 = (%14.6g,%14.6g)\n", a + 3 ); printf ( " a + (0,5) = (%14.6g,%14.6g)\n", a + ( 0, 5 ) ); printf ( " 4 * a = (%14.6g,%14.6g)\n", 4 * a ); printf ( " a / 8 = (%14.6g,%14.6g)\n", a / 8 ); printf ( " a * a = (%14.6g,%14.6g)\n", a * a ); printf ( " cpow ( a, 2 ) = (%14.6g,%14.6g)\n", cpow ( a, 2 ) ); printf ( " cpow ( 2, a ) = (%14.6g,%14.6g)\n", cpow ( 2, a ) ); printf ( " cpow ( a, a ) = (%14.6g,%14.6g)\n", cpow ( a, a ) ); printf ( " 1/a = (%14.6g,%14.6g)\n", 1.0 / a ); printf ( "\n" ); printf ( " cabs(a) = %14.6g\n", cabs ( a ) ); printf ( " cacos(a) = (%14.6g,%14.6g)\n", cacos ( a ) ); printf ( " cacosh(a) = (%14.6g,%14.6g)\n", cacosh ( a ) ); printf ( " carg(a) = %14.6g\n", carg ( a ) ); printf ( " casin(a) = (%14.6g,%14.6g)\n", casin ( a ) ); printf ( " casinh(a) = (%14.6g,%14.6g)\n", casinh ( a ) ); printf ( " catan(a) = (%14.6g,%14.6g)\n", creal ( catan ( a ) ), cimag ( catan ( a ) ) ); printf ( " catanh(a) = (%14.6g,%14.6g)\n", creal ( catanh ( a ) ), cimag ( catanh ( a ) ) ); printf ( " ccos(a) = (%14.6g,%14.6g)\n", creal ( ccos ( a ) ), cimag ( ccos ( a ) ) ); printf ( " ccosh(a) = (%14.6g,%14.6g)\n", creal ( ccosh ( a ) ), cimag ( ccosh ( a ) ) ); printf ( " cexp(a) = (%14.6g,%14.6g)\n", creal ( cexp ( a ) ), cimag ( cexp ( a ) ) ); printf ( " cimag(a) = %14.6g\n", cimag ( a ) ); printf ( " clog(a) = (%14.6g,%14.6g)\n", creal ( clog ( a ) ), cimag ( clog ( a ) ) ); printf ( " (double complex)(1) = (%14.6g,%14.6g)\n", creal ( ( double complex ) ( 1 ) ), cimag ( ( double complex ) ( 1 ) ) ); printf ( " (double complex)(4.0) = (%14.6g,%14.6g)\n", creal ( ( double complex ) ( 4.0 ) ), cimag ( ( double complex ) ( 4.0 ) ) ); printf ( " conj(a) = (%14.6g,%14.6g)\n", creal ( conj ( a ) ), cimag ( conj ( a ) ) ); printf ( " cproj(a) = (%14.6g,%14.6g)\n", creal ( cproj ( a ) ), cimag ( cproj ( a ) ) ); printf ( " creal(a) = %14.6g\n", creal ( a ) ); printf ( " csin(a) = (%14.6g,%14.6g)\n", creal ( csin ( a ) ), cimag ( csin ( a ) ) ); printf ( " csinh(a) = (%14.6g,%14.6g)\n", creal ( csinh ( a ) ), cimag ( csinh ( a ) ) ); printf ( " csqrt(a) = (%14.6g,%14.6g)\n", creal ( csqrt ( a ) ), cimag ( csqrt ( a ) ) ); printf ( " ctan(a) = (%14.6g,%14.6g)\n", creal ( ctan ( a ) ), cimag ( ctan ( a ) ) ); printf ( " ctanh(a) = (%14.6g,%14.6g)\n", creal ( ctanh ( a ) ), cimag ( ctanh ( a ) ) ); printf ( " (int)(a) = %10d\n", ( int ) ( a ) ); return; }
static double complex ccosh(double complex z) { return ccos(z * I); /* A&S 4.5.8 */ }
void docomplex (void) { #ifndef NO_DOUBLE complex double ca, cb, cc; double f1; ca = 1.0 + 1.0 * I; cb = 1.0 - 1.0 * I; f1 = cabs (ca); fprintf (stdout, "cabs : %f\n", f1); cc = cacos (ca); fprintf (stdout, "cacos : %f %fi\n", creal (cc), cimag (cc)); cc = cacosh (ca); fprintf (stdout, "cacosh : %f %fi\n", creal (cc), cimag (cc)); f1 = carg (ca); fprintf (stdout, "carg : %f\n", f1); cc = casin (ca); fprintf (stdout, "casin : %f %fi\n", creal (cc), cimag (cc)); cc = casinh (ca); fprintf (stdout, "casinh : %f %fi\n", creal (cc), cimag (cc)); cc = catan (ca); fprintf (stdout, "catan : %f %fi\n", creal (cc), cimag (cc)); cc = catanh (ca); fprintf (stdout, "catanh : %f %fi\n", creal (cc), cimag (cc)); cc = ccos (ca); fprintf (stdout, "ccos : %f %fi\n", creal (cc), cimag (cc)); cc = ccosh (ca); fprintf (stdout, "ccosh : %f %fi\n", creal (cc), cimag (cc)); cc = cexp (ca); fprintf (stdout, "cexp : %f %fi\n", creal (cc), cimag (cc)); f1 = cimag (ca); fprintf (stdout, "cimag : %f\n", f1); cc = clog (ca); fprintf (stdout, "clog : %f %fi\n", creal (cc), cimag (cc)); cc = conj (ca); fprintf (stdout, "conj : %f %fi\n", creal (cc), cimag (cc)); cc = cpow (ca, cb); fprintf (stdout, "cpow : %f %fi\n", creal (cc), cimag (cc)); cc = cproj (ca); fprintf (stdout, "cproj : %f %fi\n", creal (cc), cimag (cc)); f1 = creal (ca); fprintf (stdout, "creal : %f\n", f1); cc = csin (ca); fprintf (stdout, "csin : %f %fi\n", creal (cc), cimag (cc)); cc = csinh (ca); fprintf (stdout, "csinh : %f %fi\n", creal (cc), cimag (cc)); cc = csqrt (ca); fprintf (stdout, "csqrt : %f %fi\n", creal (cc), cimag (cc)); cc = ctan (ca); fprintf (stdout, "ctan : %f %fi\n", creal (cc), cimag (cc)); cc = ctanh (ca); fprintf (stdout, "ctanh : %f %fi\n", creal (cc), cimag (cc)); #endif }
void test2(double x, double y) { if (-tan(x-y) != tan(y-x)) link_error (); if (-sin(x-y) != sin(y-x)) link_error (); if (cos(-x*y) != cos(x*y)) link_error (); if (cos(x*-y) != cos(x*y)) link_error (); if (cos(-x/y) != cos(x/y)) link_error (); if (cos(x/-y) != cos(x/y)) link_error (); if (cos(-fabs(tan(x/-y))) != cos(tan(x/y))) link_error (); if (cos(y<10 ? -x : y) != cos(y<10 ? x : y)) link_error (); if (cos(y<10 ? x : -y) != cos(y<10 ? x : y)) link_error (); if (cos(y<10 ? -fabs(x) : tan(x<20 ? -x : -fabs(y))) != cos(y<10 ? x : tan(x<20 ? x : y))) link_error (); if (cos((y*=3, -x)) != cos((y*=3,x))) link_error (); if (cos((y*=2, -fabs(tan(x/-y)))) != cos((y*=2,tan(x/y)))) link_error (); if (cos(copysign(x,y)) != cos(x)) link_error (); if (cos(copysign(-fabs(x),y*=2)) != cos((y*=2,x))) link_error (); if (hypot (x, 0) != fabs(x)) link_error (); if (hypot (0, x) != fabs(x)) link_error (); if (hypot (x, x) != fabs(x) * __builtin_sqrt(2)) link_error (); if (hypot (-x, y) != hypot (x, y)) link_error (); if (hypot (x, -y) != hypot (x, y)) link_error (); if (hypot (-x, -y) != hypot (x, y)) link_error (); if (hypot (fabs(x), y) != hypot (x, y)) link_error (); if (hypot (x, fabs(y)) != hypot (x, y)) link_error (); if (hypot (fabs(x), fabs(y)) != hypot (x, y)) link_error (); if (hypot (-fabs(-x), -fabs(fabs(fabs(-y)))) != hypot (x, y)) link_error (); if (hypot (-x, 0) != fabs(x)) link_error (); if (hypot (-x, x) != fabs(x) * __builtin_sqrt(2)) link_error (); if (hypot (pure(x), -pure(x)) != fabs(pure(x)) * __builtin_sqrt(2)) link_error (); if (hypot (tan(-x), tan(-fabs(y))) != hypot (tan(x), tan(y))) link_error (); if (fmin (fmax(x,y),y) != y) link_error (); if (fmin (fmax(y,x),y) != y) link_error (); if (fmin (x,fmax(x,y)) != x) link_error (); if (fmin (x,fmax(y,x)) != x) link_error (); if (fmax (fmin(x,y),y) != y) link_error (); if (fmax (fmin(y,x),y) != y) link_error (); if (fmax (x,fmin(x,y)) != x) link_error (); if (fmax (x,fmin(y,x)) != x) link_error (); if ((__complex__ double) x != -(__complex__ double) (-x)) link_error (); if (x*1i != -(-x*1i)) link_error (); if (x+(x-y)*1i != -(-x+(y-x)*1i)) link_error (); if (x+(x-y)*1i != -(-x-(x-y)*1i)) link_error (); if (ccos(tan(x)+sin(y)*1i) != ccos(-tan(-x)+-sin(-y)*1i)) link_error (); if (ccos(tan(x)+sin(x-y)*1i) != ccos(-tan(-x)-sin(y-x)*1i)) link_error (); if (-5+x*1i != -~(5+x*1i)) link_error (); if (tan(x)+tan(y)*1i != -~(tan(-x)+tan(y)*1i)) link_error (); }
void test3(__complex__ double x, __complex__ double y, int i) { if (carg(x) != atan2(__imag__ x, __real__ x)) link_error (); if (ccos(x) != ccos(-x)) link_error(); if (ccos(ctan(x)) != ccos(ctan(-x))) link_error(); if (ctan(x-y) != -ctan(y-x)) link_error(); if (ccos(x/y) != ccos(-x/y)) link_error(); if (ccos(x/y) != ccos(x/-y)) link_error(); if (ccos(x/ctan(y)) != ccos(-x/ctan(-y))) link_error(); if (ccos(x*y) != ccos(-x*y)) link_error(); if (ccos(x*y) != ccos(x*-y)) link_error(); if (ccos(ctan(x)*y) != ccos(ctan(-x)*-y)) link_error(); if (ccos(ctan(x/y)) != ccos(-ctan(x/-y))) link_error(); if (ccos(i ? x : y) != ccos(i ? -x : y)) link_error(); if (ccos(i ? x : y) != ccos(i ? x : -y)) link_error(); if (ccos(i ? x : ctan(y/x)) != ccos(i ? -x : -ctan(-y/x))) link_error(); if (~x != -~-x) link_error(); if (ccos(~x) != ccos(-~-x)) link_error(); if (ctan(~(x-y)) != -ctan(~(y-x))) link_error(); if (ctan(~(x/y)) != -ctan(~(x/-y))) link_error(); }
long double complex ld = I; TEST_RESOLVED(MIPS, "http://ellcc.org/bugzilla/show_bug.cgi?id=59") { TEST_TRACE(C99 7.3.5.1) d = cacos(d); f = cacosf(f); ld = cacosl(ld); TEST_TRACE(C99 7.3.5.2) d = casin(d); f = casinf(f); ld = casinl(ld); TEST_TRACE(C99 7.3.5.3) d = catan(d); f = catanf(f); ld = catanl(ld); TEST_TRACE(C99 7.3.5.4) d = ccos(d); f = ccosf(f); ld = ccosl(ld); TEST_TRACE(C99 7.3.5.5) d = csin(d); f = csinf(f); ld = csinl(ld); TEST_TRACE(C99 7.3.5.6) d = ctan(d); f = ctanf(f); ld = ctanl(ld); TEST_TRACE(C99 7.3.6.1) d = cacosh(d); f = cacoshf(f); ld = cacoshl(ld); TEST_TRACE(C99 7.3.6.2)
CAMLprim value math_ccos(value x) { CAMLparam1(x); CAMLreturn(caml_copy_complex(ccos(Complex_val(x)))); }
void z_cos(doublecomplex *r, doublecomplex *z) { double _Complex ret_val = ccos(z->r + I*z->i); r->r = creal(ret_val); r->i = cimag(ret_val); }
static status_t uforth_execute_step(uforth_context_t *uf_ctx, simulation_context_t *sc, simulation_t *simulation, uforth_heap_t *heap, yana_complex_t *resultp, int i) { uforth_token_t *l_stack[16]; int l_stack_pos = 0; status_t status = SUCCESS; uforth_token_t *token; yana_real_t r1, r2, r3; yana_complex_t c1, c2; yana_real_t f = sc?simulation_context_get_f(sc, i):0.L; int s = sc?simulation_context_get_n_samples(sc):0; uforth_token_type_t head_type; bool printed = false; bool end = false; bool free_heap = false; if ( NULL == heap ) { free_heap = true; heap = uforth_heap_new(); } for ( token = uf_ctx->first ; token && !end; token = token->next ) { switch (token->type) { case UF_FREEAIR: POP_REAL("( x X -- x ) FREEAIR", r2); POP_REAL("( X x -- x ) FREEAIR", r1); PUSH_COMPLEX("FREEAIR", free_air_impedance(f, r1, r2)); break; case UF_DIRIMP: POP_REAL("( x x X -- x ) FREEAIR", r3); // theta POP_REAL("( x X x -- x ) FREEAIR", r2); // r POP_REAL("( X x x -- x ) FREEAIR", r1); // Sd PUSH_COMPLEX("FREEAIR", free_air_dir_impedance(f, r2, r1, r3)); break; case UF_MUL: POP_COMPLEX("( x X -- x ) MUL", c2); POP_COMPLEX("( X x -- x ) MUL", c1); PUSH_COMPLEX("MUL", c1*c2); break; case UF_DIV: POP_COMPLEX("( x X -- x ) DIV", c2); POP_COMPLEX("( X x -- x ) DIV", c1); PUSH_COMPLEX("DIV", c1/c2); break; case UF_ADD: POP_COMPLEX("( x X -- x ) ADD", c2); POP_COMPLEX("( X x -- x ) ADD", c1); PUSH_COMPLEX("ADD", c1+c2); break; case UF_SUB: POP_COMPLEX("( x X -- x ) SUB", c2); POP_COMPLEX("( X x -- x ) SUB", c1); PUSH_COMPLEX("SUB", c1-c2); break; case UF_NEG: POP_COMPLEX("( X -- x ) NEG", c1); PUSH_COMPLEX("NEG", -c1); break; case UF_EXP: POP_COMPLEX("( X -- x ) EXP", c1); PUSH_COMPLEX("EXP", cexp(c1)); break; case UF_POW: POP_COMPLEX("( x X -- x ) POW", c2); POP_COMPLEX("( X x -- x ) POW", c1); PUSH_COMPLEX("POW", cpow(c1, c2)); break; case UF_SQRT: POP_COMPLEX("( X -- x ) SQRT", c1); PUSH_COMPLEX("SQRT", csqrt(c1)); break; case UF_LN: POP_COMPLEX("( X -- x ) LN", c1); PUSH_COMPLEX("LN", clog(c1)); break; case UF_COS: POP_COMPLEX("( X -- x ) COS", c1); PUSH_COMPLEX("COS", ccos(c1)); break; case UF_SIN: POP_COMPLEX("( X -- x ) SIN", c1); PUSH_COMPLEX("SIN", csin(c1)); break; case UF_TAN: POP_COMPLEX("( X -- x ) TAN", c1); PUSH_COMPLEX("TAN", ctan(c1)); break; case UF_ACOS: POP_COMPLEX("( X -- x ) ACOS", c1); PUSH_COMPLEX("ACOS", cacos(c1)); break; case UF_ASIN: POP_COMPLEX("( X -- x ) ASIN", c1); PUSH_COMPLEX("ASIN", casin(c1)); break; case UF_ATAN: POP_COMPLEX("( X -- x ) ATAN", c1); PUSH_COMPLEX("ATAN", catan(c1)); break; case UF_LOG: POP_COMPLEX("( X -- x ) LOG", c1); PUSH_COMPLEX("LOG", clog10(c1)); break; case UF_PAR: POP_COMPLEX("( x X -- x ) PAR", c2); POP_COMPLEX("( X x -- x ) PAR", c1); PUSH_COMPLEX("PAR", (c1*c2)/(c1+c2) ); break; case UF_ABS: POP_COMPLEX("( X -- x ) ABS", c1); PUSH_REAL("ABS", cabs(c1)); break; case UF_ARG: POP_COMPLEX("( X -- x ) ARG", c1); PUSH_REAL("ARG", carg(c1)); break; case UF_DEG: POP_REAL("( X -- x ) DEG", r1); PUSH_REAL("DEG", 180. * r1 / M_PI ); break; case UF_ANGLE: POP_REAL("( x X -- x ) ANGLE", r2); POP_REAL("( X x -- x ) ANGLE", r1); if ( fabs(r1-r2-2.*M_PI) > fabs(r1-r2) ) { if ( fabs(r1-r2+2.*M_PI) > fabs(r1-r2) ) PUSH_REAL("ANGLE", r1-r2); else PUSH_REAL("ANGLE", r1-r2+2.*M_PI); } else { if ( fabs(r1-r2+2.*M_PI) > fabs(r1-r2-2.*M_PI) ) PUSH_REAL("ANGLE", r1-r2-2.*M_PI); else PUSH_REAL("ANGLE", r1-r2+2.