inline size_t _2dArray<T>::extent(size_t dimension) const
{
#ifdef FIBER_CHECK_ARRAY_BOUNDS
    check_dimension(dimension);
#endif
    return m_extents[dimension];
}
Beispiel #2
0
Datum
svec_div(PG_FUNCTION_ARGS)
{
	SvecType *svec1 = PG_GETARG_SVECTYPE_P(0);
	SvecType *svec2 = PG_GETARG_SVECTYPE_P(1);
	check_dimension(svec1,svec2,"svec_div");
	SvecType *result = op_svec_by_svec_internal(3,svec1,svec2);
	PG_RETURN_SVECTYPE_P(result);
}
Beispiel #3
0
Datum
svec_pow(PG_FUNCTION_ARGS)
{
	SvecType *svec1 = PG_GETARG_SVECTYPE_P(0);
	SvecType *svec2 = PG_GETARG_SVECTYPE_P(1);
	check_dimension(svec1,svec2,"svec_pow");
	SvecType *result = pow_svec_by_scalar_internal(svec1,svec2);
	PG_RETURN_SVECTYPE_P(result);
}
Beispiel #4
0
Datum
svec_dot(PG_FUNCTION_ARGS)
{
	SvecType *svec1 = PG_GETARG_SVECTYPE_P(0);
	SvecType *svec2 = PG_GETARG_SVECTYPE_P(1);
	SparseData left  = sdata_from_svec(svec1);
	SparseData right = sdata_from_svec(svec2);
	SparseData mult_result;
	double accum;
	check_dimension(svec1,svec2,"svec_dot");

	mult_result = op_sdata_by_sdata(2,left,right);
	accum = sum_sdata_values_double(mult_result);
	freeSparseDataAndData(mult_result);

	PG_RETURN_FLOAT8(accum);
}
Beispiel #5
0
void
surface_dimension(void)
{
	/* 2D */
	check_dimension("POLYHEDRALSURFACE(((0 0,0 1,1 1,0 0)))", 2);
	check_dimension("TIN(((0 0,0 1,1 1,0 0)))", 2);

	/* 3D single face */
	check_dimension("POLYHEDRALSURFACE(((0 0 0,0 0 1,0 1 0,0 0 0)))", 2);
	check_dimension("TIN(((0 0 0,0 0 1,0 1 0,0 0 0)))", 2);

	/* Tetrahedron */
	check_dimension("POLYHEDRALSURFACE(((0 0 0,0 0 1,0 1 0,0 0 0)),((0 0 0,0 1 0,1 0 0,0 0 0)),((0 0 0,1 0 0,0 0 1,0 0 0)),((1 0 0,0 1 0,0 0 1,1 0 0)))", 3);
	check_dimension("TIN(((0 0 0,0 0 1,0 1 0,0 0 0)),((0 0 0,0 1 0,1 0 0,0 0 0)),((0 0 0,1 0 0,0 0 1,0 0 0)),((1 0 0,0 1 0,0 0 1,1 0 0)))", 3);
}
Beispiel #6
0
inline size_t _1dSliceOfConst4dArray<T>::extent(size_t dimension) const {
  check_dimension(dimension);
  return m_array.extent(dimension);
}
Beispiel #7
0
void test_kronecker_product()
{
  // DM = dense matrix; SM = sparse matrix
  Matrix<double, 2, 3> DM_a;
  MatrixXd             DM_b(3,2);
  SparseMatrix<double> SM_a(2,3);
  SparseMatrix<double> SM_b(3,2);
  SM_a.insert(0,0) = DM_a(0,0) = -0.4461540300782201;
  SM_a.insert(0,1) = DM_a(0,1) = -0.8057364375283049;
  SM_a.insert(0,2) = DM_a(0,2) =  0.3896572459516341;
  SM_a.insert(1,0) = DM_a(1,0) = -0.9076572187376921;
  SM_a.insert(1,1) = DM_a(1,1) =  0.6469156566545853;
  SM_a.insert(1,2) = DM_a(1,2) = -0.3658010398782789;
  SM_b.insert(0,0) = DM_b(0,0) =  0.9004440976767099;
  SM_b.insert(0,1) = DM_b(0,1) = -0.2368830858139832;
  SM_b.insert(1,0) = DM_b(1,0) = -0.9311078389941825;
  SM_b.insert(1,1) = DM_b(1,1) =  0.5310335762980047;
  SM_b.insert(2,0) = DM_b(2,0) = -0.1225112806872035;
  SM_b.insert(2,1) = DM_b(2,1) =  0.5903998022741264;
  SparseMatrix<double,RowMajor> SM_row_a(SM_a), SM_row_b(SM_b);

