long long get_WAPP_info(char *filename, FILE * files[], int numfiles, int numwapps, struct HEADERP **h, struct wappinfo *w) { int ii, wappindex; struct HEADERP *h2; struct wappinfo w2; long long N = 0; // Read the header of the first file with the yacc/lex generated tools // This sets the basic parameters of the conversion *h = head_parse(files[0]); set_wappinfo(*h, w); if (get_hdr_int(*h, "isalfa")) { w->beamnum = wapp_beamnum(filename); if (w->beamnum == -1) { printf("Warning! isalfa = 1, but beamnum is not set!\n"); exit(1); } } // Number of samples in the file w->numsamples = (chkfilelen(files[0], 1) - w->header_size) / w->bytes_per_sample; // This will be the total number of samples to convert N = w->numsamples; // Skip the ASCII and binary header chkfseek(files[0], w->header_size, SEEK_SET); // loop through all the other files and check/prep them for (ii = 1; ii < numfiles; ii++) { // Read the header with the yacc/lex generated tools h2 = head_parse(files[ii]); set_wappinfo(h2, &w2); close_parse(h2); // Number of samples in the file w2.numsamples = (chkfilelen(files[ii], 1) - w2.header_size) / w2.bytes_per_sample; // Skip the ASCII and binary header chkfseek(files[ii], w2.header_size, SEEK_SET); // Do a basic check to see if the files are similar wappindex = ii % numwapps; if (wappindex == 0) { // Same WAPP if (!compare_samewapp_files(ii, w, &w2)) exit(1); N += w2.numsamples; } else { // Different WAPPs if (!compare_diffwapp_files(ii, numwapps, wappindex, w, &w2)) exit(1); } } return N; }
int main(int argc, char *argv[]) { /* Any variable that begins with 't' means topocentric */ /* Any variable that begins with 'b' means barycentric */ FILE **outfiles = NULL; float **outdata; double dtmp, *dms, avgdm = 0.0, dsdt = 0, maxdm; double *dispdt, tlotoa = 0.0, blotoa = 0.0, BW_ddelay = 0.0; double max = -9.9E30, min = 9.9E30, var = 0.0, avg = 0.0; double *btoa = NULL, *ttoa = NULL, avgvoverc = 0.0; char obs[3], ephem[10], rastring[50], decstring[50]; long totnumtowrite, totwrote = 0, padwrote = 0, datawrote = 0; int *idispdt, **offsets; int ii, jj, numadded = 0, numremoved = 0, padding = 0, good_inputs = 1; int numbarypts = 0, numread = 0, numtowrite = 0; int padtowrite = 0, statnum = 0; int numdiffbins = 0, *diffbins = NULL, *diffbinptr = NULL, good_padvals = 0; double local_lodm; char *datafilenm, *outpath, *outfilenm, *hostname; struct spectra_info s; infodata idata; mask obsmask; MPI_Init(&argc, &argv); MPI_Comm_size(MPI_COMM_WORLD, &numprocs); MPI_Comm_rank(MPI_COMM_WORLD, &myid); #ifdef _OPENMP omp_set_num_threads(1); // Explicitly turn off OpenMP #endif set_using_MPI(); { FILE *hostfile; char tmpname[100]; int retval; hostfile = chkfopen("/etc/hostname", "r"); retval = fscanf(hostfile, "%s\n", tmpname); if (retval==0) { printf("Warning: error reading /etc/hostname on proc %d\n", myid); } hostname = (char *) calloc(strlen(tmpname) + 1, 1); memcpy(hostname, tmpname, strlen(tmpname)); fclose(hostfile); } /* Call usage() if we have no command line arguments */ if (argc == 1) { if (myid == 0) { Program = argv[0]; usage(); } MPI_Finalize(); exit(1); } make_maskbase_struct(); make_spectra_info_struct(); /* Parse the command line using the excellent program Clig */ cmd = parseCmdline(argc, argv); spectra_info_set_defaults(&s); // If we are zeroDMing, make sure that clipping is off. if (cmd->zerodmP) cmd->noclipP = 1; s.clip_sigma = cmd->clip; if (cmd->noclipP) { cmd->clip = 0.0; s.clip_sigma = 0.0; } if (cmd->ifsP) { // 0 = default or summed, 1-4 are possible also s.use_poln = cmd->ifs + 1; } if (!cmd->numoutP) cmd->numout = LONG_MAX; #ifdef DEBUG showOptionValues(); #endif if (myid == 0) { /* Master node only */ printf("\n\n"); printf(" Parallel Pulsar Subband De-dispersion Routine\n"); printf(" by Scott M. Ransom\n\n"); s.filenames = cmd->argv; s.num_files = cmd->argc; s.clip_sigma = cmd->clip; // -1 causes the data to determine if we use weights, scales, & // offsets for PSRFITS or flip the band for any data type where // we can figure that out with the data s.apply_flipband = (cmd->invertP) ? 