*M_PI); } break; case UF_PDELAY: POP_REAL("( X -- x ) PDELAY", r1); PUSH_REAL("PDELAY", - r1 /( 2. * M_PI * f ) ); break; case UF_PREV_STEP: if ( 0 == i ) { end = true; break; } --i; f = simulation_context_get_f(sc, i); break; case UF_NEXT_STEP: if ( s-1 == i ) { end = true; break; } ++i; f = simulation_context_get_f(sc, i); break; case UF_IMAG: POP_COMPLEX("( X -- x ) IMAG", c1); PUSH_REAL("IMAG", cimag(c1)); break; case UF_REAL: POP_COMPLEX("( X -- x ) REAL", c1); PUSH_REAL("REAL", creal(c1)); break; case UF_PI: PUSH_REAL("PI", M_PI); break; case UF_RHO: PUSH_REAL("PI", YANA_RHO); break; case UF_C: PUSH_REAL("PI", YANA_C); break; case UF_MU: PUSH_REAL("PI", YANA_MU); break; case UF_F: PUSH_REAL("F", f); break; case UF_S: PUSH_REAL("F", i); break; case UF_I: PUSH_COMPLEX("I", 0. + I * 1.); break; case UF_DB: POP_COMPLEX("( X -- x ) DB", c1); PUSH_REAL("DB", 20. * log10(cabs(c1))); break; case UF_DBSPL: POP_COMPLEX("( X -- x ) DB", c1); PUSH_REAL("DB", 20. * log10(cabs(c1)/20e-6)); break; case UF_DOT: HEAD_TYPE(head_type); if ( UF_VALUE_REAL == head_type ) { POP_REAL("( X -- ) DOT", r1); fprintf(stdout, "%1.12g\t", (double)r1); } else if ( UF_VALUE_COMPLEX == head_type ) { POP_COMPLEX("( X -- ) DOT", c1); fprintf(stdout, "%1.12g\t", (double)cabs(c1)); } printed=true; break; case UF_DUP: POP_COMPLEX("( X -- x x ) DUP", c1); PUSH_COMPLEX("DUP", c1); PUSH_COMPLEX("DUP", c1); break; case UF_TO: token=token->next; if ( NULL == token ) { ERROR("TO: end of instructions stream"); status = FAILURE; goto loop_exit; } if ( token->type != UF_VALUE_SIMULATION ) { ERROR("TO: %s is not a valid word to be set", token->symbol); status = FAILURE; goto loop_exit; } POP_COMPLEX("(X -- ) TO", c1); uforth_heap_set(heap, token->symbol, c1); break; case UF_SWAP: if ( uf_ctx->stack_pos < 2 ) { ERROR("SWAP: Stack underflow"); status = FAILURE; goto loop_exit; } token_swap(&uf_ctx->stack[uf_ctx->stack_pos-1], &uf_ctx->stack[uf_ctx->stack_pos-2]); break; case UF_DROP: POP_COMPLEX("(X -- ) DROP", c1); break; case UF_IF: POP_COMPLEX("(X -- ) IF", c1); if ( 0. == c1 ) { int depth=-1; uforth_token_t *orig_position = token; while ( ( token->type != UF_ELSE && token->type != UF_THEN ) || depth != 0 ) { if ( token->type == UF_IF ) ++depth; if ( token->type == UF_THEN ) --depth; token = token->next; if ( NULL == token ) { ERROR("IF: no matching ELSE or THEN found"); token = orig_position; status = FAILURE; goto loop_exit; } } } break; case UF_ELSE: { int depth=0; uforth_token_t *orig_position = token; while ( token->type != UF_THEN || depth != 0 ) { if ( token->type == UF_IF ) ++depth; if ( token->type == UF_THEN ) --depth; token = token->next; if ( NULL == token ) { ERROR("ELSE: no matching THEN found"); token = orig_position; status = FAILURE; goto loop_exit; } } } break; case UF_THEN: //noop break; case UF_BEGIN: L_PUSH(token); break; case UF_WHILE: POP_COMPLEX("(X -- ) WHILE", c1); if ( 0. == c1 ) { L_DROP(); int depth=0; uforth_token_t *orig_position = token; while ( token->type != UF_REPEAT || 0 != depth) { if ( token->type == UF_BEGIN ) ++depth; if ( token->type == UF_UNTIL ) --depth; if ( token->type == UF_REPEAT ) --depth; if ( token->type == UF_AGAIN ) --depth; token=token->next; if ( NULL == token ) { ERROR("WHILE: no matching REPEAT found"); token = orig_position; status = FAILURE; goto loop_exit; } } } break; case UF_REPEAT: L_HEAD(token); break; case