Beispiel #1
0
void
cgssvx(superlu_options_t *options, SuperMatrix *A, int *perm_c, int *perm_r,
       int *etree, char *equed, float *R, float *C,
       SuperMatrix *L, SuperMatrix *U, void *work, int lwork,
       SuperMatrix *B, SuperMatrix *X, float *recip_pivot_growth,
       float *rcond, float *ferr, float *berr,
       mem_usage_t *mem_usage, SuperLUStat_t *stat, int *info )
{


    DNformat  *Bstore, *Xstore;
    complex    *Bmat, *Xmat;
    int       ldb, ldx, nrhs;
    SuperMatrix *AA;/* A in SLU_NC format used by the factorization routine.*/
    SuperMatrix AC; /* Matrix postmultiplied by Pc */
    int       colequ, equil, nofact, notran, rowequ, permc_spec;
    trans_t   trant;
    char      norm[1];
    int       i, j, info1;
    float    amax, anorm, bignum, smlnum, colcnd, rowcnd, rcmax, rcmin;
    int       relax, panel_size;
    float    diag_pivot_thresh;
    double    t0;      /* temporary time */
    double    *utime;

    /* External functions */
    extern float clangs(char *, SuperMatrix *);

    Bstore = B->Store;
    Xstore = X->Store;
    Bmat   = Bstore->nzval;
    Xmat   = Xstore->nzval;
    ldb    = Bstore->lda;
    ldx    = Xstore->lda;
    nrhs   = B->ncol;

    *info = 0;
    nofact = (options->Fact != FACTORED);
    equil = (options->Equil == YES);
    notran = (options->Trans == NOTRANS);
    if ( nofact ) {
        *(unsigned char *)equed = 'N';
        rowequ = FALSE;
        colequ = FALSE;
    } else {
        rowequ = lsame_(equed, "R") || lsame_(equed, "B");
        colequ = lsame_(equed, "C") || lsame_(equed, "B");
        smlnum = slamch_("Safe minimum");
        bignum = 1. / smlnum;
    }

#if 0
printf("dgssvx: Fact=%4d, Trans=%4d, equed=%c\n",
       options->Fact, options->Trans, *equed);
#endif

    /* Test the input parameters */
    if (!nofact && options->Fact != DOFACT && options->Fact != SamePattern &&
        options->Fact != SamePattern_SameRowPerm &&
        !notran && options->Trans != TRANS && options->Trans != CONJ &&
        !equil && options->Equil != NO)
        *info = -1;
    else if ( A->nrow != A->ncol || A->nrow < 0 ||
              (A->Stype != SLU_NC && A->Stype != SLU_NR) ||
              A->Dtype != SLU_C || A->Mtype != SLU_GE )
        *info = -2;
    else if (options->Fact == FACTORED &&
             !(rowequ || colequ || lsame_(equed, "N")))
        *info = -6;
    else {
        if (rowequ) {
            rcmin = bignum;
            rcmax = 0.;
            for (j = 0; j < A->nrow; ++j) {
                rcmin = SUPERLU_MIN(rcmin, R[j]);
                rcmax = SUPERLU_MAX(rcmax, R[j]);
            }
            if (rcmin <= 0.) *info = -7;
            else if ( A->nrow > 0)
                rowcnd = SUPERLU_MAX(rcmin,smlnum) / SUPERLU_MIN(rcmax,bignum);
            else rowcnd = 1.;
        }
        if (colequ && *info == 0) {
            rcmin = bignum;
            rcmax = 0.;
            for (j = 0; j < A->nrow; ++j) {
                rcmin = SUPERLU_MIN(rcmin, C[j]);
                rcmax = SUPERLU_MAX(rcmax, C[j]);
            }
            if (rcmin <= 0.) *info = -8;
            else if (A->nrow > 0)
                colcnd = SUPERLU_MAX(rcmin,smlnum) / SUPERLU_MIN(rcmax,bignum);
            else colcnd = 1.;
        }
        if (*info == 0) {
            if ( lwork < -1 ) *info = -12;
            else if ( B->ncol < 0 || Bstore->lda < SUPERLU_MAX(0, A->nrow) ||
                      B->Stype != SLU_DN || B->Dtype != SLU_C ||
                      B->Mtype != SLU_GE )
                *info = -13;
            else if ( X->ncol < 0 || Xstore->lda < SUPERLU_MAX(0, A->nrow) ||
                      (B->ncol != 0 && B->ncol != X->ncol) ||
                      X->Stype != SLU_DN ||
                      X->Dtype != SLU_C || X->Mtype != SLU_GE )
                *info = -14;
        }
    }
    if (*info != 0) {
        i = -(*info);
        xerbla_("cgssvx", &i);
        return;
    }

    /* Initialization for factor parameters */
    panel_size = sp_ienv(1);
    relax      = sp_ienv(2);
    diag_pivot_thresh = options->DiagPivotThresh;

    utime = stat->utime;