1 : -1; s.apply_weight = (cmd->noweightsP) ? 0 : -1; s.apply_scale = (cmd->noscalesP) ? 0 : -1; s.apply_offset = (cmd->nooffsetsP) ? 0 : -1; s.remove_zerodm = (cmd->zerodmP) ? 1 : 0; if (RAWDATA) { if (cmd->filterbankP) s.datatype = SIGPROCFB; else if (cmd->psrfitsP) s.datatype = PSRFITS; else if (cmd->pkmbP) s.datatype = SCAMP; else if (cmd->bcpmP) s.datatype = BPP; else if (cmd->wappP) s.datatype = WAPP; else if (cmd->spigotP) s.datatype = SPIGOT; } else { // Attempt to auto-identify the data identify_psrdatatype(&s, 1); if (s.datatype==SIGPROCFB) cmd->filterbankP = 1; else if (s.datatype==PSRFITS) cmd->psrfitsP = 1; else if (s.datatype==SCAMP) cmd->pkmbP = 1; else if (s.datatype==BPP) cmd->bcpmP = 1; else if (s.datatype==WAPP) cmd->wappP = 1; else if (s.datatype==SPIGOT) cmd->spigotP = 1; else if (s.datatype==SUBBAND) insubs = 1; else { printf("\nError: Unable to identify input data files. Please specify type.\n\n"); good_inputs = 0; } } // So far we can only handle PSRFITS, filterbank, and subbands if (s.datatype!=PSRFITS && s.datatype!=SIGPROCFB && s.datatype!=SUBBAND) good_inputs = 0; // For subbanded data if (!RAWDATA) s.files = (FILE **)malloc(sizeof(FILE *) * s.num_files); if (good_inputs && (RAWDATA || insubs)) { char description[40]; psrdatatype_description(description, s.datatype); if (s.num_files > 1) printf("Reading %s data from %d files:\n", description, s.num_files); else printf("Reading %s data from 1 file:\n", description); for (ii = 0; ii < s.num_files; ii++) { printf(" '%s'\n", cmd->argv[ii]); if (insubs) s.files[ii] = chkfopen(s.filenames[ii], "rb"); } printf("\n"); if (RAWDATA) { read_rawdata_files(&s); print_spectra_info_summary(&s); spectra_info_to_inf(&s, &idata); } else { // insubs char *root, *suffix; cmd->nsub = s.num_files; s.N = chkfilelen(s.files[0], sizeof(short)); s.start_subint = gen_ivect(1); s.num_subint = gen_ivect(1); s.start_MJD = (long double *)malloc(sizeof(long double)); s.start_spec = (long long *)malloc(sizeof(long long)); s.num_spec = (long long *)malloc(sizeof(long long)); s.num_pad = (long long *)malloc(sizeof(long long)); s.start_spec[0] = 0L; s.start_subint[0] = 0; s.num_spec[0] = s.N; s.num_subint[0] = s.N / SUBSBLOCKLEN; s.num_pad[0] = 0L; s.padvals = gen_fvect(s.num_files); for (ii = 0 ; ii < ii ; ii++) s.padvals[ii] = 0.0; if (split_root_suffix(s.filenames[0], &root, &suffix) == 0) { printf("\nError: The input filename (%s) must have a suffix!\n\n", s.filenames[0]); exit(1); } if (strncmp(suffix, "sub", 3) == 0) { char *tmpname; tmpname = calloc(strlen(root) + 10, 1); sprintf(tmpname, "%s.sub", root); readinf(&idata, tmpname); free(tmpname); strncpy(s.telescope, idata.telescope, 40); strncpy(s.backend, idata.instrument, 40); strncpy(s.observer, idata.observer, 40); strncpy(s.source, idata.object, 40); s.ra2000 = hms2rad(idata.ra_h, idata.ra_m, idata.ra_s) * RADTODEG; s.dec2000 = dms2rad(idata.dec_d, idata.dec_m, idata.dec_s) * RADTODEG; ra_dec_to_string(s.ra_str, idata.ra_h, idata.ra_m, idata.ra_s); ra_dec_to_string(s.dec_str, idata.dec_d, idata.dec_m, idata.dec_s); s.num_channels = idata.num_chan; s.start_MJD[0] = idata.mjd_i + idata.mjd_f; s.dt = idata.dt; s.T = s.N * s.dt; s.lo_freq = idata.freq; s.df = idata.chan_wid; s.hi_freq = s.lo_freq + (s.num_channels - 1.0) * s.df; s.BW = s.num_channels * s.df; s.fctr = s.lo_freq - 0.5 * s.df + 0.5 * s.BW; s.beam_FWHM = idata.fov / 3600.0; s.spectra_per_subint = SUBSBLOCKLEN; print_spectra_info_summary(&s); } else { printf("\nThe input files (%s) must be subbands! (i.e. *.sub##)\n\n", cmd->argv[0]); MPI_Finalize(); exit(1); } free(root); free(suffix); } } } // If we don't have good input data, exit MPI_Bcast(&good_inputs, 1, MPI_INT, 0, MPI_COMM_WORLD); if (!good_inputs) { MPI_Finalize(); exit(1); } MPI_Bcast(&insubs, 1, MPI_INT, 0, MPI_COMM_WORLD); if (insubs) cmd->nsub = cmd->argc; /* Determine the output file names and open them */ local_numdms = cmd->numdms / (numprocs - 1); dms = gen_dvect(local_numdms); if (cmd->numdms % (numprocs - 1)) { if (myid == 0) printf ("\nThe number of DMs must be divisible by (the number of processors - 1).