/* Subroutine */ int cggsvp_(char *jobu, char *jobv, char *jobq, integer *m, integer *p, integer *n, complex *a, integer *lda, complex *b, integer *ldb, real *tola, real *tolb, integer *k, integer *l, complex *u, integer *ldu, complex *v, integer *ldv, complex *q, integer *ldq, integer *iwork, real *rwork, complex *tau, complex *work, integer * info) { /* -- LAPACK routine (version 3.0) -- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., Courant Institute, Argonne National Lab, and Rice University September 30, 1994 Purpose ======= CGGSVP computes unitary matrices U, V and Q such that N-K-L K L U'*A*Q = K ( 0 A12 A13 ) if M-K-L >= 0; L ( 0 0 A23 ) M-K-L ( 0 0 0 ) N-K-L K L = K ( 0 A12 A13 ) if M-K-L < 0; M-K ( 0 0 A23 ) N-K-L K L V'*B*Q = L ( 0 0 B13 ) P-L ( 0 0 0 ) where the K-by-K matrix A12 and L-by-L matrix B13 are nonsingular upper triangular; A23 is L-by-L upper triangular if M-K-L >= 0, otherwise A23 is (M-K)-by-L upper trapezoidal. K+L = the effective numerical rank of the (M+P)-by-N matrix (A',B')'. Z' denotes the conjugate transpose of Z. This decomposition is the preprocessing step for computing the Generalized Singular Value Decomposition (GSVD), see subroutine CGGSVD. Arguments ========= JOBU (input) CHARACTER*1 = 'U': Unitary matrix U is computed; = 'N': U is not computed. JOBV (input) CHARACTER*1 = 'V': Unitary matrix V is computed; = 'N': V is not computed. JOBQ (input) CHARACTER*1 = 'Q': Unitary matrix Q is computed; = 'N': Q is not computed. M (input) INTEGER The number of rows of the matrix A. M >= 0. P (input) INTEGER The number of rows of the matrix B. P >= 0. N (input) INTEGER The number of columns of the matrices A and B. N >= 0. A (input/output) COMPLEX array, dimension (LDA,N) On entry, the M-by-N matrix A. On exit, A contains the triangular (or trapezoidal) matrix described in the Purpose section. LDA (input) INTEGER The leading dimension of the array A. LDA >= max(1,M). B (input/output) COMPLEX array, dimension (LDB,N) On entry, the P-by-N matrix B. On exit, B contains the triangular matrix described in the Purpose section. LDB (input) INTEGER The leading dimension of the array B. LDB >= max(1,P). TOLA (input) REAL TOLB (input) REAL TOLA and TOLB are the thresholds to determine the effective numerical rank of matrix B and a subblock of A. Generally, they are set to TOLA = MAX(M,N)*norm(A)*MACHEPS, TOLB = MAX(P,N)*norm(B)*MACHEPS. The size of TOLA and TOLB may affect the size of backward errors of the decomposition. K (output) INTEGER L (output) INTEGER On exit, K and L specify the dimension of the subblocks described in Purpose section. K + L = effective numerical rank of (A',B')'. U (output) COMPLEX array, dimension (LDU,M) If JOBU = 'U', U contains the unitary matrix U. If JOBU = 'N', U is not referenced. LDU (input) INTEGER The leading dimension of the array U. LDU >= max(1,M) if JOBU = 'U'; LDU >= 1 otherwise. V (output) COMPLEX array, dimension (LDV,M) If JOBV = 'V', V contains the unitary matrix V. If JOBV = 'N', V is not referenced. LDV (input) INTEGER The leading dimension of the array V. LDV >= max(1,P) if JOBV = 'V'; LDV >= 1 otherwise. Q (output) COMPLEX array, dimension (LDQ,N) If JOBQ = 'Q', Q contains the unitary matrix Q. If JOBQ = 'N', Q is not referenced. LDQ (input) INTEGER The leading dimension of the array Q. LDQ >= max(1,N) if JOBQ = 'Q'; LDQ >= 1 otherwise. IWORK (workspace) INTEGER array, dimension (N) RWORK (workspace) REAL array, dimension (2*N) TAU (workspace) COMPLEX array, dimension (N) WORK (workspace) COMPLEX array, dimension (max(3*N,M,P)) INFO (output) INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value. Further Details =============== The subroutine uses LAPACK subroutine CGEQPF for the QR factorization with column pivoting to detect the effective numerical rank of the a matrix. It may be replaced by a better rank determination strategy. ===================================================================== Test the input parameters Parameter adjustments */ /* Table of constant values */ static complex c_b1 = {0.f,0.f}; static complex c_b2 = {1.f,0.f}; /* System generated locals */ integer a_dim1, a_offset, b_dim1, b_offset, q_dim1, q_offset, u_dim1, u_offset, v_dim1, v_offset, i__1, i__2, i__3; real r__1, r__2; /* Builtin functions */ double r_imag(complex *); /* Local variables */ static integer i__, j; extern logical lsame_(char *, char *); static logical wantq, wantu, wantv; extern /* Subroutine */ int cgeqr2_(integer *, integer *, complex *, integer *, complex *, complex *, integer *), cgerq2_(integer *, integer *, complex *, integer *, complex *, complex *, integer *), cung2r_(integer *, integer *, integer *, complex *, integer *, complex *, complex *, integer *), cunm2r_(char *, char *, integer *, integer *, integer *, complex *, integer *, complex *, complex *, integer *, complex *, integer *), cunmr2_(char *, char *, integer *, integer *, integer *, complex *, integer *, complex *, complex *, integer *, complex *, integer *), cgeqpf_(integer *, integer *, complex *, integer *, integer *, complex *, complex *, real *, integer *), clacpy_(char *, integer *, integer *, complex *, integer *, complex *, integer *), claset_(char *, integer *, integer *, complex *, complex *, complex *, integer *), xerbla_(char *, integer *), clapmt_(logical *, integer *, integer *, complex *, integer *, integer *); static logical forwrd; #define a_subscr(a_1,a_2) (a_2)*a_dim1 + a_1 #define a_ref(a_1,a_2) a[a_subscr(a_1,a_2)] #define b_subscr(a_1,a_2) (a_2)*b_dim1 + a_1 #define b_ref(a_1,a_2) b[b_subscr(a_1,a_2)] #define u_subscr(a_1,a_2) (a_2)*u_dim1 + a_1 #define u_ref(a_1,a_2) u[u_subscr(a_1,a_2)] #define v_subscr(a_1,a_2) (a_2)*v_dim1 + a_1 #define v_ref(a_1,a_2) v[v_subscr(a_1,a_2)] a_dim1 = *lda; a_offset = 1 + a_dim1 * 1; a -= a_offset; b_dim1 = *ldb; b_offset = 1 + b_dim1 * 1; b -= b_offset; u_dim1 = *ldu; u_offset = 1 + u_dim1 * 1; u -= u_offset; v_dim1 = *ldv; v_offset = 1 + v_dim1 * 1; v -= v_offset; q_dim1 = *ldq; q_offset = 1 + q_dim1 * 1; q -= q_offset; --iwork; --rwork; --tau; --work; /* Function Body */ wantu = lsame_(jobu, "U"); wantv = lsame_(jobv, "V"); wantq = lsame_(jobq, "Q"); forwrd = TRUE_; *info = 0; if (! (wantu || lsame_(jobu, "N"))) { *info = -1; } else if (! (wantv || lsame_(jobv, "N"))) { *info = -2; } else if (! (wantq || lsame_(jobq, "N"))) { *info = -3; } else if (*m < 0) { *info = -4; } else if (*p < 0) { *info = -5; } else if (*n < 0) { *info = -6; } else if (*lda < max(1,*m)) { *info = -8; } else if (*ldb < max(1,*p)) { *info = -10; } else if (*ldu < 1 || wantu && *ldu < *m) { *info = -16; } else if (*ldv < 1 || wantv && *ldv < *p) { *info = -18; } else if (*ldq < 1 || wantq && *ldq < *n) { *info = -20; } if (*info != 0) { i__1 = -(*info); xerbla_("CGGSVP", &i__1); return 0; } /* QR with column pivoting of B: B*P = V*( S11 S12 ) ( 0 0 ) */ i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { iwork[i__] = 0; /* L10: */ } cgeqpf_(p, n, &b[b_offset], ldb, &iwork[1], &tau[1], &work[1], &rwork[1], info); /* Update A := A*P */ clapmt_(&forwrd, m, n, &a[a_offset], lda, &iwork[1]); /* Determine the effective rank of matrix B. */ *l = 0; i__1 = min(*p,*n); for (i__ = 1; i__ <= i__1; ++i__) { i__2 = b_subscr(i__, i__); if ((r__1 = b[i__2].r, dabs(r__1)) + (r__2 = r_imag(&b_ref(i__, i__)), dabs(r__2)) > *tolb) { ++(*l); } /* L20: */ } if (wantv) { /* Copy the details of V, and form V. */ claset_("Full", p, p, &c_b1, &c_b1, &v[v_offset], ldv); if (*p > 1) { i__1 = *p - 1; clacpy_("Lower", &i__1, n, &b_ref(2, 1), ldb, &v_ref(2, 1), ldv); } i__1 = min(*p,*n); cung2r_(p, p, &i__1, &v[v_offset], ldv, &tau[1], &work[1], info); } /* Clean up B */ i__1 = *l - 1; for (j = 1; j <= i__1; ++j) { i__2 = *l; for (i__ = j + 1; i__ <= i__2; ++i__) { i__3 = b_subscr(i__, j); b[i__3].r = 0.f, b[i__3].i = 0.f; /* L30: */ } /* L40: */ } if (*p > *l) { i__1 = *p - *l; claset_("Full", &i__1, n, &c_b1, &c_b1, &b_ref(*l + 1, 1), ldb); } if (wantq) { /* Set Q = I and Update Q := Q*P */ claset_("Full", n, n, &c_b1, &c_b2, &q[q_offset], ldq); clapmt_(&forwrd, n, n, &q[q_offset], ldq, &iwork[1]); } if (*p >= *l && *n != *l) { /* RQ factorization of ( S11 S12 ) = ( 0 S12 )*Z */ cgerq2_(l, n, &b[b_offset], ldb, &tau[1], &work[1], info); /* Update A := A*Z' */ cunmr2_("Right", "Conjugate transpose", m, n, l, &b[b_offset], ldb, & tau[1], &a[a_offset], lda, &work[1], info); if (wantq) { /* Update Q := Q*Z' */ cunmr2_("Right", "Conjugate transpose", n, n, l, &b[b_offset], ldb, &tau[1], &q[q_offset], ldq, &work[1], info); } /* Clean up B */ i__1 = *n - *l; claset_("Full", l, &i__1, &c_b1, &c_b1, &b[b_offset], ldb); i__1 = *n; for (j = *n - *l + 1; j <= i__1; ++j) { i__2 = *l; for (i__ = j - *n + *l + 1; i__ <= i__2; ++i__) { i__3 = b_subscr(i__, j); b[i__3].r = 0.f, b[i__3].i = 0.f; /* L50: */ } /* L60: */ } } /* Let N-L L A = ( A11 A12 ) M, then the following does the complete QR decomposition of A11: A11 = U*( 0 T12 )*P1' ( 0 0 ) */ i__1 = *n - *l; for (i__ = 1; i__ <= i__1; ++i__) { iwork[i__] = 0; /* L70: */ } i__1 = *n - *l; cgeqpf_(m, &i__1, &a[a_offset], lda, &iwork[1], &tau[1], &work[1], &rwork[ 1], info); /* Determine the effective rank of A11 */ *k = 0; /* Computing MIN */ i__2 = *m, i__3 = *n - *l; i__1 = min(i__2,i__3); for (i__ = 1; i__ <= i__1; ++i__) { i__2 = a_subscr(i__, i__); if ((r__1 = a[i__2].r, dabs(r__1)) + (r__2 = r_imag(&a_ref(i__, i__)), dabs(r__2)) > *tola) { ++(*k); } /* L80: */ } /* Update A12 := U'*A12, where A12 = A( 1:M, N-L+1:N ) Computing MIN */ i__2 = *m, i__3 = *n - *l; i__1 = min(i__2,i__3); cunm2r_("Left", "Conjugate transpose", m, l, &i__1, &a[a_offset], lda, & tau[1], &a_ref(1, *n - *l + 1), lda, &work[1], info); if (wantu) { /* Copy the details of U, and form U */ claset_("Full", m, m, &c_b1, &c_b1, &u[u_offset], ldu); if (*m > 1) { i__1 = *m - 1; i__2 = *n - *l; clacpy_("Lower", &i__1, &i__2, &a_ref(2, 1), lda, &u_ref(2, 1), ldu); } /* Computing MIN */ i__2 = *m, i__3 = *n - *l; i__1 = min(i__2,i__3); cung2r_(m, m, &i__1, &u[u_offset], ldu, &tau[1], &work[1], info); } if (wantq) { /* Update Q( 1:N, 1:N-L ) = Q( 1:N, 1:N-L )*P1 */ i__1 = *n - *l; clapmt_(&forwrd, n, &i__1, &q[q_offset], ldq, &iwork[1]); } /* Clean up A: set the strictly lower triangular part of A(1:K, 1:K) = 0, and A( K+1:M, 1:N-L ) = 0. */ i__1 = *k - 1; for (j = 1; j <= i__1; ++j) { i__2 = *k; for (i__ = j + 1; i__ <= i__2; ++i__) { i__3 = a_subscr(i__, j); a[i__3].r = 0.f, a[i__3].i = 0.f; /* L90: */ } /* L100: */ } if (*m > *k) { i__1 = *m - *k; i__2 = *n - *l; claset_("Full", &i__1, &i__2, &c_b1, &c_b1, &a_ref(*k + 1, 1), lda); } if (*n - *l > *k) { /* RQ factorization of ( T11 T12 ) = ( 0 T12 )*Z1 */ i__1 = *n - *l; cgerq2_(k, &i__1, &a[a_offset], lda, &tau[1], &work[1], info); if (wantq) { /* Update Q( 1:N,1:N-L ) = Q( 1:N,1:N-L )*Z1' */ i__1 = *n - *l; cunmr2_("Right", "Conjugate transpose", n, &i__1, k, &a[a_offset], lda, &tau[1], &q[q_offset], ldq, &work[1], info); } /* Clean up A */ i__1 = *n - *l - *k; claset_("Full", k, &i__1, &c_b1, &c_b1, &a[a_offset], lda); i__1 = *n - *l; for (j = *n - *l - *k + 1; j <= i__1; ++j) { i__2 = *k; for (i__ = j - *n + *l + *k + 1; i__ <= i__2; ++i__) { i__3 = a_subscr(i__, j); a[i__3].r = 0.f, a[i__3].i = 0.f; /* L110: */ } /* L120: */ } } if (*m > *k) { /* QR factorization of A( K+1:M,N-L+1:N ) */ i__1 = *m - *k; cgeqr2_(&i__1, l, &a_ref(*k + 1, *n - *l + 1), lda, &tau[1], &work[1], info); if (wantu) { /* Update U(:,K+1:M) := U(:,K+1:M)*U1 */ i__1 = *m - *k; /* Computing MIN */ i__3 = *m - *k; i__2 = min(i__3,*l); cunm2r_("Right", "No transpose", m, &i__1, &i__2, &a_ref(*k + 1, * n - *l + 1), lda, &tau[1], &u_ref(1, *k + 1), ldu, &work[ 1], info); } /* Clean up */ i__1 = *n; for (j = *n - *l + 1; j <= i__1; ++j) { i__2 = *m; for (i__ = j - *n + *k + *l + 1; i__ <= i__2; ++i__) { i__3 = a_subscr(i__, j); a[i__3].r = 0.f, a[i__3].i = 0.f; /* L130: */ } /* L140: */ } } return 0; /* End of CGGSVP */ } /* cggsvp_ */
/* Subroutine */ int cerrqr_(char *path, integer *nunit) { /* System generated locals */ integer i__1; real r__1, r__2; complex q__1; /* Builtin functions */ integer s_wsle(cilist *), e_wsle(void); /* Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen); /* Local variables */ complex a[4] /* was [2][2] */, b[2]; integer i__, j; complex w[2], x[2], af[4] /* was [2][2] */; integer info; extern /* Subroutine */ int cgeqr2_(integer *, integer *, complex *, integer *, complex *, complex *, integer *), cung2r_(integer *, integer *, integer *, complex *, integer *, complex *, complex *, integer *), cunm2r_(char *, char *, integer *, integer *, integer *, complex *, integer *, complex *, complex *, integer *, complex *, integer *), alaesm_(char *, logical *, integer *), cgeqrf_(integer *, integer *, complex *, integer *, complex *, complex *, integer *, integer *), cgeqrs_(integer *, integer *, integer *, complex *, integer *, complex *, complex *, integer *, complex *, integer *, integer *), chkxer_(char *, integer *, integer *, logical *, logical *), cungqr_( integer *, integer *, integer *, complex *, integer *, complex *, complex *, integer *, integer *), cunmqr_(char *, char *, integer *, integer *, integer *, complex *, integer *, complex *, complex *, integer *, complex *, integer *, integer *); /* Fortran I/O blocks */ static cilist io___1 = { 0, 0, 0, 0, 0 }; /* -- LAPACK test routine (version 3.1) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* CERRQR tests the error exits for the COMPLEX routines */ /* that use the QR decomposition of a general matrix. */ /* Arguments */ /* ========= */ /* PATH (input) CHARACTER*3 */ /* The LAPACK path name for the routines to be tested. */ /* NUNIT (input) INTEGER */ /* The unit number for output. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. Local Arrays .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Scalars in Common .. */ /* .. */ /* .. Common blocks .