    /* Convert A to SLU_NC format when necessary. */
    if ( A->Stype == SLU_NR ) {
        NRformat *Astore = A->Store;
        AA = (SuperMatrix *) SUPERLU_MALLOC( sizeof(SuperMatrix) );
        cCreate_CompCol_Matrix(AA, A->ncol, A->nrow, Astore->nnz,
                               Astore->nzval, Astore->colind, Astore->rowptr,
                               SLU_NC, A->Dtype, A->Mtype);
        if ( notran ) { /* Reverse the transpose argument. */
            trant = TRANS;
            notran = 0;
        } else {
            trant = NOTRANS;
            notran = 1;
        }
    } else { /* A->Stype == SLU_NC */
        trant = options->Trans;
        AA = A;
    }

    if ( nofact && equil ) {
        t0 = SuperLU_timer_();
        /* Compute row and column scalings to equilibrate the matrix A. */
        cgsequ(AA, R, C, &rowcnd, &colcnd, &amax, &info1);

        if ( info1 == 0 ) {
            /* Equilibrate matrix A. */
            claqgs(AA, R, C, rowcnd, colcnd, amax, equed);
            rowequ = lsame_(equed, "R") || lsame_(equed, "B");
            colequ = lsame_(equed, "C") || lsame_(equed, "B");
        }
        utime[EQUIL] = SuperLU_timer_() - t0;
    }


    if ( nofact ) {

        t0 = SuperLU_timer_();
        /*
         * Gnet column permutation vector perm_c[], according to permc_spec:
         *   permc_spec = NATURAL:  natural ordering
         *   permc_spec = MMD_AT_PLUS_A: minimum degree on structure of A'+A
         *   permc_spec = MMD_ATA:  minimum degree on structure of A'*A
         *   permc_spec = COLAMD:   approximate minimum degree column ordering
         *   permc_spec = MY_PERMC: the ordering already supplied in perm_c[]
         */
        permc_spec = options->ColPerm;
        if ( permc_spec != MY_PERMC && options->Fact == DOFACT )
            get_perm_c(permc_spec, AA, perm_c);
        utime[COLPERM] = SuperLU_timer_() - t0;

        t0 = SuperLU_timer_();
        sp_preorder(options, AA, perm_c, etree, &AC);
        utime[ETREE] = SuperLU_timer_() - t0;

/*      printf("Factor PA = LU ... relax %d\tw %d\tmaxsuper %d\trowblk %d\n",
               relax, panel_size, sp_ienv(3), sp_ienv(4));
        fflush(stdout); */

        /* Compute the LU factorization of A*Pc. */
        t0 = SuperLU_timer_();
        cgstrf(options, &AC, relax, panel_size, etree,
                work, lwork, perm_c, perm_r, L, U, stat, info);
        utime[FACT] = SuperLU_timer_() - t0;

        if ( lwork == -1 ) {
            mem_usage->total_needed = *info - A->ncol;
            return;
        }
    }

    if ( options->PivotGrowth ) {
        if ( *info > 0 ) {
            if ( *info <= A->ncol ) {
                /* Compute the reciprocal pivot growth factor of the leading
                   rank-deficient *info columns of A. */
                *recip_pivot_growth = cPivotGrowth(*info, AA, perm_c, L, U);
            }
            return;
        }

        /* Compute the reciprocal pivot growth factor *recip_pivot_growth. */
        *recip_pivot_growth = cPivotGrowth(A->ncol, AA, perm_c, L, U);
    }

    if ( options->ConditionNumber ) {
        /* Estimate the reciprocal of the condition number of A. */
        t0 = SuperLU_timer_();
        if ( notran ) {
            *(unsigned char *)norm = '1';
        } else {
            *(unsigned char *)norm = 'I';
        }
        anorm = clangs(norm, AA);
        cgscon(norm, L, U, anorm, rcond, stat, info);
        utime[RCOND] = SuperLU_timer_() - t0;
    }

    if ( nrhs > 0 ) {
        /* Scale the right hand side if equilibration was performed. */
        if ( notran ) {
            if ( rowequ ) {
                for (j = 0; j < nrhs; ++j)
                    for (i = 0; i < A->nrow; ++i)
                        cs_mult(&Bmat[i+j*ldb], &Bmat[i+j*ldb], R[i]);
            }
        } else if ( colequ ) {
            for (j = 0; j < nrhs; ++j)
                for (i = 0; i < A->nrow; ++i)
                    cs_mult(&Bmat[i+j*ldb], &Bmat[i+j*ldb], C[i]);
        }

        /* Compute the solution matrix X. */
        for (j = 0; j < nrhs; j++)  /* Save a copy of the right hand sides */
            for (i = 0; i < B->nrow; i++)
                Xmat[i + j*ldx] = Bmat[i + j*ldb];

        t0 = SuperLU_timer_();
        cgstrs (trant, L, U, perm_c, perm_r, X, stat, info);
        utime[SOLVE] = SuperLU_timer_() - t0;

        /* Use iterative refinement to improve the computed solution and compute
           error bounds and backward error estimates for it. */
        t0 = SuperLU_timer_();
        if ( options->IterRefine != NOREFINE ) {
            cgsrfs(trant, AA, L, U, perm_c, perm_r, equed, R, C, B,
                   X, ferr, berr, stat, info);
        } else {
            for (j = 0; j < nrhs; ++j) ferr[j] = berr[j] = 1.0;
        }
        utime[REFINE] = SuperLU_timer_() - t0;