  // test kroneckerProduct(DM_block,DM,DM_fixedSize)
  Matrix<double, 6, 6> DM_fix_ab;
  DM_fix_ab(0,0)=37.0;
  kroneckerProduct(DM_a.block(0,0,2,3),DM_b,DM_fix_ab);
  CALL_SUBTEST(check_kronecker_product(DM_fix_ab));

  // test kroneckerProduct(DM,DM,DM_block)
  MatrixXd DM_block_ab(10,15);
  DM_block_ab(0,0)=37.0;
  kroneckerProduct(DM_a,DM_b,DM_block_ab.block(2,5,6,6));
  CALL_SUBTEST(check_kronecker_product(DM_block_ab.block(2,5,6,6)));

  // test kroneckerProduct(DM,DM,DM)
  MatrixXd DM_ab(1,5);
  DM_ab(0,0)=37.0;
  kroneckerProduct(DM_a,DM_b,DM_ab);
  CALL_SUBTEST(check_kronecker_product(DM_ab));

  // test kroneckerProduct(SM,DM,SM)
  SparseMatrix<double> SM_ab(1,20);
  SM_ab.insert(0,0)=37.0;
  kroneckerProduct(SM_a,DM_b,SM_ab);
  CALL_SUBTEST(check_kronecker_product(SM_ab));
  SparseMatrix<double,RowMajor> SM_ab2(10,3);
  SM_ab2.insert(0,0)=37.0;
  kroneckerProduct(SM_a,DM_b,SM_ab2);
  CALL_SUBTEST(check_kronecker_product(SM_ab2));

  // test kroneckerProduct(DM,SM,SM)
  SM_ab.insert(0,0)=37.0;
  kroneckerProduct(DM_a,SM_b,SM_ab);
  CALL_SUBTEST(check_kronecker_product(SM_ab));
  SM_ab2.insert(0,0)=37.0;
  kroneckerProduct(DM_a,SM_b,SM_ab2);
  CALL_SUBTEST(check_kronecker_product(SM_ab2));

  // test kroneckerProduct(SM,SM,SM)
  SM_ab.resize(2,33);
  SM_ab.insert(0,0)=37.0;
  kroneckerProduct(SM_a,SM_b,SM_ab);
  CALL_SUBTEST(check_kronecker_product(SM_ab));
  SM_ab2.resize(5,11);
  SM_ab2.insert(0,0)=37.0;
  kroneckerProduct(SM_a,SM_b,SM_ab2);
  CALL_SUBTEST(check_kronecker_product(SM_ab2));

  // test kroneckerProduct(SM,SM,SM) with sparse pattern
  SM_a.resize(4,5);
  SM_b.resize(3,2);
  SM_a.resizeNonZeros(0);
  SM_b.resizeNonZeros(0);
  SM_a.insert(1,0) = -0.1;
  SM_a.insert(0,3) = -0.2;
  SM_a.insert(2,4) =  0.3;
  SM_a.finalize();
  SM_b.insert(0,0) =  0.4;
  SM_b.insert(2,1) = -0.5;
  SM_b.finalize();
  SM_ab.resize(1,1);
  SM_ab.insert(0,0)=37.0;
  kroneckerProduct(SM_a,SM_b,SM_ab);
  CALL_SUBTEST(check_sparse_kronecker_product(SM_ab));

  // test dimension of result of kroneckerProduct(DM,DM,DM)
  MatrixXd DM_a2(2,1);
  MatrixXd DM_b2(5,4);
  MatrixXd DM_ab2;
  kroneckerProduct(DM_a2,DM_b2,DM_ab2);
  CALL_SUBTEST(check_dimension(DM_ab2,2*5,1*4));
  DM_a2.resize(10,9);
  DM_b2.resize(4,8);
  kroneckerProduct(DM_a2,DM_b2,DM_ab2);
  CALL_SUBTEST(check_dimension(DM_ab2,10*4,9*8));
}
Beispiel #8
0
void test_kronecker_product()
{
  // DM = dense matrix; SM = sparse matrix

  Matrix<double, 2, 3> DM_a;
  SparseMatrix<double> SM_a(2,3);
  SM_a.insert(0,0) = DM_a.coeffRef(0,0) = -0.4461540300782201;
  SM_a.insert(0,1) = DM_a.coeffRef(0,1) = -0.8057364375283049;
  SM_a.insert(0,2) = DM_a.coeffRef(0,2) =  0.3896572459516341;
  SM_a.insert(1,0) = DM_a.coeffRef(1,0) = -0.9076572187376921;
  SM_a.insert(1,1) = DM_a.coeffRef(1,1) =  0.6469156566545853;
  SM_a.insert(1,2) = DM_a.coeffRef(1,2) = -0.3658010398782789;
 