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ infoc_1.nout = *nunit; io___1.ciunit = infoc_1.nout; s_wsle(&io___1); e_wsle(); /* Set the variables to innocuous values. */ for (j = 1; j <= 2; ++j) { for (i__ = 1; i__ <= 2; ++i__) { i__1 = i__ + (j << 1) - 3; r__1 = 1.f / (real) (i__ + j); r__2 = -1.f / (real) (i__ + j); q__1.r = r__1, q__1.i = r__2; a[i__1].r = q__1.r, a[i__1].i = q__1.i; i__1 = i__ + (j << 1) - 3; r__1 = 1.f / (real) (i__ + j); r__2 = -1.f / (real) (i__ + j); q__1.r = r__1, q__1.i = r__2; af[i__1].r = q__1.r, af[i__1].i = q__1.i; /* L10: */ } i__1 = j - 1; b[i__1].r = 0.f, b[i__1].i = 0.f; i__1 = j - 1; w[i__1].r = 0.f, w[i__1].i = 0.f; i__1 = j - 1; x[i__1].r = 0.f, x[i__1].i = 0.f; /* L20: */ } infoc_1.ok = TRUE_; /* Error exits for QR factorization */ /* CGEQRF */ s_copy(srnamc_1.srnamt, "CGEQRF", (ftnlen)32, (ftnlen)6); infoc_1.infot = 1; cgeqrf_(&c_n1, &c__0, a, &c__1, b, w, &c__1, &info); chkxer_("CGEQRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; cgeqrf_(&c__0, &c_n1, a, &c__1, b, w, &c__1, &info); chkxer_("CGEQRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 4; cgeqrf_(&c__2, &c__1, a, &c__1, b, w, &c__1, &info); chkxer_("CGEQRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 7; cgeqrf_(&c__1, &c__2, a, &c__1, b, w, &c__1, &info); chkxer_("CGEQRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); /* CGEQR2 */ s_copy(srnamc_1.srnamt, "CGEQR2", (ftnlen)32, (ftnlen)6); infoc_1.infot = 1; cgeqr2_(&c_n1, &c__0, a, &c__1, b, w, &info); chkxer_("CGEQR2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; cgeqr2_(&c__0, &c_n1, a, &c__1, b, w, &info); chkxer_("CGEQR2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 4; cgeqr2_(&c__2, &c__1, a, &c__1, b, w, &info); chkxer_("CGEQR2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); /* CGEQRS */ s_copy(srnamc_1.srnamt, "CGEQRS", (ftnlen)32, (ftnlen)6); infoc_1.infot = 1; cgeqrs_(&c_n1, &c__0, &c__0, a, &c__1, x, b, &c__1, w, &c__1, &info); chkxer_("CGEQRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; cgeqrs_(&c__0, &c_n1, &c__0, a, &c__1, x, b, &c__1, w, &c__1, &info); chkxer_("CGEQRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; cgeqrs_(&c__1, &c__2, &c__0, a, &c__2, x, b, &c__2, w, &c__1, &info); chkxer_("CGEQRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 3; cgeqrs_(&c__0, &c__0, &c_n1, a, &c__1, x, b, &c__1, w, &c__1, &info); chkxer_("CGEQRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 5; cgeqrs_(&c__2, &c__1, &c__0, a, &c__1, x, b, &c__2, w, &c__1, &info); chkxer_("CGEQRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 8; cgeqrs_(&c__2, &c__1, &c__0, a, &c__2, x, b, &c__1, w, &c__1, &info); chkxer_("CGEQRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 10; cgeqrs_(&c__1, &c__1, &c__2, a, &c__1, x, b, &c__1, w, &c__1, &info); chkxer_("CGEQRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); /* CUNGQR */ s_copy(srnamc_1.srnamt, "CUNGQR", (ftnlen)32, (ftnlen)6); infoc_1.infot = 1; cungqr_(&c_n1, &c__0, &c__0, a, &c__1, x, w, &c__1, &info); chkxer_("CUNGQR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; cungqr_(&c__0, &c_n1, &c__0, a, &c__1, x, w, &c__1, &info); chkxer_("CUNGQR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; cungqr_(&c__1, &c__2, &c__0, a, &c__1, x, w, &c__2, &info); chkxer_("CUNGQR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 3; cungqr_(&c__0, &c__0, &c_n1, a, &c__1, x, w, &c__1, &info); chkxer_("CUNGQR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 3; cungqr_(&c__1, &c__1, &c__2, a, &c__1, x, w, &c__1, &info); chkxer_("CUNGQR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 5; cungqr_(&c__2, &c__2, &c__0, a, &c__1, x, w, &c__2, &info); chkxer_("CUNGQR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 8; cungqr_(&c__2, &c__2, &c__0, a, &c__2, x, w, &c__1, &info); chkxer_("CUNGQR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); /* CUNG2R */ s_copy(srnamc_1.srnamt, "CUNG2R", (ftnlen)32, (ftnlen)6); infoc_1.infot = 1; cung2r_(&c_n1, &c__0, &c__0, a, &c__1, x, w, &info); chkxer_("CUNG2R", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; cung2r_(&c__0, &c_n1, &c__0, a, &c__1, x, w, &info); chkxer_("CUNG2R", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; cung2r_(&c__1, &c__2, &c__0, a, &c__1, x, w, &info); chkxer_("CUNG2R", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 3; cung2r_(&c__0, &c__0, &c_n1, a, &c__1, x, w, &info); chkxer_("CUNG2R", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 3; cung2r_(&c__2, &c__1, &c__2, a, &c__2, x, w, &info); chkxer_("CUNG2R", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 5; cung2r_(&c__2, &c__1, &c__0, a, &c__1, x, w, &info); chkxer_("CUNG2R", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); /* CUNMQR */ s_copy(srnamc_1.srnamt, "CUNMQR", (ftnlen)32, (ftnlen)6); infoc_1.infot = 1; cunmqr_("/", "N", &c__0, &c__0, &c__0, a, &c__1, x, af, &c__1, w, &c__1, & info); chkxer_("CUNMQR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; cunmqr_("L", "/", &c__0, &c__0, &c__0, a, &c__1, x, af, &c__1, w, &c__1, & info); chkxer_("CUNMQR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 3; cunmqr_("L", "N", &c_n1, &c__0, &c__0, a, &c__1, x, af, &c__1, w, &c__1, & info); chkxer_("CUNMQR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 4; cunmqr_("L", "N", &c__0, &c_n1, &c__0, a, &c__1, x, af, &c__1, w, &c__1, & info); chkxer_("CUNMQR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 5; cunmqr_("L", "N", &c__0, &c__0, &c_n1, a, &c__1, x, af, &c__1, w, &c__1, & info); chkxer_("CUNMQR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 5; cunmqr_("L", "N", &c__0, &c__1, &c__1, a, &c__1, x, af, &c__1, w, &c__1, & info); chkxer_("CUNMQR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 5; cunmqr_("R", "N", &c__1, &c__0, &c__1, a, &c__1, x, af, &c__1, w, &c__1, & info); chkxer_("CUNMQR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 7; cunmqr_("L", "N", &c__2, &c__1, &c__0, a, &c__1, x, af, &c__2, w, &c__1, & info); chkxer_("CUNMQR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 7; cunmqr_("R", "N", &c__1, &c__2, &c__0, a, &c__1, x, af, &c__1, w, &c__1, & info); chkxer_("CUNMQR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 10; cunmqr_("L", "N", &c__2, &c__1, &c__0, a, &c__2, x, af, &c__1, w, &c__1, & info); chkxer_("CUNMQR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 12; cunmqr_("L", "N", &c__1, &c__2, &c__0, a, &c__1, x, af, &c__1, w, &c__1, & info); chkxer_("CUNMQR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 12; cunmqr_("R", "N", &c__2, &c__1, &c__0, a, &c__1, x, af, &c__2, w, &c__1, & info); chkxer_("CUNMQR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); /* CUNM2R */ s_copy(srnamc_1.srnamt, "CUNM2R", (ftnlen)32, (ftnlen)6); infoc_1.infot = 1; cunm2r_("/", "N", &c__0, &c__0, &c__0, a, &c__1, x, af, &c__1, w, &info); chkxer_("CUNM2R", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; cunm2r_("L", "/", &c__0, &c__0, &c__0, a, &c__1, x, af, &c__1, w, &info); chkxer_("CUNM2R", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 3; cunm2r_("L", "N", &c_n1, &c__0, &c__0, a, &c__1, x, af, &c__1, w, &info); chkxer_("CUNM2R", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 4; cunm2r_("L", "N", &c__0, &c_n1, &c__0, a, &c__1, x, af, &c__1, w, &info); chkxer_("CUNM2R", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 5; cunm2r_("L", "N", &c__0, &c__0, &c_n1, a, &c__1, x, af, &c__1, w, &info); chkxer_("CUNM2R", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 5; cunm2r_("L", "N", &c__0, &c__1, &c__1, a, &c__1, x, af, &c__1, w, &info); chkxer_("CUNM2R", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 5; cunm2r_("R", "N", &c__1, &c__0, &c__1, a, &c__1, x, af, &c__1, w, &info); chkxer_("CUNM2R", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 7; cunm2r_("L", "N", &c__2, &c__1, &c__0, a, &c__1, x, af, &c__2, w, &info); chkxer_("CUNM2R", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 7; cunm2r_("R", "N", &c__1, &c__2, &c__0, a, &c__1, x, af, &c__1, w, &info); chkxer_("CUNM2R", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 10; cunm2r_("L", "N", &c__2, &c__1, &c__0, a, &c__2, x, af, &c__1, w, &info); chkxer_("CUNM2R", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); /* Print a summary line. */ alaesm_(path, &infoc_1.ok, &infoc_1.nout); return 0; /* End of CERRQR */ } /* cerrqr_ */