        /* Transform the solution matrix X to a solution of the original system. */
        if ( notran ) {
            if ( colequ ) {
                for (j = 0; j < nrhs; ++j)
                    for (i = 0; i < A->nrow; ++i)
                        cs_mult(&Xmat[i+j*ldx], &Xmat[i+j*ldx], C[i]);
            }
        } else if ( rowequ ) {
            for (j = 0; j < nrhs; ++j)
                for (i = 0; i < A->nrow; ++i)
                    cs_mult(&Xmat[i+j*ldx], &Xmat[i+j*ldx], R[i]);
        }
    } /* end if nrhs > 0 */

    if ( options->ConditionNumber ) {
        /* Set INFO = A->ncol+1 if the matrix is singular to working precision. */
        if ( *rcond < slamch_("E") ) *info = A->ncol + 1;
    }

    if ( nofact ) {
        cQuerySpace(L, U, mem_usage);
        Destroy_CompCol_Permuted(&AC);
    }
    if ( A->Stype == SLU_NR ) {
        Destroy_SuperMatrix_Store(AA);
        SUPERLU_FREE(AA);
    }

}
Beispiel #2
0
void
cgssv(superlu_options_t *options, SuperMatrix *A, int *perm_c, int *perm_r,
      SuperMatrix *L, SuperMatrix *U, SuperMatrix *B,
      SuperLUStat_t *stat, int *info )
{

    DNformat *Bstore;
    SuperMatrix *AA;/* A in SLU_NC format used by the factorization routine.*/
    SuperMatrix AC; /* Matrix postmultiplied by Pc */
    int      lwork = 0, *etree, i;
    
    /* Set default values for some parameters */
    int      panel_size;     /* panel size */
    int      relax;          /* no of columns in a relaxed snodes */
    int      permc_spec;
    trans_t  trans = NOTRANS;
    double   *utime;
    double   t;	/* Temporary time */

    /* Test the input parameters ... */
    *info = 0;
    Bstore = B->Store;
    if ( options->Fact != DOFACT ) *info = -1;
    else if ( A->nrow != A->ncol || A->nrow < 0 ||
	 (A->Stype != SLU_NC && A->Stype != SLU_NR) ||
	 A->Dtype != SLU_C || A->Mtype != SLU_GE )
	*info = -2;
    else if ( B->ncol < 0 || Bstore->lda < SUPERLU_MAX(0, A->nrow) ||
	B->Stype != SLU_DN || B->Dtype != SLU_C || B->Mtype != SLU_GE )
	*info = -7;
    if ( *info != 0 ) {
	i = -(*info);
	xerbla_("cgssv", &i);
	return;
    }

    utime = stat->utime;

    /* Convert A to SLU_NC format when necessary. */
    if ( A->Stype == SLU_NR ) {
	NRformat *Astore = A->Store;
	AA = (SuperMatrix *) SUPERLU_MALLOC( sizeof(SuperMatrix) );
	cCreate_CompCol_Matrix(AA, A->ncol, A->nrow, Astore->nnz, 
			       Astore->nzval, Astore->colind, Astore->rowptr,
			       SLU_NC, A->Dtype, A->Mtype);
	trans = TRANS;
    } else {
        if ( A->Stype == SLU_NC ) AA = A;
    }

    t = SuperLU_timer_();
    /*
     * Get column permutation vector perm_c[], according to permc_spec:
     *   permc_spec = NATURAL:  natural ordering 
     *   permc_spec = MMD_AT_PLUS_A: minimum degree on structure of A'+A
     *   permc_spec = MMD_ATA:  minimum degree on structure of A'*A
     *   permc_spec = COLAMD:   approximate minimum degree column ordering
     *   permc_spec = MY_PERMC: the ordering already supplied in perm_c[]
     */
    permc_spec = options->ColPerm;
    if ( permc_spec != MY_PERMC && options->Fact == DOFACT )
      get_perm_c(permc_spec, AA, perm_c);
    utime[COLPERM] = SuperLU_timer_() - t;

    etree = intMalloc(A->ncol);

    t = SuperLU_timer_();
    sp_preorder(options, AA, perm_c, etree, &AC);
    utime[ETREE] = SuperLU_timer_() - t;

    panel_size = sp_ienv(1);
    relax = sp_ienv(2);

    /*printf("Factor PA = LU ... relax %d\tw %d\tmaxsuper %d\trowblk %d\n", 
	  relax, panel_size, sp_ienv(3), sp_ienv(4));*/
    t = SuperLU_timer_(); 
    /* Compute the LU factorization of A. */
    cgstrf(options, &AC, relax, panel_size, etree,
            NULL, lwork, perm_c, perm_r, L, U, stat, info);
    utime[FACT] = SuperLU_timer_() - t;

    t = SuperLU_timer_();
    if ( *info == 0 ) {
        /* Solve the system A*X=B, overwriting B with X. */
        cgstrs (trans, L, U, perm_c, perm_r, B, stat, info);
    }
    utime[SOLVE] = SuperLU_timer_() - t;

    SUPERLU_FREE (etree);
    Destroy_CompCol_Permuted(&AC);
    if ( A->Stype == SLU_NR ) {
	Destroy_SuperMatrix_Store(AA);
	SUPERLU_FREE(AA);
    }