  MatrixXd             DM_b(3,2);
  SparseMatrix<double> SM_b(3,2);
  SM_b.insert(0,0) = DM_b.coeffRef(0,0) =  0.9004440976767099;
  SM_b.insert(0,1) = DM_b.coeffRef(0,1) = -0.2368830858139832;
  SM_b.insert(1,0) = DM_b.coeffRef(1,0) = -0.9311078389941825;
  SM_b.insert(1,1) = DM_b.coeffRef(1,1) =  0.5310335762980047;
  SM_b.insert(2,0) = DM_b.coeffRef(2,0) = -0.1225112806872035;
  SM_b.insert(2,1) = DM_b.coeffRef(2,1) =  0.5903998022741264;

  SparseMatrix<double,RowMajor> SM_row_a(SM_a), SM_row_b(SM_b);

  // test DM_fixedSize = kroneckerProduct(DM_block,DM)
  Matrix<double, 6, 6> DM_fix_ab = kroneckerProduct(DM_a.topLeftCorner<2,3>(),DM_b);

  CALL_SUBTEST(check_kronecker_product(DM_fix_ab));
  CALL_SUBTEST(check_kronecker_product(kroneckerProduct(DM_a.topLeftCorner<2,3>(),DM_b)));

  for(int i=0;i<DM_fix_ab.rows();++i)
    for(int j=0;j<DM_fix_ab.cols();++j)
       VERIFY_IS_APPROX(kroneckerProduct(DM_a,DM_b).coeff(i,j), DM_fix_ab(i,j));

  // test DM_block = kroneckerProduct(DM,DM)
  MatrixXd DM_block_ab(10,15);
  DM_block_ab.block<6,6>(2,5) = kroneckerProduct(DM_a,DM_b);
  CALL_SUBTEST(check_kronecker_product(DM_block_ab.block<6,6>(2,5)));

  // test DM = kroneckerProduct(DM,DM)
  MatrixXd DM_ab = kroneckerProduct(DM_a,DM_b);
  CALL_SUBTEST(check_kronecker_product(DM_ab));
  CALL_SUBTEST(check_kronecker_product(kroneckerProduct(DM_a,DM_b)));

  // test SM = kroneckerProduct(SM,DM)
  SparseMatrix<double> SM_ab = kroneckerProduct(SM_a,DM_b);
  CALL_SUBTEST(check_kronecker_product(SM_ab));
  SparseMatrix<double,RowMajor> SM_ab2 = kroneckerProduct(SM_a,DM_b);
  CALL_SUBTEST(check_kronecker_product(SM_ab2));
  CALL_SUBTEST(check_kronecker_product(kroneckerProduct(SM_a,DM_b)));

  // test SM = kroneckerProduct(DM,SM)
  SM_ab.setZero();
  SM_ab.insert(0,0)=37.0;
  SM_ab = kroneckerProduct(DM_a,SM_b);
  CALL_SUBTEST(check_kronecker_product(SM_ab));
  SM_ab2.setZero();
  SM_ab2.insert(0,0)=37.0;
  SM_ab2 = kroneckerProduct(DM_a,SM_b);
  CALL_SUBTEST(check_kronecker_product(SM_ab2));
  CALL_SUBTEST(check_kronecker_product(kroneckerProduct(DM_a,SM_b)));

  // test SM = kroneckerProduct(SM,SM)
  SM_ab.resize(2,33);
  SM_ab.insert(0,0)=37.0;
  SM_ab = kroneckerProduct(SM_a,SM_b);
  CALL_SUBTEST(check_kronecker_product(SM_ab));
  SM_ab2.resize(5,11);
  SM_ab2.insert(0,0)=37.0;
  SM_ab2 = kroneckerProduct(SM_a,SM_b);
  CALL_SUBTEST(check_kronecker_product(SM_ab2));
  CALL_SUBTEST(check_kronecker_product(kroneckerProduct(SM_a,SM_b)));

  // test SM = kroneckerProduct(SM,SM) with sparse pattern
  SM_a.resize(4,5);
  SM_b.resize(3,2);
  SM_a.resizeNonZeros(0);
  SM_b.resizeNonZeros(0);
  SM_a.insert(1,0) = -0.1;
  SM_a.insert(0,3) = -0.2;
  SM_a.insert(2,4) =  0.3;
  SM_a.finalize();
  