/* Subroutine */ int cgeqrf_(integer *m, integer *n, complex *a, integer *lda, complex *tau, complex *work, integer *lwork, integer *info) { /* -- LAPACK routine (version 3.0) -- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., Courant Institute, Argonne National Lab, and Rice University June 30, 1999 Purpose ======= CGEQRF computes a QR factorization of a complex M-by-N matrix A: A = Q * R. Arguments ========= M (input) INTEGER The number of rows of the matrix A. M >= 0. N (input) INTEGER The number of columns of the matrix A. N >= 0. A (input/output) COMPLEX array, dimension (LDA,N) On entry, the M-by-N matrix A. On exit, the elements on and above the diagonal of the array contain the min(M,N)-by-N upper trapezoidal matrix R (R is upper triangular if m >= n); the elements below the diagonal, with the array TAU, represent the unitary matrix Q as a product of min(m,n) elementary reflectors (see Further Details). LDA (input) INTEGER The leading dimension of the array A. LDA >= max(1,M). TAU (output) COMPLEX array, dimension (min(M,N)) The scalar factors of the elementary reflectors (see Further Details). WORK (workspace/output) COMPLEX array, dimension (LWORK) On exit, if INFO = 0, WORK(1) returns the optimal LWORK. LWORK (input) INTEGER The dimension of the array WORK. LWORK >= max(1,N). For optimum performance LWORK >= N*NB, where NB is the optimal blocksize. If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA. INFO (output) INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value Further Details =============== The matrix Q is represented as a product of elementary reflectors Q = H(1) H(2) . . . H(k), where k = min(m,n). Each H(i) has the form H(i) = I - tau * v * v' where tau is a complex scalar, and v is a complex vector with v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i), and tau in TAU(i). ===================================================================== Test the input arguments Parameter adjustments */ /* Table of constant values */ static integer c__1 = 1; static integer c_n1 = -1; static integer c__3 = 3; static integer c__2 = 2; /* System generated locals */ integer a_dim1, a_offset, i__1, i__2, i__3, i__4; /* Local variables */ static integer i__, k, nbmin, iinfo; extern /* Subroutine */ int cgeqr2_(integer *, integer *, complex *, integer *, complex *, complex *, integer *); static integer ib, nb; extern /* Subroutine */ int clarfb_(char *, char *, char *, char *, integer *, integer *, integer *, complex *, integer *, complex *, integer *, complex *, integer *, complex *, integer *); static integer nx; extern /* Subroutine */ int clarft_(char *, char *, integer *, integer *, complex *, integer *, complex *, complex *, integer *), xerbla_(char *, integer *); extern integer ilaenv_(integer *, char *, char *, integer *, integer *, integer *, integer *, ftnlen, ftnlen); static integer ldwork, lwkopt; static logical lquery; static integer iws; #define a_subscr(a_1,a_2) (a_2)*a_dim1 + a_1 #define a_ref(a_1,a_2) a[a_subscr(a_1,a_2)] a_dim1 = *lda; a_offset = 1 + a_dim1 * 1; a -= a_offset; --tau; --work; /* Function Body */ *info = 0; nb = ilaenv_(&c__1, "CGEQRF", " ", m, n, &c_n1, &c_n1, (ftnlen)6, (ftnlen) 1); lwkopt = *n * nb; work[1].r = (real) lwkopt, work[1].i = 0.f; lquery = *lwork == -1; if (*m < 0) { *info = -1; } else if (*n < 0) { *info = -2; } else if (*lda < max(1,*m)) { *info = -4; } else if (*lwork < max(1,*n) && ! lquery) { *info = -7; } if (*info != 0) { i__1 = -(*info); xerbla_("CGEQRF", &i__1); return 0; } else if (lquery) { return 0; } /* Quick return if possible */ k = min(*m,*n); if (k == 0) { work[1].r = 1.f, work[1].i = 0.f; return 0; } nbmin = 2; nx = 0; iws = *n; if (nb > 1 && nb < k) { /* Determine when to cross over from blocked to unblocked code. Computing MAX */ i__1 = 0, i__2 = ilaenv_(&c__3, "CGEQRF", " ", m, n, &c_n1, &c_n1, ( ftnlen)6, (ftnlen)1); nx = max(i__1,i__2); if (nx < k) { /* Determine if workspace is large enough for blocked code. */ ldwork = *n; iws = ldwork * nb; if (*lwork < iws) { /* Not enough workspace to use optimal NB: reduce NB and determine the minimum value of NB. */ nb = *lwork / ldwork; /* Computing MAX */ i__1 = 2, i__2 = ilaenv_(&c__2, "CGEQRF", " ", m, n, &c_n1, & c_n1, (ftnlen)6, (ftnlen)1); nbmin = max(i__1,i__2); } } } if (nb >= nbmin && nb < k && nx < k) { /* Use blocked code initially */ i__1 = k - nx; i__2 = nb; for (i__ = 1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__2) { /* Computing MIN */ i__3 = k - i__ + 1; ib = min(i__3,nb); /* Compute the QR factorization of the current block A(i:m,i:i+ib-1) */ i__3 = *m - i__ + 1; cgeqr2_(&i__3, &ib, &a_ref(i__, i__), lda, &tau[i__], &work[1], & iinfo); if (i__ + ib <= *n) { /* Form the triangular factor of the block reflector H = H(i) H(i+1) . . . H(i+ib-1) */ i__3 = *m - i__ + 1; clarft_("Forward", "Columnwise", &i__3, &ib, &a_ref(i__, i__), lda, &tau[i__], &work[1], &ldwork); /* Apply H' to A(i:m,i+ib:n) from the left */ i__3 = *m - i__ + 1; i__4 = *n - i__ - ib + 1; clarfb_("Left", "Conjugate transpose", "Forward", "Columnwise" , &i__3, &i__4, &ib, &a_ref(i__, i__), lda, &work[1], &ldwork, &a_ref(i__, i__ + ib), lda, &work[ib + 1], & ldwork); } /* L10: */ } } else { i__ = 1; } /* Use unblocked code to factor the last or only block. */ if (i__ <= k) { i__2 = *m - i__ + 1; i__1 = *n - i__ + 1; cgeqr2_(&i__2, &i__1, &a_ref(i__, i__), lda, &tau[i__], &work[1], & iinfo); } work[1].r = (real) iws, work[1].i = 0.f; return 0; /* End of CGEQRF */ } /* cgeqrf_ */
/* Subroutine */ int cgeqpf_(integer *m, integer *n, complex *a, integer *lda, integer *jpvt, complex *tau, complex *work, real *rwork, integer * info) { /* -- LAPACK auxiliary routine (version 3.0) -- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., Courant Institute, Argonne National Lab, and Rice University June 30, 1999 Purpose ======= This routine is deprecated and has been replaced by routine CGEQP3. CGEQPF computes a QR factorization with column pivoting of a complex M-by-N matrix A: A*P = Q*R. Arguments ========= M (input) INTEGER The number of rows of the matrix A. M >= 0. N (input) INTEGER The number of columns of the matrix A. N >= 0 A (input/output) COMPLEX array, dimension (LDA,N) On entry, the M-by-N matrix A. On exit, the upper triangle of the array contains the min(M,N)-by-N upper triangular matrix R; the elements below the diagonal, together with the array TAU, represent the unitary matrix Q as a product of min(m,n) elementary reflectors. LDA (input) INTEGER The leading dimension of the array A. LDA >= max(1,M). JPVT (input/output) INTEGER array, dimension (N) On entry, if JPVT(i) .ne. 0, the i-th column of A is permuted to the front of A*P (a leading column); if JPVT(i) = 0, the i-th column of A is a free column. On exit, if JPVT(i) = k, then the i-th column of A*P was the k-th column of A. TAU (output) COMPLEX array, dimension (min(M,N)) The scalar factors of the elementary reflectors. WORK (workspace) COMPLEX array, dimension (N) RWORK (workspace) REAL array, dimension (2*N) INFO (output) INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value Further Details =============== The matrix Q is represented as a product of elementary reflectors Q = H(1) H(2) . . . H(n) Each H(i) has the form H = I - tau * v * v' where tau is a complex scalar, and v is a complex vector with v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i). The matrix P is represented in jpvt as follows: If jpvt(j) = i then the jth column of P is the ith canonical unit vector. ===================================================================== Test