}
void
cgssv(SuperMatrix *A, int *perm_c, int *perm_r, SuperMatrix *L,
      SuperMatrix *U, SuperMatrix *B, int *info )
{
/*
 * Purpose
 * =======
 *
 * CGSSV solves the system of linear equations A*X=B, using the
 * LU factorization from CGSTRF. It performs the following steps:
 *
 *   1. If A is stored column-wise (A->Stype = NC):
 *
 *      1.1. Permute the columns of A, forming A*Pc, where Pc
 *           is a permutation matrix. For more details of this step, 
 *           see sp_preorder.c.
 *
 *      1.2. Factor A as Pr*A*Pc=L*U with the permutation Pr determined
 *           by Gaussian elimination with partial pivoting.
 *           L is unit lower triangular with offdiagonal entries
 *           bounded by 1 in magnitude, and U is upper triangular.
 *
 *      1.3. Solve the system of equations A*X=B using the factored
 *           form of A.
 *
 *   2. If A is stored row-wise (A->Stype = NR), apply the
 *      above algorithm to the transpose of A:
 *
 *      2.1. Permute columns of transpose(A) (rows of A),
 *           forming transpose(A)*Pc, where Pc is a permutation matrix. 
 *           For more details of this step, see sp_preorder.c.
 *
 *      2.2. Factor A as Pr*transpose(A)*Pc=L*U with the permutation Pr
 *           determined by Gaussian elimination with partial pivoting.
 *           L is unit lower triangular with offdiagonal entries
 *           bounded by 1 in magnitude, and U is upper triangular.
 *
 *      2.3. Solve the system of equations A*X=B using the factored
 *           form of A.
 *
 *   See supermatrix.h for the definition of 'SuperMatrix' structure.
 * 
 * Arguments
 * =========
 *
 * A       (input) SuperMatrix*
 *         Matrix A in A*X=B, of dimension (A->nrow, A->ncol). The number
 *         of linear equations is A->nrow. Currently, the type of A can be:
 *         Stype = NC or NR; Dtype = _C; Mtype = GE. In the future, more
 *         general A will be handled.
 *
 * perm_c  (input/output) int*
 *         If A->Stype = NC, column permutation vector of size A->ncol
 *         which defines the permutation matrix Pc; perm_c[i] = j means 
 *         column i of A is in position j in A*Pc.
 *         On exit, perm_c may be overwritten by the product of the input
 *         perm_c and a permutation that postorders the elimination tree
 *         of Pc'*A'*A*Pc; perm_c is not changed if the elimination tree
 *         is already in postorder.
 *
 *         If A->Stype = NR, column permutation vector of size A->nrow
 *         which describes permutation of columns of transpose(A) 
 *         (rows of A) as described above.
 * 
 * perm_r  (output) int*
 *         If A->Stype = NC, row permutation vector of size A->nrow, 
 *         which defines the permutation matrix Pr, and is determined 
 *         by partial pivoting.  perm_r[i] = j means row i of A is in 
 *         position j in Pr*A.
 *
 *         If A->Stype = NR, permutation vector of size A->ncol, which
 *         determines permutation of rows of transpose(A)
 *         (columns of A) as described above.
 *
 * L       (output) SuperMatrix*
 *         The factor L from the factorization 
 *             Pr*A*Pc=L*U              (if A->Stype = NC) or
 *             Pr*transpose(A)*Pc=L*U   (if A->Stype = NR).
 *         Uses compressed row subscripts storage for supernodes, i.e.,
 *         L has types: Stype = SC, Dtype = _C, Mtype = TRLU.
 *         
 * U       (output) SuperMatrix*
 *	   The factor U from the factorization 
 *             Pr*A*Pc=L*U              (if A->Stype = NC) or
 *             Pr*transpose(A)*Pc=L*U   (if A->Stype = NR).
 *         Uses column-wise storage scheme, i.e., U has types:
 *         Stype = NC, Dtype = _C, Mtype = TRU.
 *
 * B       (input/output) SuperMatrix*
 *         B has types: Stype = DN, Dtype = _C, Mtype = GE.
 *         On entry, the right hand side matrix.
 *         On exit, the solution matrix if info = 0;
 *
 * info    (output) int*
 *	   = 0: successful exit
 *         > 0: if info = i, and i is
 *             <= A->ncol: U(i,i) is exactly zero. The factorization has
 *                been completed, but the factor U is exactly singular,
 *                so the solution could not be computed.
 *             > A->ncol: number of bytes allocated when memory allocation
 *                failure occurred, plus A->ncol.
 *   
 */
    double   t1;	/* Temporary time */
    char     refact[1], trans[1];
    DNformat *Bstore;
    SuperMatrix *AA; /* A in NC format used by the factorization routine.*/
    SuperMatrix AC; /* Matrix postmultiplied by Pc */
    int      lwork = 0, *etree, i;
    
    /* Set default values for some parameters */
    float   diag_pivot_thresh = 1.0;
    float   drop_tol = 0;
    int      panel_size;     /* panel size */
    int      relax;          /* no of columns in a relaxed snodes */
    double   *utime;
    extern SuperLUStat_t SuperLUStat;