\n\n"); MPI_Finalize(); exit(1); } local_lodm = cmd->lodm + (myid - 1) * local_numdms * cmd->dmstep; split_path_file(cmd->outfile, &outpath, &outfilenm); datafilenm = (char *) calloc(strlen(outfilenm) + 20, 1); if (myid > 0) { if (chdir(outpath) == -1) { printf("\nProcess %d on %s cannot chdir() to '%s'. Exiting.\n\n", myid, hostname, outpath); MPI_Finalize(); exit(1); } outfiles = (FILE **) malloc(local_numdms * sizeof(FILE *)); for (ii = 0; ii < local_numdms; ii++) { dms[ii] = local_lodm + ii * cmd->dmstep; avgdm += dms[ii]; sprintf(datafilenm, "%s_DM%.2f.dat", outfilenm, dms[ii]); outfiles[ii] = chkfopen(datafilenm, "wb"); } avgdm /= local_numdms; } // Broadcast the raw data information broadcast_spectra_info(&s, myid); if (myid > 0) { spectra_info_to_inf(&s, &idata); if (s.datatype==SIGPROCFB) cmd->filterbankP = 1; else if (s.datatype==PSRFITS) cmd->psrfitsP = 1; else if (s.datatype==SCAMP) cmd->pkmbP = 1; else if (s.datatype==BPP) cmd->bcpmP = 1; else if (s.datatype==WAPP) cmd->wappP = 1; else if (s.datatype==SPIGOT) cmd->spigotP = 1; else if (s.datatype==SUBBAND) insubs = 1; } s.filenames = cmd->argv; /* Read an input mask if wanted */ if (myid > 0) { int numpad = s.num_channels; if (insubs) numpad = s.num_files; s.padvals = gen_fvect(numpad); for (ii = 0 ; ii < numpad ; ii++) s.padvals[ii] = 0.0; } if (cmd->maskfileP) { if (myid == 0) { read_mask(cmd->maskfile, &obsmask); printf("Read mask information from '%s'\n\n", cmd->maskfile); good_padvals = determine_padvals(cmd->maskfile, &obsmask, s.padvals); } broadcast_mask(&obsmask, myid); MPI_Bcast(&good_padvals, 1, MPI_INT, 0, MPI_COMM_WORLD); MPI_Bcast(s.padvals, obsmask.numchan, MPI_FLOAT, 0, MPI_COMM_WORLD); } else { obsmask.numchan = obsmask.numint = 0; MPI_Bcast(&good_padvals, 1, MPI_INT, 0, MPI_COMM_WORLD); } // The number of topo to bary time points to generate with TEMPO numbarypts = (int) (s.T * 1.1 / TDT + 5.5) + 1; // Identify the TEMPO observatory code { char *outscope = (char *) calloc(40, sizeof(char)); telescope_to_tempocode(idata.telescope, outscope, obs); free(outscope); } // Broadcast or calculate a few extra important values if (insubs) avgdm = idata.dm; idata.dm = avgdm; dsdt = cmd->downsamp * idata.dt; maxdm = cmd->lodm + cmd->numdms * cmd->dmstep; BW_ddelay = delay_from_dm(maxdm, idata.freq) - delay_from_dm(maxdm, idata.freq + (idata.num_chan-1) * idata.chan_wid); blocksperread = ((int) (BW_ddelay / idata.dt) / s.spectra_per_subint + 1); worklen = s.spectra_per_subint * blocksperread; if (cmd->nsub > s.num_channels) { printf ("Warning: The number of requested subbands (%d) is larger than the number of channels (%d).\n", cmd->nsub, s.num_channels); printf(" Re-setting the number of subbands to %d.\n\n", s.num_channels); cmd->nsub = s.num_channels; } if (s.spectra_per_subint % cmd->downsamp) { if (myid == 0) { printf ("\nError: The downsample factor (%d) must be a factor of the\n", cmd->downsamp); printf(" blocklength (%d). Exiting.