the input arguments Parameter adjustments */ /* Table of constant values */ static integer c__1 = 1; /* System generated locals */ integer a_dim1, a_offset, i__1, i__2, i__3; real r__1; complex q__1; /* Builtin functions */ void r_cnjg(complex *, complex *); double c_abs(complex *), sqrt(doublereal); /* Local variables */ static real temp, temp2; static integer i__, j; extern /* Subroutine */ int clarf_(char *, integer *, integer *, complex * , integer *, complex *, complex *, integer *, complex *), cswap_(integer *, complex *, integer *, complex *, integer *); static integer itemp; extern /* Subroutine */ int cgeqr2_(integer *, integer *, complex *, integer *, complex *, complex *, integer *); extern doublereal scnrm2_(integer *, complex *, integer *); extern /* Subroutine */ int cunm2r_(char *, char *, integer *, integer *, integer *, complex *, integer *, complex *, complex *, integer *, complex *, integer *); static integer ma, mn; extern /* Subroutine */ int clarfg_(integer *, complex *, complex *, integer *, complex *), xerbla_(char *, integer *); extern integer isamax_(integer *, real *, integer *); static complex aii; static integer pvt; #define a_subscr(a_1,a_2) (a_2)*a_dim1 + a_1 #define a_ref(a_1,a_2) a[a_subscr(a_1,a_2)] a_dim1 = *lda; a_offset = 1 + a_dim1 * 1; a -= a_offset; --jpvt; --tau; --work; --rwork; /* Function Body */ *info = 0; if (*m < 0) { *info = -1; } else if (*n < 0) { *info = -2; } else if (*lda < max(1,*m)) { *info = -4; } if (*info != 0) { i__1 = -(*info); xerbla_("CGEQPF", &i__1); return 0; } mn = min(*m,*n); /* Move initial columns up front */ itemp = 1; i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { if (jpvt[i__] != 0) { if (i__ != itemp) { cswap_(m, &a_ref(1, i__), &c__1, &a_ref(1, itemp), &c__1); jpvt[i__] = jpvt[itemp]; jpvt[itemp] = i__; } else { jpvt[i__] = i__; } ++itemp; } else { jpvt[i__] = i__; } /* L10: */ } --itemp; /* Compute the QR factorization and update remaining columns */ if (itemp > 0) { ma = min(itemp,*m); cgeqr2_(m, &ma, &a[a_offset], lda, &tau[1], &work[1], info); if (ma < *n) { i__1 = *n - ma; cunm2r_("Left", "Conjugate transpose", m, &i__1, &ma, &a[a_offset] , lda, &tau[1], &a_ref(1, ma + 1), lda, &work[1], info); } } if (itemp < mn) { /* Initialize partial column norms. The first n elements of work store the exact column norms. */ i__1 = *n; for (i__ = itemp + 1; i__ <= i__1; ++i__) { i__2 = *m - itemp; rwork[i__] = scnrm2_(&i__2, &a_ref(itemp + 1, i__), &c__1); rwork[*n + i__] = rwork[i__]; /* L20: */ } /* Compute factorization */ i__1 = mn; for (i__ = itemp + 1; i__ <= i__1; ++i__) { /* Determine ith pivot column and swap if necessary */ i__2 = *n - i__ + 1; pvt = i__ - 1 + isamax_(&i__2, &rwork[i__], &c__1); if (pvt != i__) { cswap_(m, &a_ref(1, pvt), &c__1, &a_ref(1, i__), &c__1); itemp = jpvt[pvt]; jpvt[pvt] = jpvt[i__]; jpvt[i__] = itemp; rwork[pvt] = rwork[i__]; rwork[*n + pvt] = rwork[*n + i__]; } /* Generate elementary reflector H(i) */ i__2 = a_subscr(i__, i__); aii.r = a[i__2].r, aii.i = a[i__2].i; /* Computing MIN */ i__2 = i__ + 1; i__3 = *m - i__ + 1; clarfg_(&i__3, &aii, &a_ref(min(i__2,*m), i__), &c__1, &tau[i__]); i__2 = a_subscr(i__, i__); a[i__2].r = aii.r, a[i__2].i = aii.i; if (i__ < *n) { /* Apply H(i) to A(i:m,i+1:n) from the left */ i__2 = a_subscr(i__, i__); aii.r = a[i__2].r, aii.i = a[i__2].i; i__2 = a_subscr(i__, i__); a[i__2].r = 1.f, a[i__2].i = 0.f; i__2 = *m - i__ + 1; i__3 = *n - i__; r_cnjg(&q__1, &tau[i__]); clarf_("Left", &i__2, &i__3, &a_ref(i__, i__), &c__1, &q__1, & a_ref(i__, i__ + 1), lda, &work[1]); i__2 = a_subscr(i__, i__); a[i__2].r = aii.r, a[i__2].i = aii.i; } /* Update partial column norms */ i__2 = *n; for (j = i__ + 1; j <= i__2; ++j) { if (rwork[j] != 0.f) { /* Computing 2nd power */ r__1 = c_abs(&a_ref(i__, j)) / rwork[j]; temp = 1.f - r__1 * r__1; temp = dmax(temp,0.f); /* Computing 2nd power */ r__1 = rwork[j] / rwork[*n + j]; temp2 = temp * .05f * (r__1 * r__1) + 1.f; if (temp2 == 1.f) { if (*m - i__ > 0) { i__3 = *m - i__; rwork[j] = scnrm2_(&i__3, &a_ref(i__ + 1, j), & c__1); rwork[*n + j] = rwork[j]; } else { rwork[j] = 0.f; rwork[*n + j] = 0.f; } } else { rwork[j] *= sqrt(temp); } } /* L30: */ } /* L40: */ } } return 0; /* End of CGEQPF */ } /* cgeqpf_ */
/* Subroutine */ int cgeqrf_(integer *m, integer *n, complex *a, integer *lda, complex *tau, complex *work, integer *lwork, integer *info) { /* System generated locals */ integer a_dim1, a_offset, i__1, i__2, i__3, i__4, i__5, i__6; real r__1; /* Local variables */ integer i__, j, k, ib, nb, nt, nx, iws; extern doublereal sceil_(real *); integer nbmin, iinfo; extern /* Subroutine */ int cgeqr2_(integer *, integer *, complex *, integer *, complex *, complex *, integer *), clarfb_(char *, char *, char *, char *, integer *, integer *, integer *, complex *, integer *, complex *, integer *, complex *, integer *, complex *, integer *), clarft_(char *, char * , integer *, integer *, complex *, integer *, complex *, complex * , integer *), xerbla_(char *, integer *); extern integer ilaenv_(integer *, char *, char *, integer *, integer *, integer *, integer *); integer lbwork, llwork, lwkopt; logical lquery; /* -- LAPACK routine (version 3.1) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* March 2008 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* CGEQRF computes a QR factorization of a real M-by-N matrix A: */ /* A = Q * R. */ /* This is the left-looking Level 3 BLAS version of the algorithm. */ /* Arguments */ /* ========= */ /* M (input) INTEGER */ /* The number of rows of the matrix A. M >= 0. */ /* N (input) INTEGER */ /* The number of columns of the matrix A. N >= 0. */ /* A (input/output) COMPLEX array, dimension (LDA,N) */ /* On entry, the M-by-N matrix A. */ /* On exit, the elements on and above the diagonal of the array */ /* contain the min(M,N)-by-N upper trapezoidal matrix R (R is */ /* upper triangular if m >= n); the elements below the diagonal, */ /* with the array TAU, represent the orthogonal matrix Q as a */ /* product of min(m,n) elementary reflectors (see Further */ /* Details). */ /* LDA (input) INTEGER */ /* The leading dimension of the array A. LDA >= max(1,M). */ /* TAU (output) COMPLEX array, dimension (min(M,N)) */ /* The scalar factors of the elementary reflectors (see Further */ /* Details). */ /* WORK (workspace/output) COMPLEX array, dimension (MAX(1,LWORK)) */ /* On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */ /* LWORK (input) INTEGER */ /* The dimension of the array WORK. The dimension can be divided into three parts. */ /* 1) The part for the triangular factor T. If the very last T is not bigger */ /* than any of the rest, then this part is NB x ceiling(K/NB), otherwise, */ /* NB x (K-NT), where K = min(M,N) and NT is the dimension of the very last T */ /* 2) The part for the very last T when T is bigger than any of the rest T. */ /* The size of this part is NT x NT, where NT = K - ceiling ((K-NX)/NB) x NB, */ /* where K = min(M,N), NX is calculated by */ /* NX = MAX( 0, ILAENV( 3, 'CGEQRF', ' ', M, N, -1, -1 ) ) */ /* 3) The part for dlarfb is of size max((N-M)*K, (N-M)*NB, K*NB, NB*NB) */ /* So LWORK = part1 + part2 + part3 */ /* If LWORK = -1, then a workspace query is assumed; the routine */ /* only calculates the optimal size of the WORK array, returns */ /* this value as the first entry of the WORK array, and no error */ /* message related to LWORK is issued by XERBLA. */ /* INFO (output) INTEGER */ /* = 0: successful exit */ /* < 0: if INFO = -i, the i-th argument had an illegal value */ /* Further Details */ /* =============== */ /* The matrix Q is represented as a product of elementary reflectors */ /* Q = H(1) H(2) . . . H(k), where k = min(m,n). */ /* Each H(i) has the form */ /* H(i) = I - tau * v * v' */ /* where tau is a real scalar, and v is a real vector with */ /* v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i), */ /* and tau in TAU(i). */ /* ===================================================================== */ /* .. Local Scalars .