    /* Test the input parameters ... */
    *info = 0;
    Bstore = B->Store;
    if ( A->nrow != A->ncol || A->nrow < 0 ||
	 (A->Stype != NC && A->Stype != NR) ||
	 A->Dtype != _C || A->Mtype != GE )
	*info = -1;
    else if ( B->ncol < 0 || Bstore->lda < MAX(0, A->nrow) ||
	B->Stype != DN || B->Dtype != _C || B->Mtype != GE )
	*info = -6;
    if ( *info != 0 ) {
	i = -(*info);
	xerbla_("cgssv", &i);
	return;
    }
    
    *refact = 'N';
    *trans = 'N';
    panel_size = sp_ienv(1);
    relax = sp_ienv(2);

    StatInit(panel_size, relax);
    utime = SuperLUStat.utime;
 
    /* Convert A to NC format when necessary. */
    if ( A->Stype == NR ) {
	NRformat *Astore = A->Store;
	AA = (SuperMatrix *) SUPERLU_MALLOC( sizeof(SuperMatrix) );
	cCreate_CompCol_Matrix(AA, A->ncol, A->nrow, Astore->nnz, 
			       Astore->nzval, Astore->colind, Astore->rowptr,
			       NC, A->Dtype, A->Mtype);
	*trans = 'T';
    } else if ( A->Stype == NC ) AA = A;

    etree = intMalloc(A->ncol);

    t1 = SuperLU_timer_();
    sp_preorder(refact, AA, perm_c, etree, &AC);
    utime[ETREE] = SuperLU_timer_() - t1;

    /*printf("Factor PA = LU ... relax %d\tw %d\tmaxsuper %d\trowblk %d\n", 
	  relax, panel_size, sp_ienv(3), sp_ienv(4));*/
    t1 = SuperLU_timer_(); 
    /* Compute the LU factorization of A. */
    cgstrf(refact, &AC, diag_pivot_thresh, drop_tol, relax, panel_size,
	   etree, NULL, lwork, perm_r, perm_c, L, U, info);
    utime[FACT] = SuperLU_timer_() - t1;

    t1 = SuperLU_timer_();
    if ( *info == 0 ) {
        /* Solve the system A*X=B, overwriting B with X. */
        cgstrs (trans, L, U, perm_r, perm_c, B, info);
    }
    utime[SOLVE] = SuperLU_timer_() - t1;

    SUPERLU_FREE (etree);
    Destroy_CompCol_Permuted(&AC);
    if ( A->Stype == NR ) {
	Destroy_SuperMatrix_Store(AA);
	SUPERLU_FREE(AA);
    }

/*    PrintStat( &SuperLUStat );*/
    StatFree();

}
Beispiel #4
0
main(int argc, char *argv[])
{
/* 
 * Purpose
 * =======
 *
 * CDRIVE is the main test program for the COMPLEX linear 
 * equation driver routines CGSSV and CGSSVX.
 * 
 * The program is invoked by a shell script file -- ctest.csh.
 * The output from the tests are written into a file -- ctest.out.
 *
 * =====================================================================
 */
    complex         *a, *a_save;
    int            *asub, *asub_save;
    int            *xa, *xa_save;
    SuperMatrix  A, B, X, L, U;
    SuperMatrix  ASAV, AC;
    GlobalLU_t   Glu; /* Not needed on return. */
    mem_usage_t    mem_usage;
    int            *perm_r; /* row permutation from partial pivoting */
    int            *perm_c, *pc_save; /* column permutation */
    int            *etree;
    complex  zero = {0.0, 0.0};
    float         *R, *C;
    float         *ferr, *berr;
    float         *rwork;
    complex	   *wwork;
    void           *work;
    int            info, lwork, nrhs, panel_size, relax;
    int            m, n, nnz;
    complex         *xact;
    complex         *rhsb, *solx, *bsav;
    int            ldb, ldx;
    float         rpg, rcond;
    int            i, j, k1;
    float         rowcnd, colcnd, amax;
    int            maxsuper, rowblk, colblk;
    int            prefact, nofact, equil, iequed;
    int            nt, nrun, nfail, nerrs, imat, fimat, nimat;
    int            nfact, ifact, itran;
    int            kl, ku, mode, lda;
    int            zerot, izero, ioff;
    double         u;
    float         anorm, cndnum;
    complex         *Afull;
    float         result[NTESTS];
    superlu_options_t options;
    fact_t         fact;
    trans_t        trans;
    SuperLUStat_t  stat;
    static char    matrix_type[8];
    static char    equed[1], path[4], sym[1], dist[1];
    FILE           *fp;

    /* Fixed set of parameters */
    int            iseed[]  = {1988, 1989, 1990, 1991};
    static char    equeds[]  = {'N', 'R', 'C', 'B'};
    static fact_t  facts[] = {FACTORED, DOFACT, SamePattern,
			      SamePattern_SameRowPerm};
    static trans_t transs[]  = {NOTRANS, TRANS, CONJ};