\n\n", s.spectra_per_subint); } MPI_Finalize(); exit(1); } tlotoa = idata.mjd_i + idata.mjd_f; /* Topocentric epoch */ if (cmd->numoutP) totnumtowrite = cmd->numout; else totnumtowrite = (long) idata.N / cmd->downsamp; if (cmd->nobaryP) { /* Main loop if we are not barycentering... */ /* Dispersion delays (in bins). The high freq gets no delay */ /* All other delays are positive fractions of bin length (dt) */ dispdt = subband_search_delays(s.num_channels, cmd->nsub, avgdm, idata.freq, idata.chan_wid, 0.0); idispdt = gen_ivect(s.num_channels); for (ii = 0; ii < s.num_channels; ii++) idispdt[ii] = NEAREST_LONG(dispdt[ii] / idata.dt); vect_free(dispdt); /* The subband dispersion delays (see note above) */ offsets = gen_imatrix(local_numdms, cmd->nsub); for (ii = 0; ii < local_numdms; ii++) { double *subdispdt; subdispdt = subband_delays(s.num_channels, cmd->nsub, dms[ii], idata.freq, idata.chan_wid, 0.0); dtmp = subdispdt[cmd->nsub - 1]; for (jj = 0; jj < cmd->nsub; jj++) offsets[ii][jj] = NEAREST_LONG((subdispdt[jj] - dtmp) / dsdt); vect_free(subdispdt); } /* Allocate our data array and start getting data */ if (myid == 0) { printf("De-dispersing using %d subbands.\n", cmd->nsub); if (cmd->downsamp > 1) printf("Downsampling by a factor of %d (new dt = %.10g)\n", cmd->downsamp, dsdt); printf("\n"); } /* Print the nodes and the DMs they are handling */ print_dms(hostname, myid, numprocs, local_numdms, dms); outdata = gen_fmatrix(local_numdms, worklen / cmd->downsamp); numread = get_data(outdata, blocksperread, &s, &obsmask, idispdt, offsets, &padding); while (numread == worklen) { numread /= cmd->downsamp; if (myid == 0) print_percent_complete(totwrote, totnumtowrite); /* Write the latest chunk of data, but don't */ /* write more than cmd->numout points. */ numtowrite = numread; if (cmd->numoutP && (totwrote + numtowrite) > cmd->numout) numtowrite = cmd->numout - totwrote; if (myid > 0) { write_data(outfiles, local_numdms, outdata, 0, numtowrite); /* Update the statistics */ if (!padding) { for (ii = 0; ii < numtowrite; ii++) update_stats(statnum + ii, outdata[0][ii], &min, &max, &avg, &var); statnum += numtowrite; } } totwrote += numtowrite; /* Stop if we have written out all the data we need to */ if (cmd->numoutP && (totwrote == cmd->numout)) break; numread = get_data(outdata, blocksperread, &s, &obsmask, idispdt, offsets, &padding); } datawrote = totwrote; } else { /* Main loop if we are barycentering... */ /* What ephemeris will we use? (Default is DE405) */ strcpy(ephem, "DE405"); /* Define the RA and DEC of the observation */ ra_dec_to_string(rastring, idata.ra_h, idata.ra_m, idata.ra_s); ra_dec_to_string(decstring, idata.dec_d, idata.dec_m, idata.dec_s); /* Allocate some arrays */ btoa = gen_dvect(numbarypts); ttoa = gen_dvect(numbarypts); for (ii = 0; ii < numbarypts; ii++) ttoa[ii] = tlotoa + TDT * ii / SECPERDAY; /* Call TEMPO for the barycentering */ if (myid == 0) { double maxvoverc = -1.0, minvoverc = 1.0, *voverc = NULL; printf("\nGenerating barycentric corrections...\n"); voverc = gen_dvect(numbarypts); barycenter(ttoa, btoa, voverc, numbarypts, rastring, decstring, obs, ephem); for (ii = 0; ii < numbarypts; ii++) { if (voverc[ii] > maxvoverc) maxvoverc = voverc[ii]; if (voverc[ii] < minvoverc) minvoverc = voverc[ii]; avgvoverc += voverc[ii]; } avgvoverc /= numbarypts; vect_free(voverc); printf(" Average topocentric velocity (c) = %.7g\n", avgvoverc); printf(" Maximum topocentric velocity (c) = %.7g\n", maxvoverc); printf(" Minimum topocentric velocity (c) = %.7g\n\n", minvoverc); printf("De-dispersing using %d subbands.\n", cmd->nsub); if (cmd->downsamp > 1) { printf(" Downsample = %d\n", cmd->downsamp); printf(" New sample dt = %.10g\n", dsdt); } printf("\n"); } /* Print the nodes and the DMs they are handling */ print_dms(hostname, myid, numprocs, local_numdms, dms); MPI_Bcast(btoa, numbarypts, MPI_DOUBLE, 0, MPI_COMM_WORLD); MPI_Bcast(&avgvoverc, 1, MPI_DOUBLE, 0, MPI_COMM_WORLD); blotoa = btoa[0]; /* Dispersion delays (in bins). The high freq gets no delay */ /* All other delays are positive fractions of bin length (dt) */ dispdt = subband_search_delays(s.num_channels, cmd->nsub, avgdm, idata.freq, idata.chan_wid, avgvoverc); idispdt = gen_ivect(s.num_channels); for (ii = 0; ii < s.num_channels; ii++) idispdt[ii] = NEAREST_LONG(dispdt[ii] / idata.dt); vect_free(dispdt); /* The subband dispersion delays (see note above) */ offsets = gen_imatrix(local_numdms, cmd->nsub); for (ii = 0; ii < local_numdms; ii++) { double *subdispdt; subdispdt = subband_delays(s.num_channels, cmd->nsub, dms[ii], idata.freq, idata.chan_wid, avgvoverc); dtmp = subdispdt[cmd->nsub - 1]; for (jj = 0; jj < cmd->nsub; jj++) offsets[ii][jj] = NEAREST_LONG((subdispdt[jj] - dtmp) / dsdt); vect_free(subdispdt); } /* Convert the bary TOAs to differences from the topo TOAs in */ /* units of bin length (dt) rounded to the nearest integer. */ dtmp = (btoa[0] - ttoa[0]); for (ii = 0; ii < numbarypts; ii++) btoa[ii] = ((btoa[ii] - ttoa[ii]) - dtmp) * SECPERDAY / dsdt; /* Find the points where we need to add or remove bins */ { int oldbin = 0, currentbin; double lobin, hibin, calcpt; numdiffbins = abs(NEAREST_LONG(btoa[numbarypts - 1])) + 1; diffbins = gen_ivect(numdiffbins); diffbinptr = diffbins; for (ii = 1; ii < numbarypts; ii++) { currentbin = NEAREST_LONG(btoa[ii]); if (currentbin != oldbin) { if (currentbin > 0) { calcpt = oldbin + 0.5; lobin = (ii - 1) * TDT / dsdt; hibin = ii * TDT / dsdt; } else { calcpt = oldbin - 0.5; lobin = -((ii - 1) * TDT / dsdt); hibin = -(ii * TDT / dsdt); } while (fabs(calcpt) < fabs(btoa[ii])) { /* Negative bin number means remove that bin */ /* Positive bin number means add a bin there */ *diffbinptr = NEAREST_LONG(LININTERP (calcpt, btoa[ii - 1], btoa[ii], lobin, hibin)); diffbinptr++; calcpt = (currentbin > 0) ? calcpt + 1.0 : calcpt - 1.0; } oldbin = currentbin; } } *diffbinptr = cmd->numout; /* Used as a marker */ } diffbinptr = diffbins; /* Now perform the barycentering */ outdata = gen_fmatrix(local_numdms, worklen / cmd->downsamp); numread = get_data(outdata, blocksperread, &s, &obsmask, idispdt, offsets, &padding); while (numread == worklen) { /* Loop to read and write the data */ int numwritten = 0; double block_avg, block_var; numread /= cmd->downsamp; /* Determine the approximate local average */ avg_var(outdata[0], numread, &block_avg, &block_var); if (myid == 0) print_percent_complete(totwrote, totnumtowrite); /* Simply write the data if we don't have to add or */ /* remove any bins from this batch. */ /* OR write the amount of data up to cmd->numout or */ /* the next bin that will be added or removed. */ numtowrite = abs(*diffbinptr) - datawrote; if (cmd->numoutP && (totwrote + numtowrite) > cmd->numout) numtowrite = cmd->numout - totwrote; if (numtowrite > numread) numtowrite = numread; if (myid > 0) { write_data(outfiles, local_numdms, outdata, 0, numtowrite); /* Update the statistics */ if (!padding) { for (ii = 0; ii < numtowrite; ii++) update_stats(statnum + ii, outdata[0][ii], &min, &max, &avg, &var); statnum += numtowrite; } } datawrote += numtowrite; totwrote += numtowrite; numwritten += numtowrite; if ((datawrote == abs(*diffbinptr)) && (numwritten != numread) && (totwrote < cmd->numout)) { /* Add/remove a bin */ int skip, nextdiffbin; skip = numtowrite; /* Write the rest of the data after adding/removing a bin */ do { if (*diffbinptr > 0) { /* Add a bin */ if (myid > 0) write_padding(outfiles, local_numdms, block_avg, 1); numadded++; totwrote++; } else { /* Remove a bin */ numremoved++; datawrote++; numwritten++; skip++; } diffbinptr++; /* Write the part after the diffbin */ numtowrite = numread - numwritten; if (cmd->numoutP && (totwrote + numtowrite) > cmd->numout) numtowrite = cmd->numout - totwrote; nextdiffbin = abs(*diffbinptr) - datawrote; if (numtowrite > nextdiffbin) numtowrite = nextdiffbin; if (myid > 0) { write_data(outfiles, local_numdms, outdata, skip, numtowrite); /* Update the statistics and counters */ if (!padding) { for (ii = 0; ii < numtowrite; ii++) update_stats(statnum + ii, outdata[0][skip + ii], &min, &max, &avg, &var); statnum += numtowrite; } } numwritten += numtowrite; datawrote += numtowrite; totwrote += numtowrite; skip += numtowrite; /* Stop if we have written out all the data we need to */ if (cmd->numoutP && (totwrote == cmd->numout)) break; } while (numwritten < numread); } /* Stop if we have written out all the data we need to */ if (cmd->numoutP && (totwrote == cmd->numout)) break; numread = get_data(outdata, blocksperread, &s, &obsmask, idispdt, offsets, &padding); } } if (myid > 0) { /* Calculate the amount of padding we need */ if (cmd->numoutP && (cmd->numout > totwrote)) padwrote = padtowrite = cmd->numout - totwrote; /* Write the new info file for the output data */ idata.dt = dsdt; update_infodata(&idata, totwrote, padtowrite, diffbins, numdiffbins, cmd->downsamp); for (ii = 0; ii < local_numdms; ii++) { idata.dm = dms[ii]; if (!cmd->nobaryP) { double baryepoch, barydispdt, baryhifreq; baryhifreq = idata.freq + (s.num_channels - 1) * idata.chan_wid; barydispdt = delay_from_dm(dms[ii], doppler(baryhifreq, avgvoverc)); baryepoch = blotoa - (barydispdt / SECPERDAY); idata.bary = 1; idata.mjd_i = (int) floor(baryepoch); idata.mjd_f = baryepoch - idata.mjd_i; } sprintf(idata.name, "%s_DM%.2f", outfilenm, dms[ii]); writeinf(&idata); } /* Set the padded points equal to the average data point */ if (idata.numonoff >= 1) { int index, startpad, endpad; for (ii = 0; ii < local_numdms; ii++) { fclose(outfiles[ii]); sprintf(datafilenm, "%s_DM%.2f.dat", outfilenm, dms[ii]); outfiles[ii] = chkfopen(datafilenm, "rb+"); } for (ii = 0; ii < idata.numonoff; ii++) { index = 2 * ii; startpad = idata.onoff[index + 1]; if (ii == idata.numonoff - 1) endpad = idata.N - 1; else endpad = idata.onoff[index + 2]; for (jj = 0; jj < local_numdms; jj++) chkfseek(outfiles[jj], (startpad + 1) * sizeof(float), SEEK_SET); padtowrite = endpad - startpad; write_padding(outfiles, local_numdms, avg, padtowrite); } } } /* Print simple stats and results */ var /= (datawrote - 1); if (myid == 0) print_percent_complete(1, 1); if (myid == 1) { printf("\n\nDone.\n\nSimple statistics of the output data:\n"); printf(" Data points written: %ld\n", totwrote); if (padwrote) printf(" Padding points written: %ld\n", padwrote); if (!cmd->nobaryP) { if (numadded) printf(" Bins added for barycentering: %d\n", numadded); if (numremoved) printf(" Bins removed for barycentering: %d\n", numremoved); } printf(" Maximum value of data: %.2f\n", max); printf(" Minimum value of data: %.2f\n", min); printf(" Data average value: %.2f\n", avg); printf(" Data standard deviation: %.2f\n", sqrt(var)); printf("\n"); } /* Close the files and cleanup */ if (cmd->maskfileP) free_mask(obsmask); if (myid > 0) { for (ii = 0; ii < local_numdms; ii++) fclose(outfiles[ii]); free(outfiles); } vect_free(outdata[0]); vect_free(outdata); vect_free(dms); free(hostname); vect_free(idispdt); vect_free(offsets[0]); vect_free(offsets); free(datafilenm); free(outfilenm); free(outpath); if (!cmd->nobaryP) { vect_free(btoa); vect_free(ttoa); vect_free(diffbins); } MPI_Finalize(); return (0); }
int main(int argc, char *argv[]) { FILE **infiles, *outfile = NULL, *scalingfile, *zerolagfile = NULL; int filenum, ptsperblock, numlags, numfiles, outnumlags; int bytes_per_read, scaling = 0, numscalings, firstfile, firstspec; int write_data = 1, update_posn = 0; long long N, numconverted = 0, numwritten = 0; char *path, *filenm, rawlags[4096]; char outfilenm[200], filenmbase[200], zerolagnm[200], scalingnm[200]; unsigned char output_samples[2048]; float *scalings = NULL, lags[2048], tmp_floats[2048]; double dt, T, time_offset; SPIGOT_INFO *spigots; sigprocfb fb; infodata idata; Cmdline *cmd; /* Call usage() if we have no command line arguments */ if (argc == 1) { Program = argv[0]; usage(); exit(0); } /* Parse the command line using the excellent program Clig */ cmd = parseCmdline(argc, argv); // showOptionValues(); numfiles = cmd->argc; /* If requesting that we skip values or only write */ /* a specific number of values, require an output file name */ if ((cmd->skip > 0) || cmd->numoutP){ if (!cmd->outfileP && !cmd->stdoutP) { fprintf(stderr, "\nspigot2filterbank ERROR: You need to specify an output\n" " filename (or -stdout) when using the -skip and/or \n" " -numout options!