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; --tau; --work; /* Function Body */ *info = 0; nbmin = 2; nx = 0; iws = *n; k = min(*m,*n); nb = ilaenv_(&c__1, "CGEQRF", " ", m, n, &c_n1, &c_n1); if (nb > 1 && nb < k) { /* Determine when to cross over from blocked to unblocked code. */ /* Computing MAX */ i__1 = 0, i__2 = ilaenv_(&c__3, "CGEQRF", " ", m, n, &c_n1, &c_n1); nx = max(i__1,i__2); } /* Get NT, the size of the very last T, which is the left-over from in-between K-NX and K to K, eg.: */ /* NB=3 2NB=6 K=10 */ /* | | | */ /* 1--2--3--4--5--6--7--8--9--10 */ /* | \________/ */ /* K-NX=5 NT=4 */ /* So here 4 x 4 is the last T stored in the workspace */ r__1 = (real) (k - nx) / (real) nb; nt = k - sceil_(&r__1) * nb; /* optimal workspace = space for dlarfb + space for normal T's + space for the last T */ /* Computing MAX */ /* Computing MAX */ i__3 = (*n - *m) * k, i__4 = (*n - *m) * nb; /* Computing MAX */ i__5 = k * nb, i__6 = nb * nb; i__1 = max(i__3,i__4), i__2 = max(i__5,i__6); llwork = max(i__1,i__2); r__1 = (real) llwork / (real) nb; llwork = sceil_(&r__1); if (nt > nb) { lbwork = k - nt; /* Optimal workspace for dlarfb = MAX(1,N)*NT */ lwkopt = (lbwork + llwork) * nb; i__1 = lwkopt + nt * nt; work[1].r = (real) i__1, work[1].i = 0.f; } else { r__1 = (real) k / (real) nb; lbwork = sceil_(&r__1) * nb; lwkopt = (lbwork + llwork - nb) * nb; work[1].r = (real) lwkopt, work[1].i = 0.f; } /* Test the input arguments */ lquery = *lwork == -1; if (*m < 0) { *info = -1; } else if (*n < 0) { *info = -2; } else if (*lda < max(1,*m)) { *info = -4; } else if (*lwork < max(1,*n) && ! lquery) { *info = -7; } if (*info != 0) { i__1 = -(*info); xerbla_("CGEQRF", &i__1); return 0; } else if (lquery) { return 0; } /* Quick return if possible */ if (k == 0) { work[1].r = 1.f, work[1].i = 0.f; return 0; } if (nb > 1 && nb < k) { if (nx < k) { /* Determine if workspace is large enough for blocked code. */ if (nt <= nb) { iws = (lbwork + llwork - nb) * nb; } else { iws = (lbwork + llwork) * nb + nt * nt; } if (*lwork < iws) { /* Not enough workspace to use optimal NB: reduce NB and */ /* determine the minimum value of NB. */ if (nt <= nb) { nb = *lwork / (llwork + (lbwork - nb)); } else { nb = (*lwork - nt * nt) / (lbwork + llwork); } /* Computing MAX */ i__1 = 2, i__2 = ilaenv_(&c__2, "CGEQRF", " ", m, n, &c_n1, & c_n1); nbmin = max(i__1,i__2); } } } if (nb >= nbmin && nb < k && nx < k) { /* Use blocked code initially */ i__1 = k - nx; i__2 = nb; for (i__ = 1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__2) { /* Computing MIN */ i__3 = k - i__ + 1; ib = min(i__3,nb); /* Update the current column using old T's */ i__3 = i__ - nb; i__4 = nb; for (j = 1; i__4 < 0 ? j >= i__3 : j <= i__3; j += i__4) { /* Apply H' to A(J:M,I:I+IB-1) from the left */ i__5 = *m - j + 1; clarfb_("Left", "Transpose", "Forward", "Columnwise", &i__5, & ib, &nb, &a[j + j * a_dim1], lda, &work[j], &lbwork, & a[j + i__ * a_dim1], lda, &work[lbwork * nb + nt * nt + 1], &ib); /* L20: */ } /* Compute the QR factorization of the current block */ /* A(I:M,I:I+IB-1) */ i__4 = *m - i__ + 1; cgeqr2_(&i__4, &ib, &a[i__ + i__ * a_dim1], lda, &tau[i__], &work[ lbwork * nb + nt * nt + 1], &iinfo); if (i__ + ib <= *n) { /* Form the triangular factor of the block reflector */ /* H = H(i) H(i+1) . . . H(i+ib-1) */ i__4 = *m - i__ + 1; clarft_("Forward", "Columnwise", &i__4, &ib, &a[i__ + i__ * a_dim1], lda, &tau[i__], &work[i__], &lbwork); } /* L10: */ } } else { i__ = 1; } /* Use unblocked code to factor the last or only block. */ if (i__ <= k) { if (i__ != 1) { i__2 = i__ - nb; i__1 = nb; for (j = 1; i__1 < 0 ? j >= i__2 : j <= i__2; j += i__1) { /* Apply H' to A(J:M,I:K) from the left */ i__4 = *m - j + 1; i__3 = k - i__ + 1; i__5 = k - i__ + 1; clarfb_("Left", "Transpose", "Forward", "Columnwise", &i__4, & i__3, &nb, &a[j + j * a_dim1], lda, &work[j], &lbwork, &a[j + i__ * a_dim1], lda, &work[lbwork * nb + nt * nt + 1], &i__5); /* L30: */ } i__1 = *m - i__ + 1; i__2 = k - i__ + 1; cgeqr2_(&i__1, &i__2, &a[i__ + i__ * a_dim1], lda, &tau[i__], & work[lbwork * nb + nt * nt + 1], &iinfo); } else { /* Use unblocked code to factor the last or only block. */ i__1 = *m - i__ + 1; i__2 = *n - i__ + 1; cgeqr2_(&i__1, &i__2, &a[i__ + i__ * a_dim1], lda, &tau[i__], & work[1], &iinfo); } } /* Apply update to the column M+1:N when N > M */ if (*m < *n && i__ != 1) { /* Form the last triangular factor of the block reflector */ /* H = H(i) H(i+1) . . . H(i+ib-1) */ if (nt <= nb) { i__1 = *m - i__ + 1; i__2 = k - i__ + 1; clarft_("Forward", "Columnwise", &i__1, &i__2, &a[i__ + i__ * a_dim1], lda, &tau[i__], &work[i__], &lbwork); } else { i__1 = *m - i__ + 1; i__2 = k - i__ + 1; clarft_("Forward", "Columnwise", &i__1, &i__2, &a[i__ + i__ * a_dim1], lda, &tau[i__], &work[lbwork * nb + 1], &nt); } /* Apply H' to A(1:M,M+1:N) from the left */ i__1 = k - nx; i__2 = nb; for (j = 1; i__2 < 0 ? j >= i__1 : j <= i__1; j += i__2) { /* Computing MIN */ i__4 = k - j + 1; ib = min(i__4,nb); i__4 = *m - j + 1; i__3 = *n - *m; i__5 = *n - *m; clarfb_("Left", "Transpose", "Forward", "Columnwise", &i__4, & i__3, &ib, &a[j + j * a_dim1], lda, &work[j], &lbwork, &a[ j + (*m + 1) * a_dim1], lda, &work[lbwork * nb + nt * nt + 1], &i__5); /* L40: */ } if (nt <= nb) { i__2 = *m - j + 1; i__1 = *n - *m; i__4 = k - j + 1; i__3 = *n - *m; clarfb_("Left", "Transpose", "Forward", "Columnwise", &i__2, & i__1, &i__4, &a[j + j * a_dim1], lda, &work[j], &lbwork, & a[j + (*m + 1) * a_dim1], lda, &work[lbwork * nb + nt * nt + 1], &i__3); } else { i__2 = *m - j + 1; i__1 = *n - *m; i__4 = k - j + 1; i__3 = *n - *m; clarfb_("Left", "Transpose", "Forward", "Columnwise", &i__2, & i__1, &i__4, &a[j + j * a_dim1], lda, &work[lbwork * nb + 1], &nt, &a[j + (*m + 1) * a_dim1], lda, &work[lbwork * nb + nt * nt + 1], &i__3); } } work[1].r = (real) iws, work[1].i = 0.f; return 0; /* End of CGEQRF */ } /* cgeqrf_ */