  SM_b.insert(0,0) =  0.4;
  SM_b.insert(2,1) = -0.5;
  SM_b.finalize();
  SM_ab.resize(1,1);
  SM_ab.insert(0,0)=37.0;
  SM_ab = kroneckerProduct(SM_a,SM_b);
  CALL_SUBTEST(check_sparse_kronecker_product(SM_ab));

  // test dimension of result of DM = kroneckerProduct(DM,DM)
  MatrixXd DM_a2(2,1);
  MatrixXd DM_b2(5,4);
  MatrixXd DM_ab2 = kroneckerProduct(DM_a2,DM_b2);
  CALL_SUBTEST(check_dimension(DM_ab2,2*5,1*4));
  DM_a2.resize(10,9);
  DM_b2.resize(4,8);
  DM_ab2 = kroneckerProduct(DM_a2,DM_b2);
  CALL_SUBTEST(check_dimension(DM_ab2,10*4,9*8));
  
  for(int i = 0; i < g_repeat; i++)
  {
    double density = Eigen::internal::random<double>(0.01,0.5);
    int ra = Eigen::internal::random<int>(1,50);
    int ca = Eigen::internal::random<int>(1,50);
    int rb = Eigen::internal::random<int>(1,50);
    int cb = Eigen::internal::random<int>(1,50);
    SparseMatrix<float,ColMajor> sA(ra,ca), sB(rb,cb), sC;
    SparseMatrix<float,RowMajor> sC2;
    MatrixXf dA(ra,ca), dB(rb,cb), dC;
    initSparse(density, dA, sA);
    initSparse(density, dB, sB);
    
    sC = kroneckerProduct(sA,sB);
    dC = kroneckerProduct(dA,dB);
    VERIFY_IS_APPROX(MatrixXf(sC),dC);
    
    sC = kroneckerProduct(sA.transpose(),sB);
    dC = kroneckerProduct(dA.transpose(),dB);
    VERIFY_IS_APPROX(MatrixXf(sC),dC);
    
    sC = kroneckerProduct(sA.transpose(),sB.transpose());
    dC = kroneckerProduct(dA.transpose(),dB.transpose());
    VERIFY_IS_APPROX(MatrixXf(sC),dC);
    
    sC = kroneckerProduct(sA,sB.transpose());
    dC = kroneckerProduct(dA,dB.transpose());
    VERIFY_IS_APPROX(MatrixXf(sC),dC);
    
    sC2 = kroneckerProduct(sA,sB);
    dC = kroneckerProduct(dA,dB);
    VERIFY_IS_APPROX(MatrixXf(sC2),dC);
  }
}
Beispiel #9
0
Datum
svec_count(PG_FUNCTION_ARGS)
{
	SvecType *svec1 = PG_GETARG_SVECTYPE_P(0);
	SvecType *svec2 = PG_GETARG_SVECTYPE_P(1);
	SparseData left  = sdata_from_svec(svec1);
	SparseData right = sdata_from_svec(svec2);
	double *right_vals=(double *)(right->vals->data);
	SvecType *result;
	double *clamped_vals;
	SparseData right_clamped,sdata_result;

	int scalar_args=check_scalar(IS_SCALAR(svec1),IS_SCALAR(svec2));
	check_dimension(svec1,svec2,"svec_count");

	/* Clamp the right vector values to 1.
	 */
	switch (scalar_args)
	{
		case 1:			//left arg is scalar
			/*
			 * If the left argument is a scalar, this is almost certainly the
			 * first call to the routine, and we need a zero vector for the
			 * beginning of the accumulation of the correct dimension.
			 */
			left = makeSparseDataFromDouble(0.,right->total_value_count);

		case 0: 		//neither arg is scalar
		case 2:			//right arg is scalar

			/* Create an array of values either 1 or 0 depending on whether
			 * the right vector has a non-zero value in it
			 */
			clamped_vals =
				(double *)palloc0(sizeof(double)*(right->unique_value_count));

			for (int i=0;i<(right->unique_value_count);i++)
			{
				if (right_vals[i]!=0.) clamped_vals[i]=1.;
			}
			right_clamped = makeInplaceSparseData((char *)clamped_vals,right->index->data,
					right->vals->len,right->index->len,FLOAT8OID,
					right->unique_value_count,right->total_value_count);

			/* Create the output SVEC */
			sdata_result = op_sdata_by_sdata(1,left,right_clamped);
			result = svec_from_sparsedata(sdata_result,true);

			pfree(clamped_vals);
			pfree(right_clamped);

			PG_RETURN_SVECTYPE_P(result);
			break;
		case 3:			//both args are scalar
		default:
			ereport(ERROR,
				(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
				 errmsg("Svec count is undefined when both arguments are scalar")));
			PG_RETURN_SVECTYPE_P(svec1);
			break;
	}
}