UF_UNTIL: POP_COMPLEX("(X -- ) UNTIL", c1); if ( 0. == c1 ) L_HEAD(token); else L_DROP(); break; case UF_AGAIN: L_HEAD(token); break; case UF_LEAVE: { int depth = 0; L_DROP(); uforth_token_t *orig_position = token; while ( ! ( ( token->type == UF_UNTIL || token->type == UF_REPEAT || token->type == UF_AGAIN ) && depth == 0 ) ) { if ( token->type == UF_BEGIN ) ++depth; if ( token->type == UF_UNTIL ) --depth; if ( token->type == UF_REPEAT ) --depth; if ( token->type == UF_AGAIN ) --depth; token = token->next; if ( NULL == token ) { ERROR("LEAVE: no matching UNTIL|REPEAT|AGAIN found"); token = orig_position; status = FAILURE; goto loop_exit; } } } break; case UF_DEPTH: PUSH_REAL("DEPTH", uf_ctx->stack_pos); break; case UF_LT: case UF_LE: case UF_EQ: case UF_NE: case UF_GE: case UF_GT: POP_COMPLEX("(x X -- ) IF", c2); POP_COMPLEX("(X x -- ) IF", c1); if ( cimag(c1) != 0.L || cimag(c2) != 0.L ) { ERROR("comparison between complex numbers"); status = FAILURE; goto loop_exit; } r1=creal(c1); r2=creal(c2); PUSH_REAL("comparison", UF_LT == token->type ? ( r1<r2) : UF_LE == token->type ? (r1<=r2) : UF_EQ == token->type ? (r1==r2) : UF_NE == token->type ? (r1!=r2) : UF_GE == token->type ? (r1>=r2) : UF_GT == token->type ? (r1>r2) : 0); break; case UF_VALUE_REAL: PUSH_REAL("real literal", token->r); break; case UF_VALUE_COMPLEX: assert(!"not possible"); PUSH_REAL("complex literal", token->c); break; case UF_VALUE_SIMULATION: { yana_complex_t *sim_array; const uforth_token_t *heap_token = heap_token = uforth_heap_get(heap, token->symbol); if ( NULL != heap_token ) { PUSH_COMPLEX("heap word", heap_token->c); } else { if ( token->symbol[0] != 'v' && token->symbol[0] != 'I' ) { ERROR("Unknown symbol '%s'\n", token->symbol); if ( sc ) HINT("dipoles start with 'I' and nodes start with 'v'"); status = FAILURE; goto loop_exit; } sim_array = simulation_result(simulation, token->symbol+1); if ( NULL == sim_array ) { ERROR("Unknown symbol '%s'", token->symbol); status = FAILURE; goto loop_exit; } PUSH_COMPLEX("sim", sim_array[i]); } } break; } } loop_exit: if (printed) fprintf(stdout, "\n"); if ( SUCCESS != status && NULL != token ) { fputs("ERROR: is here: ", stderr); uforth_token_t *t; for ( t = uf_ctx->first ; t != NULL ; t = t->next ) { if ( t == token ) { fprintf(stderr, ">>>%s<<<", t->symbol); break; } else { fprintf(stderr, "%s ", t->symbol); } } fputs("\n", stderr); } else if ( l_stack_pos != 0 ) { ERROR("loop stack not empty at the end of the processing"); status = FAILURE; } else if ( uf_ctx->stack_pos != 0 && NULL == resultp ) { if ( !end ) WARNING("stack not empty at the end of the processing"); uf_ctx->stack_pos = 0; } if ( SUCCESS == status && NULL != resultp) { if ( uf_ctx->stack_pos != 1 ) { ERROR("one result was expected and stack size is %d", uf_ctx->stack_pos); status = FAILURE; } else POP_COMPLEX("RESULT", *resultp); } if ( free_heap ) uforth_heap_free(heap); return status; }
TEST(complex, ccos) { ASSERT_EQ(1.0, ccos(0)); }
long double complex ccosl(long double complex z) { return ccos(z); }