int cgeqrf_(int *m, int *n, complex *a, int *lda, complex *tau, complex *work, int *lwork, int *info) { /* System generated locals */ int a_dim1, a_offset, i__1, i__2, i__3, i__4; /* Local variables */ int i__, k, ib, nb, nx, iws, nbmin, iinfo; extern int cgeqr2_(int *, int *, complex *, int *, complex *, complex *, int *), clarfb_(char *, char *, char *, char *, int *, int *, int *, complex *, int *, complex *, int *, complex *, int *, complex *, int *), clarft_(char *, char * , int *, int *, complex *, int *, complex *, complex * , int *), xerbla_(char *, int *); extern int ilaenv_(int *, char *, char *, int *, int *, int *, int *); int ldwork, lwkopt; int lquery; /* -- LAPACK routine (version 3.2) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* CGEQRF computes a QR factorization of a complex M-by-N matrix A: */ /* A = Q * R. */ /* Arguments */ /* ========= */ /* M (input) INTEGER */ /* The number of rows of the matrix A. M >= 0. */ /* N (input) INTEGER */ /* The number of columns of the matrix A. N >= 0. */ /* A (input/output) COMPLEX array, dimension (LDA,N) */ /* On entry, the M-by-N matrix A. */ /* On exit, the elements on and above the diagonal of the array */ /* contain the MIN(M,N)-by-N upper trapezoidal matrix R (R is */ /* upper triangular if m >= n); the elements below the diagonal, */ /* with the array TAU, represent the unitary matrix Q as a */ /* product of MIN(m,n) elementary reflectors (see Further */ /* Details). */ /* LDA (input) INTEGER */ /* The leading dimension of the array A. LDA >= MAX(1,M). */ /* TAU (output) COMPLEX array, dimension (MIN(M,N)) */ /* The scalar factors of the elementary reflectors (see Further */ /* Details). */ /* WORK (workspace/output) COMPLEX array, dimension (MAX(1,LWORK)) */ /* On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */ /* LWORK (input) INTEGER */ /* The dimension of the array WORK. LWORK >= MAX(1,N). */ /* For optimum performance LWORK >= N*NB, where NB is */ /* the optimal blocksize. */ /* If LWORK = -1, then a workspace query is assumed; the routine */ /* only calculates the optimal size of the WORK array, returns */ /* this value as the first entry of the WORK array, and no error */ /* message related to LWORK is issued by XERBLA. */ /* INFO (output) INTEGER */ /* = 0: successful exit */ /* < 0: if INFO = -i, the i-th argument had an illegal value */ /* Further Details */ /* =============== */ /* The matrix Q is represented as a product of elementary reflectors */ /* Q = H(1) H(2) . . . H(k), where k = MIN(m,n). */ /* Each H(i) has the form */ /* H(i) = I - tau * v * v' */ /* where tau is a complex scalar, and v is a complex vector with */ /* v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i), */ /* and tau in TAU(i). */ /* ===================================================================== */ /* .. Local Scalars .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Test the input arguments */ /* Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; --tau; --work; /* Function Body */ *info = 0; nb = ilaenv_(&c__1, "CGEQRF", " ", m, n, &c_n1, &c_n1); lwkopt = *n * nb; work[1].r = (float) lwkopt, work[1].i = 0.f; lquery = *lwork == -1; if (*m < 0) { *info = -1; } else if (*n < 0) { *info = -2; } else if (*lda < MAX(1,*m)) { *info = -4; } else if (*lwork < MAX(1,*n) && ! lquery) { *info = -7; } if (*info != 0) { i__1 = -(*info); xerbla_("CGEQRF", &i__1); return 0; } else if (lquery) { return 0; } /* Quick return if possible */ k = MIN(*m,*n); if (k == 0) { work[1].r = 1.f, work[1].i = 0.f; return 0; } nbmin = 2; nx = 0; iws = *n; if (nb > 1 && nb < k) { /* Determine when to cross over from blocked to unblocked code. */ /* Computing MAX */ i__1 = 0, i__2 = ilaenv_(&c__3, "CGEQRF", " ", m, n, &c_n1, &c_n1); nx = MAX(i__1,i__2); if (nx < k) { /* Determine if workspace is large enough for blocked code. */ ldwork = *n; iws = ldwork * nb; if (*lwork < iws) { /* Not enough workspace to use optimal NB: reduce NB and */ /* determine the minimum value of NB. */ nb = *lwork / ldwork; /* Computing MAX */ i__1 = 2, i__2 = ilaenv_(&c__2, "CGEQRF", " ", m, n, &c_n1, & c_n1); nbmin = MAX(i__1,i__2); } } } if (nb >= nbmin && nb < k && nx < k) { /* Use blocked code initially */ i__1 = k - nx; i__2 = nb; for (i__ = 1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__2) { /* Computing MIN */ i__3 = k - i__ + 1; ib = MIN(i__3,nb); /* Compute the QR factorization of the current block */ /* A(i:m,i:i+ib-1) */ i__3 = *m - i__ + 1; cgeqr2_(&i__3, &ib, &a[i__ + i__ * a_dim1], lda, &tau[i__], &work[ 1], &iinfo); if (i__ + ib <= *n) { /* Form the triangular factor of the block reflector */ /* H = H(i) H(i+1) . . . H(i+ib-1) */ i__3 = *m - i__ + 1; clarft_("Forward", "Columnwise", &i__3, &ib, &a[i__ + i__ * a_dim1], lda, &tau[i__], &work[1], &ldwork); /* Apply H' to A(i:m,i+ib:n) from the left */ i__3 = *m - i__ + 1; i__4 = *n - i__ - ib + 1; clarfb_("Left", "Conjugate transpose", "Forward", "Columnwise" , &i__3, &i__4, &ib, &a[i__ + i__ * a_dim1], lda, & work[1], &ldwork, &a[i__ + (i__ + ib) * a_dim1], lda, &work[ib + 1], &ldwork); } /* L10: */ } } else { i__ = 1; } /* Use unblocked code to factor the last or only block. */ if (i__ <= k) { i__2 = *m - i__ + 1; i__1 = *n - i__ + 1; cgeqr2_(&i__2, &i__1, &a[i__ + i__ * a_dim1], lda, &tau[i__], &work[1] , &iinfo); } work[1].r = (float) iws, work[1].i = 0.f; return 0; /* End of CGEQRF */ } /* cgeqrf_ */
/* Subroutine */ int cerrqr_(char *path, integer *nunit) { /* System generated locals */ integer i__1; real r__1, r__2; complex q__1; /* Builtin functions */ integer s_wsle(cilist *), e_wsle(void); /* Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen); /* Local variables */ static integer info; static complex a[4] /* was [2][2] */, b[2]; static integer i__, j; static complex w[2], x[2]; extern /* Subroutine */ int cgeqr2_(integer *, integer *, complex *, integer *, complex *, complex *, integer *), cung2r_(integer *, integer *, integer *, complex *, integer *, complex *, complex *, integer *), cunm2r_(char *, char *, integer *, integer *, integer *, complex *, integer *, complex *, complex *, integer *, complex *, integer *); static complex af[4] /* was [2][2] */; extern /* Subroutine */ int alaesm_(char *, logical *, integer *), cgeqrf_(integer *, integer *, complex *, integer *, complex *, complex *, integer *, integer *), cgeqrs_(integer *, integer *, integer *, complex *, integer *, complex *, complex *, integer *, complex *, integer *, integer *), chkxer_(char *, integer *, integer *, logical *, logical *), cungqr_(integer *, integer *, integer *, complex *, integer *, complex *, complex *, integer *, integer *), cunmqr_(char *, char *, integer *, integer *, integer *, complex *, integer *, complex *, complex *, integer *, complex *, integer *, integer *); /* Fortran I/O blocks */ static cilist io___1 = { 0, 0, 0, 0, 0 }; #define a_subscr(a_1,a_2) (a_2)*2 + a_1 - 3 #define a_ref(a_1,a_2) a[a_subscr(a_1,a_2)] #define af_subscr(a_1,a_2) (a_2)*2 + a_1 - 3 #define af_ref(a_1,a_2) af[af_subscr(a_1,a_2)] /* -- LAPACK test routine (version 3.0) -- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., Courant Institute, Argonne National Lab, and Rice University February 29, 1992 Purpose ======= CERRQR tests the error exits for the COMPLEX routines that use the QR decomposition of a general matrix. Arguments ========= PATH (input) CHARACTER*3 The LAPACK path name for the routines to be tested. NUNIT (input) INTEGER The unit number for output. ===================================================================== */ infoc_1.nout = *nunit; io___1.ciunit = infoc_1.nout; s_wsle(&io___1); e_wsle(); /* Set the variables to innocuous values. */ for (j = 1; j <= 2; ++j) { for (i__ = 1; i__ <= 2; ++i__) { i__1 = a_subscr(i__, j); r__1 = 1.f / (real) (i__ + j); r__2 = -1.f / (real) (i__ + j); q__1.r = r__1, q__1.i = r__2; a[i__1].r = q__1.r, a[i__1].i = q__1.i; i__1 = af_subscr(i__, j); r__1 = 1.f / (real) (i__ + j); r__2 = -1.f / (real) (i__ + j); q__1.r = r__1, q__1.i = r__2; af[i__1].r = q__1.r, af[i__1].i = q__1.i; /* L10: */ } i__1 = j - 1; b[i__1].r = 0.f, b[i__1].i = 0.f; i__1 = j - 1; w[i__1].r = 0.f, w[i__1].i = 0.f; i__1 = j - 1; x[i__1].r = 0.f, x[i__1].i = 0.f; /* L20: */ } infoc_1.ok = TRUE_; /* Error exits for QR factorization CGEQRF */ s_copy(srnamc_1.srnamt, "CGEQRF", (ftnlen)6, (ftnlen)6); infoc_1.infot = 