    /* Some function prototypes */ 
    extern int cgst01(int, int, SuperMatrix *, SuperMatrix *, 
		      SuperMatrix *, int *, int *, float *);
    extern int cgst02(trans_t, int, int, int, SuperMatrix *, complex *,
                      int, complex *, int, float *resid);
    extern int cgst04(int, int, complex *, int, 
                      complex *, int, float rcond, float *resid);
    extern int cgst07(trans_t, int, int, SuperMatrix *, complex *, int,
                         complex *, int, complex *, int, 
                         float *, float *, float *);
    extern int clatb4_(char *, int *, int *, int *, char *, int *, int *, 
	               float *, int *, float *, char *);
    extern int clatms_(int *, int *, char *, int *, char *, float *d,
                       int *, float *, float *, int *, int *,
                       char *, complex *, int *, complex *, int *);
    extern int sp_cconvert(int, int, complex *, int, int, int,
	                   complex *a, int *, int *, int *);


    /* Executable statements */

    strcpy(path, "CGE");
    nrun  = 0;
    nfail = 0;
    nerrs = 0;

    /* Defaults */
    lwork      = 0;
    n          = 1;
    nrhs       = 1;
    panel_size = sp_ienv(1);
    relax      = sp_ienv(2);
    u          = 1.0;
    strcpy(matrix_type, "LA");
    parse_command_line(argc, argv, matrix_type, &n,
		       &panel_size, &relax, &nrhs, &maxsuper,
		       &rowblk, &colblk, &lwork, &u, &fp);
    if ( lwork > 0 ) {
	work = SUPERLU_MALLOC(lwork);
	if ( !work ) {
	    fprintf(stderr, "expert: cannot allocate %d bytes\n", lwork);
	    exit (-1);
	}
    }

    /* Set the default input options. */
    set_default_options(&options);
    options.DiagPivotThresh = u;
    options.PrintStat = NO;
    options.PivotGrowth = YES;
    options.ConditionNumber = YES;
    options.IterRefine = SLU_SINGLE;
    
    if ( strcmp(matrix_type, "LA") == 0 ) {
	/* Test LAPACK matrix suite. */
	m = n;
	lda = SUPERLU_MAX(n, 1);
	nnz = n * n;        /* upper bound */
	fimat = 1;
	nimat = NTYPES;
	Afull = complexCalloc(lda * n);
	callocateA(n, nnz, &a, &asub, &xa);
    } else {
	/* Read a sparse matrix */
	fimat = nimat = 0;
	creadhb(fp, &m, &n, &nnz, &a, &asub, &xa);
    }

    callocateA(n, nnz, &a_save, &asub_save, &xa_save);
    rhsb = complexMalloc(m * nrhs);
    bsav = complexMalloc(m * nrhs);
    solx = complexMalloc(n * nrhs);
    ldb  = m;
    ldx  = n;
    cCreate_Dense_Matrix(&B, m, nrhs, rhsb, ldb, SLU_DN, SLU_C, SLU_GE);
    cCreate_Dense_Matrix(&X, n, nrhs, solx, ldx, SLU_DN, SLU_C, SLU_GE);
    xact = complexMalloc(n * nrhs);
    etree   = intMalloc(n);
    perm_r  = intMalloc(n);
    perm_c  = intMalloc(n);
    pc_save = intMalloc(n);
    R       = (float *) SUPERLU_MALLOC(m*sizeof(float));
    C       = (float *) SUPERLU_MALLOC(n*sizeof(float));
    ferr    = (float *) SUPERLU_MALLOC(nrhs*sizeof(float));
    berr    = (float *) SUPERLU_MALLOC(nrhs*sizeof(float));
    j = SUPERLU_MAX(m,n) * SUPERLU_MAX(4,nrhs);    
    rwork   = (float *) SUPERLU_MALLOC(j*sizeof(float));
    for (i = 0; i < j; ++i) rwork[i] = 0.;
    if ( !R ) ABORT("SUPERLU_MALLOC fails for R");
    if ( !C ) ABORT("SUPERLU_MALLOC fails for C");
    if ( !ferr ) ABORT("SUPERLU_MALLOC fails for ferr");
    if ( !berr ) ABORT("SUPERLU_MALLOC fails for berr");
    if ( !rwork ) ABORT("SUPERLU_MALLOC fails for rwork");
    wwork   = complexCalloc( SUPERLU_MAX(m,n) * SUPERLU_MAX(4,nrhs) );

    for (i = 0; i < n; ++i) perm_c[i] = pc_save[i] = i;
    options.ColPerm = MY_PERMC;

    for (imat = fimat; imat <= nimat; ++imat) { /* All matrix types */
	
	if ( imat ) {

	    /* Skip types 5, 6, or 7 if the matrix size is too small. */
	    zerot = (imat >= 5 && imat <= 7);
	    if ( zerot && n < imat-4 )
		continue;
	    
	    /* Set up parameters with CLATB4 and generate a test matrix
	       with CLATMS.  */
	    clatb4_(path, &imat, &n, &n, sym, &kl, &ku, &anorm, &mode,
		    &cndnum, dist);

	    clatms_(&n, &n, dist, iseed, sym, &rwork[0], &mode, &cndnum,
		    &anorm, &kl, &ku, "No packing", Afull, &lda,
		    &wwork[0], &info);

	    if ( info ) {
		printf(FMT3, "CLATMS", info, izero, n, nrhs, imat, nfail);
		continue;
	    }

	    /* For types 5-7, zero one or more columns of the matrix
	       to test that INFO is returned correctly.   */
	    if ( zerot ) {
		if ( imat == 5 ) izero = 1;
		else if ( imat == 6 ) izero = n;
		else izero = n / 2 + 1;
		ioff = (izero - 1) * lda;
		if ( imat < 7 ) {
		    for (i = 0; i < n; ++i) Afull[ioff + i] = zero;
		} else {
		    for (j = 0; j < n - izero + 1; ++j)
			for (i = 0; i < n; ++i)
			    Afull[ioff + i + j*lda] = zero;
		}
	    } else {
		izero = 0;
	    }

	    /* Convert to sparse representation. */
	    sp_cconvert(n, n, Afull, lda, kl, ku, a, asub, xa, &nnz);

	} else {
	    izero = 0;
	    zerot = 0;
	}
	
	cCreate_CompCol_Matrix(&A, m, n, nnz, a, asub, xa, SLU_NC, SLU_C, SLU_GE);

	/* Save a copy of matrix A in ASAV */
	cCreate_CompCol_Matrix(&ASAV, m, n, nnz, a_save, asub_save, xa_save,
			      SLU_NC, SLU_C, SLU_GE);
	cCopy_CompCol_Matrix(&A, &ASAV);
	
	/* Form exact solution. */
	cGenXtrue(n, nrhs, xact, ldx);
	
	StatInit(&stat);

	for (iequed = 0; iequed < 4; ++iequed) {
	    *equed = equeds[iequed];
	    if (iequed == 0) nfact = 4;
	    else nfact = 1; /* Only test factored, pre-equilibrated matrix */

	    for (ifact = 0; ifact < nfact; ++ifact) {
		fact = facts[ifact];
		options.Fact = fact;

		for (equil = 0; equil < 2; ++equil) {
		    options.Equil = equil;
		    prefact   = ( options.Fact == FACTORED ||
				  options.Fact == SamePattern_SameRowPerm );
                                /* Need a first factor */
		    nofact    = (options.Fact != FACTORED);  /* Not factored */

		    /* Restore the matrix A. */
		    cCopy_CompCol_Matrix(&ASAV, &A);
			
		    if ( zerot ) {
                        if ( prefact ) continue;
		    } else if ( options.Fact == FACTORED ) {
                        if ( equil || iequed ) {
			    /* Compute row and column scale factors to
			       equilibrate matrix A.    */
			    cgsequ(&A, R, C, &rowcnd, &colcnd, &amax, &info);

			    /* Force equilibration. */
			    if ( !info && n > 0 ) {
				if ( lsame_(equed, "R") ) {
				    rowcnd = 0.;
				    colcnd = 1.;
				} else if ( lsame_(equed, "C") ) {
				    rowcnd = 1.;
				    colcnd = 0.;
				} else if ( lsame_(equed, "B") ) {
				    rowcnd = 0.;
				    colcnd = 0.;
				}
			    }
			
			    /* Equilibrate the matrix. */
			    claqgs(&A, R, C, rowcnd, colcnd, amax, equed);
			}
		    }
		    
		    if ( prefact ) { /* Need a factor for the first time */
			
		        /* Save Fact option. */
		        fact = options.Fact;
			options.Fact = DOFACT;

			/* Preorder the matrix, obtain the column etree. */
			sp_preorder(&options, &A, perm_c, etree, &AC);

			/* Factor the matrix AC. */
			cgstrf(&options, &AC, relax, panel_size,
                               etree, work, lwork, perm_c, perm_r, &L, &U,
                               &Glu, &stat, &info);

			if ( info ) { 
                            printf("** First factor: info %d, equed %c\n",
				   info, *equed);
                            if ( lwork == -1 ) {
                                printf("** Estimated memory: %d bytes\n",
                                        info - n);
                                exit(0);
                            }
                        }
	
                        Destroy_CompCol_Permuted(&AC);
			
		        /* Restore Fact option. */
			options.Fact = fact;
		    } /* if .. first time factor */
		    
		    for (itran = 0; itran < NTRAN; ++itran) {
			trans = transs[itran];
                        options.Trans = trans;

			/* Restore the matrix A. */
			cCopy_CompCol_Matrix(&ASAV, &A);
			
 			/* Set the right hand side. */
			cFillRHS(trans, nrhs, xact, ldx, &A, &B);
			cCopy_Dense_Matrix(m, nrhs, rhsb, ldb, bsav, ldb);

			/*----------------
			 * Test cgssv
			 *----------------*/
			if ( options.Fact == DOFACT && itran == 0) {
                            /* Not yet factored, and untransposed */
	
			    cCopy_Dense_Matrix(m, nrhs, rhsb, ldb, solx, ldx);
			    cgssv(&options, &A, perm_c, perm_r, &L, &U, &X,
                                  &stat, &info);
			    
			    if ( info && info != izero ) {
                                printf(FMT3, "cgssv",
				       info, izero, n, nrhs, imat, nfail);
			    } else {
                                /* Reconstruct matrix from factors and
	                           compute residual. */
                                cgst01(m, n, &A, &L, &U, perm_c, perm_r,
                                         &result[0]);
				nt = 1;
				if ( izero == 0 ) {
				    /* Compute residual of the computed
				       solution. */
				    cCopy_Dense_Matrix(m, nrhs, rhsb, ldb,
						       wwork, ldb);
				    cgst02(trans, m, n, nrhs, &A, solx,
                                              ldx, wwork,ldb, &result[1]);
				    nt = 2;
				}
				