1; cgeqrf_(&c_n1, &c__0, a, &c__1, b, w, &c__1, &info); chkxer_("CGEQRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; cgeqrf_(&c__0, &c_n1, a, &c__1, b, w, &c__1, &info); chkxer_("CGEQRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 4; cgeqrf_(&c__2, &c__1, a, &c__1, b, w, &c__1, &info); chkxer_("CGEQRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 7; cgeqrf_(&c__1, &c__2, a, &c__1, b, w, &c__1, &info); chkxer_("CGEQRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); /* CGEQR2 */ s_copy(srnamc_1.srnamt, "CGEQR2", (ftnlen)6, (ftnlen)6); infoc_1.infot = 1; cgeqr2_(&c_n1, &c__0, a, &c__1, b, w, &info); chkxer_("CGEQR2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; cgeqr2_(&c__0, &c_n1, a, &c__1, b, w, &info); chkxer_("CGEQR2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 4; cgeqr2_(&c__2, &c__1, a, &c__1, b, w, &info); chkxer_("CGEQR2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); /* CGEQRS */ s_copy(srnamc_1.srnamt, "CGEQRS", (ftnlen)6, (ftnlen)6); infoc_1.infot = 1; cgeqrs_(&c_n1, &c__0, &c__0, a, &c__1, x, b, &c__1, w, &c__1, &info); chkxer_("CGEQRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; cgeqrs_(&c__0, &c_n1, &c__0, a, &c__1, x, b, &c__1, w, &c__1, &info); chkxer_("CGEQRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; cgeqrs_(&c__1, &c__2, &c__0, a, &c__2, x, b, &c__2, w, &c__1, &info); chkxer_("CGEQRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 3; cgeqrs_(&c__0, &c__0, &c_n1, a, &c__1, x, b, &c__1, w, &c__1, &info); chkxer_("CGEQRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 5; cgeqrs_(&c__2, &c__1, &c__0, a, &c__1, x, b, &c__2, w, &c__1, &info); chkxer_("CGEQRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 8; cgeqrs_(&c__2, &c__1, &c__0, a, &c__2, x, b, &c__1, w, &c__1, &info); chkxer_("CGEQRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 10; cgeqrs_(&c__1, &c__1, &c__2, a, &c__1, x, b, &c__1, w, &c__1, &info); chkxer_("CGEQRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); /* CUNGQR */ s_copy(srnamc_1.srnamt, "CUNGQR", (ftnlen)6, (ftnlen)6); infoc_1.infot = 1; cungqr_(&c_n1, &c__0, &c__0, a, &c__1, x, w, &c__1, &info); chkxer_("CUNGQR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; cungqr_(&c__0, &c_n1, &c__0, a, &c__1, x, w, &c__1, &info); chkxer_("CUNGQR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; cungqr_(&c__1, &c__2, &c__0, a, &c__1, x, w, &c__2, &info); chkxer_("CUNGQR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 3; cungqr_(&c__0, &c__0, &c_n1, a, &c__1, x, w, &c__1, &info); chkxer_("CUNGQR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 3; cungqr_(&c__1, &c__1, &c__2, a, &c__1, x, w, &c__1, &info); chkxer_("CUNGQR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 5; cungqr_(&c__2, &c__2, &c__0, a, &c__1, x, w, &c__2, &info); chkxer_("CUNGQR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 8; cungqr_(&c__2, &c__2, &c__0, a, &c__2, x, w, &c__1, &info); chkxer_("CUNGQR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); /* CUNG2R */ s_copy(srnamc_1.srnamt, "CUNG2R", (ftnlen)6, (ftnlen)6); infoc_1.infot = 1; cung2r_(&c_n1, &c__0, &c__0, a, &c__1, x, w, &info); chkxer_("CUNG2R", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; cung2r_(&c__0, &c_n1, &c__0, a, &c__1, x, w, &info); chkxer_("CUNG2R", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; cung2r_(&c__1, &c__2, &c__0, a, &c__1, x, w, &info); chkxer_("CUNG2R", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 3; cung2r_(&c__0, &c__0, &c_n1, a, &c__1, x, w, &info); chkxer_("CUNG2R", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 3; cung2r_(&c__2, &c__1, &c__2, a, &c__2, x, w, &info); chkxer_("CUNG2R", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 5; cung2r_(&c__2, &c__1, &c__0, a, &c__1, x, w, &info); chkxer_("CUNG2R", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); /* CUNMQR */ s_copy(srnamc_1.srnamt, "CUNMQR", (ftnlen)6, (ftnlen)6); infoc_1.infot = 1; cunmqr_("/", "N", &c__0, &c__0, &c__0, a, &c__1, x, af, &c__1, w, &c__1, & info); chkxer_("CUNMQR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; cunmqr_("L", "/", &c__0, &c__0, &c__0, a, &c__1, x, af, &c__1, w, &c__1, & info); chkxer_("CUNMQR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 3; cunmqr_("L", "N", &c_n1, &c__0, &c__0, a, &c__1, x, af, &c__1, w, &c__1, & info); chkxer_("CUNMQR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 4; cunmqr_("L", "N", &c__0, &c_n1, &c__0, a, &c__1, x, af, &c__1, w, &c__1, & info); chkxer_("CUNMQR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 5; cunmqr_("L", "N", &c__0, &c__0, &c_n1, a, &c__1, x, af, &c__1, w, &c__1, & info); chkxer_("CUNMQR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 5; cunmqr_("L", "N", &c__0, &c__1, &c__1, a, &c__1, x, af, &c__1, w, &c__1, & info); chkxer_("CUNMQR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 5; cunmqr_("R", "N", &c__1, &c__0, &c__1, a, &c__1, x, af, &c__1, w, &c__1, & info); chkxer_("CUNMQR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 7; cunmqr_("L", "N", &c__2, &c__1, &c__0, a, &c__1, x, af, &c__2, w, &c__1, & info); chkxer_("CUNMQR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 7; cunmqr_("R", "N", &c__1, &c__2, &c__0, a, &c__1, x, af, &c__1, w, &c__1, & info); chkxer_("CUNMQR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 10; cunmqr_("L", "N", &c__2, &c__1, &c__0, a, &c__2, x, af, &c__1, w, &c__1, & info); chkxer_("CUNMQR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 12; cunmqr_("L", "N", &c__1, &c__2, &c__0, a, &c__1, x, af, &c__1, w, &c__1, & info); chkxer_("CUNMQR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 12; cunmqr_("R", "N", &c__2, &c__1, &c__0, a, &c__1, x, af, &c__2, w, &c__1, & info); chkxer_("CUNMQR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); /* CUNM2R */ s_copy(srnamc_1.srnamt, "CUNM2R", (ftnlen)6, (ftnlen)6); infoc_1.infot = 1; cunm2r_("/", "N", &c__0, &c__0, &c__0, a, &c__1, x, af, &c__1, w, &info); chkxer_("CUNM2R", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; cunm2r_("L", "/", &c__0, &c__0, &c__0, a, &c__1, x, af, &c__1, w, &info); chkxer_("CUNM2R", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 3; cunm2r_("L", "N", &c_n1, &c__0, &c__0, a, &c__1, x, af, &c__1, w, &info); chkxer_("CUNM2R", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 4; cunm2r_("L", "N", &c__0, &c_n1, &c__0, a, &c__1, x, af, &c__1, w, &info); chkxer_("CUNM2R", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 5; cunm2r_("L", "N", &c__0, &c__0, &c_n1, a, &c__1, x, af, &c__1, w, &info); chkxer_("CUNM2R", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 5; cunm2r_("L", "N", &c__0, &c__1, &c__1, a, &c__1, x, af, &c__1, w, &info); chkxer_("CUNM2R", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 5; cunm2r_("R", "N", &c__1, &c__0, &c__1, a, &c__1, x, af, &c__1, w, &info); chkxer_("CUNM2R", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 7; cunm2r_("L", "N", &c__2, &c__1, &c__0, a, &c__1, x, af, &c__2, w, &info); chkxer_("CUNM2R", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 7; cunm2r_("R", "N", &c__1, &c__2, &c__0, a, &c__1, x, af, &c__1, w, &info); chkxer_("CUNM2R", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 10; cunm2r_("L", "N", &c__2, &c__1, &c__0, a, &c__2, x, af, &c__1, w, &info); chkxer_("CUNM2R", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); /* Print a summary line. */ alaesm_(path, &infoc_1.ok, &infoc_1.nout); return 0; /* End of CERRQR */ } /* cerrqr_ */