				/* Print information about the tests that
				   did not pass the threshold.      */
				for (i = 0; i < nt; ++i) {
				    if ( result[i] >= THRESH ) {
					printf(FMT1, "cgssv", n, i,
					       result[i]);
					++nfail;
				    }
				}
				nrun += nt;
			    } /* else .. info == 0 */

			    /* Restore perm_c. */
			    for (i = 0; i < n; ++i) perm_c[i] = pc_save[i];

		            if (lwork == 0) {
			        Destroy_SuperNode_Matrix(&L);
			        Destroy_CompCol_Matrix(&U);
			    }
			} /* if .. end of testing cgssv */
    
			/*----------------
			 * Test cgssvx
			 *----------------*/
    
			/* Equilibrate the matrix if fact = FACTORED and
			   equed = 'R', 'C', or 'B'.   */
			if ( options.Fact == FACTORED &&
			     (equil || iequed) && n > 0 ) {
			    claqgs(&A, R, C, rowcnd, colcnd, amax, equed);
			}
			
			/* Solve the system and compute the condition number
			   and error bounds using cgssvx.      */
			cgssvx(&options, &A, perm_c, perm_r, etree,
                               equed, R, C, &L, &U, work, lwork, &B, &X, &rpg,
                               &rcond, ferr, berr, &Glu,
			       &mem_usage, &stat, &info);

			if ( info && info != izero ) {
			    printf(FMT3, "cgssvx",
				   info, izero, n, nrhs, imat, nfail);
                            if ( lwork == -1 ) {
                                printf("** Estimated memory: %.0f bytes\n",
                                        mem_usage.total_needed);
                                exit(0);
                            }
			} else {
			    if ( !prefact ) {
			    	/* Reconstruct matrix from factors and
	 			   compute residual. */
                                cgst01(m, n, &A, &L, &U, perm_c, perm_r,
                                         &result[0]);
				k1 = 0;
			    } else {
			   	k1 = 1;
			    }

			    if ( !info ) {
				/* Compute residual of the computed solution.*/
				cCopy_Dense_Matrix(m, nrhs, bsav, ldb,
						  wwork, ldb);
				cgst02(trans, m, n, nrhs, &ASAV, solx, ldx,
					  wwork, ldb, &result[1]);

				/* Check solution from generated exact
				   solution. */
				cgst04(n, nrhs, solx, ldx, xact, ldx, rcond,
					  &result[2]);

				/* Check the error bounds from iterative
				   refinement. */
				cgst07(trans, n, nrhs, &ASAV, bsav, ldb,
					  solx, ldx, xact, ldx, ferr, berr,
					  &result[3]);

				/* Print information about the tests that did
				   not pass the threshold.    */
				for (i = k1; i < NTESTS; ++i) {
				    if ( result[i] >= THRESH ) {
					printf(FMT2, "cgssvx",
					       options.Fact, trans, *equed,
					       n, imat, i, result[i]);
					++nfail;
				    }
				}
				nrun += NTESTS;
			    } /* if .. info == 0 */
			} /* else .. end of testing cgssvx */

		    } /* for itran ... */

		    if ( lwork == 0 ) {
			Destroy_SuperNode_Matrix(&L);
			Destroy_CompCol_Matrix(&U);
		    }

		} /* for equil ... */
	    } /* for ifact ... */
	} /* for iequed ... */
#if 0    
    if ( !info ) {
	PrintPerf(&L, &U, &mem_usage, rpg, rcond, ferr, berr, equed);
    }
#endif
        Destroy_SuperMatrix_Store(&A);
        Destroy_SuperMatrix_Store(&ASAV);
        StatFree(&stat);

    } /* for imat ... */

    /* Print a summary of the results. */
    PrintSumm("CGE", nfail, nrun, nerrs);

    if ( strcmp(matrix_type, "LA") == 0 ) SUPERLU_FREE (Afull);
    SUPERLU_FREE (rhsb);
    SUPERLU_FREE (bsav);
    SUPERLU_FREE (solx);    
    SUPERLU_FREE (xact);
    SUPERLU_FREE (etree);
    SUPERLU_FREE (perm_r);
    SUPERLU_FREE (perm_c);
    SUPERLU_FREE (pc_save);
    SUPERLU_FREE (R);
    SUPERLU_FREE (C);
    SUPERLU_FREE (ferr);
    SUPERLU_FREE (berr);
    SUPERLU_FREE (rwork);
    SUPERLU_FREE (wwork);
    Destroy_SuperMatrix_Store(&B);
    Destroy_SuperMatrix_Store(&X);
#if 0
    Destroy_CompCol_Matrix(&A);
    Destroy_CompCol_Matrix(&ASAV);
#else
    SUPERLU_FREE(a); SUPERLU_FREE(asub); SUPERLU_FREE(xa);
    SUPERLU_FREE(a_save); SUPERLU_FREE(asub_save); SUPERLU_FREE(xa_save);
#endif
    if ( lwork > 0 ) {
	SUPERLU_FREE (work);
	Destroy_SuperMatrix_Store(&L);
	Destroy_SuperMatrix_Store(&U);
    }

    return 0;
}