\n\n"); exit(1); } } /* Give an error if specifying stdout and an output file */ if (cmd->stdoutP && cmd->outfileP){ fprintf(stderr, "\nspigot2filterbank ERROR: You cannot specify both an output\n" " file and that the data should go to STDOUT!\n\n"); exit(1); } if (!cmd->stdoutP) printf("\nConverting SPIGOT FITs lags into SIGPROC filterbank format...\n\n"); /* Determine the filename base from the first spigot file */ split_path_file(cmd->argv[0], &path, &filenm); strncpy(filenmbase, filenm, strlen(filenm) - 5); filenmbase[strlen(filenm) - 5] = '\0'; free(path); free(filenm); /* Open a file to store the zerolags */ if (cmd->zerolagsP) { if (cmd->outfileP) { sprintf(zerolagnm, "%s.zerolags", cmd->outfile); } else { sprintf(zerolagnm, "%s.zerolags", filenmbase); } zerolagfile = chkfopen(zerolagnm, "wb"); } /* Attempt to read a file with lag scalings in it */ sprintf(scalingnm, "%s.scaling", filenmbase); if ((scalingfile = fopen(scalingnm, "rb"))) { /* Determine the length of the file */ numscalings = (int) chkfilelen(scalingfile, sizeof(float)); /* Create the array and read 'em */ scalings = gen_fvect(numscalings); chkfread(scalings, sizeof(float), numscalings, scalingfile); scaling = 1; /* close the scaling file */ fclose(scalingfile); if (!cmd->stdoutP) printf("Scaling the lags with the %d values found in '%s'\n\n", numscalings, scalingnm); } /* Read and convert the basic SPIGOT file information */ if (!cmd->stdoutP) printf("Spigot card input file information:\n"); spigots = (SPIGOT_INFO *) malloc(sizeof(SPIGOT_INFO) * numfiles); infiles = (FILE **) malloc(sizeof(FILE *) * numfiles); for (filenum = 0; filenum < numfiles; filenum++) { if (!cmd->stdoutP) printf(" '%s'\n", cmd->argv[filenum]); infiles[filenum] = chkfopen(cmd->argv[filenum], "rb"); read_SPIGOT_header(cmd->argv[filenum], spigots + filenum); rewind(infiles[filenum]); } if (!cmd->stdoutP) printf("\n"); /* The following is necessary in order to initialize all the */ /* static variables in spigot.c */ get_SPIGOT_file_info(infiles, spigots, numfiles, 0, 0, &N, &ptsperblock, &numlags, &dt, &T, &idata, !cmd->stdoutP); /* Compute the first file required */ firstfile = cmd->skip / spigots[0].samples_per_file; firstspec = cmd->skip % spigots[0].samples_per_file; if (!cmd->numoutP) { cmd->numout = (N - cmd->skip) / cmd->downsamp; } bytes_per_read = numlags * spigots[0].bits_per_lag / 8; outnumlags = numlags - cmd->lokill - cmd->hikill; /* Step through the SPIGOT files */ filenum = firstfile; while (numwritten < cmd->numout){ split_path_file(cmd->argv[filenum], &path, &filenm); strncpy(filenmbase, filenm, strlen(filenm) - 5); filenmbase[strlen(filenm) - 5] = '\0'; if (cmd->outfileP) { if (filenum==firstfile) { sprintf(outfilenm, "%s", cmd->outfile); outfile = chkfopen(outfilenm, "wb"); } } else { sprintf(outfilenm, "%s.fil", filenmbase); if (cmd->stdoutP) { outfile = stdout; } else { outfile = chkfopen(outfilenm, "wb"); } } if (!cmd->stdoutP) { if (filenum==firstfile) printf("Reading Spigot lags from '%s' (starting at sample %d)\n", cmd->argv[filenum], firstspec); else printf("Reading Spigot lags from '%s'\n", cmd->argv[filenum]); printf("Writing filterbank spectra to '%s'\n\n", outfilenm); } /* Update the filterbank header information for each file */ if (!spigots[filenum].tracking) { if (cmd->outfileP || cmd->stdoutP) { time_offset = 0.5 * cmd->numout * \ spigots[filenum].dt_us * 1e-6 * cmd->downsamp; } else { // Just normal files time_offset = 0.5 * spigots[filenum].file_duration; } update_posn = 1; } else { update_posn = 0; time_offset = 0.0; } /* Adjust the Spigot start time for the skip */ spigots[filenum].elapsed_time += cmd->skip * spigots[filenum].dt_us * 1e-6; /* Determine the SIGPROC header */ spigot2sigprocfb(&(spigots[filenum]), &fb, filenmbase, cmd->lokill, cmd->hikill, cmd->downsamp, update_posn, time_offset); /* Correct the structure if we are using floats */ if (cmd->floatsP) fb.nbits = 32; /* Write a filterbank header if we have not been told not to. */ /* Don't write it, though, if using stdio or a specified output */ /* file and the input file is not the first. */ if (!cmd->nohdrP) { if ((!cmd->stdoutP && !cmd->outfileP) || ((cmd->stdoutP || cmd->outfileP) && filenum==firstfile)) { write_filterbank_header(&fb, outfile); } } /* Go to the correct autocorrelation in the correct first FITs file */ chkfseek(infiles[filenum], spigots[filenum].header_len + bytes_per_read*firstspec, SEEK_SET); /* Loop over the samples in the file */ while ((numwritten < cmd->numout) && (chkfread(rawlags, bytes_per_read, 1, infiles[filenum]))) { if (cmd->zerolagsP) { /* Correct the lags so we can write the zerolag */ get_calibrated_lags(rawlags, lags); chkfwrite(lags, sizeof(float), 1, zerolagfile); } if (scaling) { convert_SPIGOT_point(rawlags, output_samples, SUMIFS, scalings[cmd->skip+numconverted]); } else { convert_SPIGOT_point(rawlags, output_samples, SUMIFS, 1.0); } /* If downsampling, average the current spectra */ if (cmd->downsamp > 1) { int ii; if (numconverted % cmd->downsamp == 0) { write_data = 0; /* Zero the array used for averaging */ for (ii = 0; ii < outnumlags; ii++) tmp_floats[ii] = 0.0; } else { /* Add the current data to the array used for averaging */ for (ii = 0; ii < outnumlags; ii++) tmp_floats[ii] += (float) output_samples[ii+cmd->lokill]; /* If that was the last sample to be added, average them */ /* and put them back into output_samples */ if (numconverted % cmd->downsamp == (cmd->downsamp-1)) { write_data = 1; for (ii = 0; ii < outnumlags; ii++) { tmp_floats[ii] /= (float) cmd->downsamp; output_samples[ii+cmd->lokill] = \ (unsigned char)(tmp_floats[ii]+0.5); } } } } numconverted++; if (write_data) { int ii; /* Invert the band so that the high freqs are first */ /* This is how SIGPROC stores its data. */ if (cmd->floatsP) { float tempzz = 0.0, *loptr, *hiptr; loptr = tmp_floats; // killed channels are already gone hiptr = tmp_floats + outnumlags - 1; for (ii = 0; ii < outnumlags / 2; ii++, loptr++, hiptr--) { SWAP(*loptr, *hiptr); } } else { unsigned char tempzz = 0.0, *loptr, *hiptr; loptr = output_samples + cmd->lokill; hiptr = output_samples + cmd->lokill + outnumlags - 1; for (ii = 0; ii < outnumlags / 2; ii++, loptr++, hiptr--) { SWAP(*loptr, *hiptr); } } /* Now actually write the data */ if (cmd->floatsP) { /* Copy the bytes to floats */ for (ii = 0; ii < outnumlags; ii++) tmp_floats[ii] = (float) output_samples[ii+cmd->lokill]; chkfwrite(tmp_floats, sizeof(float), fb.nchans, outfile); } else { chkfwrite(output_samples+cmd->lokill, sizeof(unsigned char), fb.nchans, outfile); } numwritten++; } } if ((!cmd->stdoutP) && (!cmd->outfileP)) fclose(outfile); fclose(infiles[filenum]); firstspec = 0; filenum++; free(path); free(filenm); } if ((!cmd->stdoutP) && (cmd->outfileP)) fclose(outfile); if (cmd->zerolagsP) fclose(zerolagfile); if (!cmd->stdoutP) fprintf(stderr, "Converted %lld samples and wrote %lld.\n\n", numconverted, numwritten); if (scaling) free(scalings); free(spigots); free(infiles); return 0; }
int main(int argc, char *argv[]) { FILE **infiles, *outfile = NULL, *scalingfile; int filenum, argnum = 1, ii = 0, ptsperblock, numlags, numfiles; int bytes_per_read, scaling = 0, numscalings, output = 1; long long N; char *path, *filenm; char outfilenm[200], filenmbase[200], scalingnm[200], rawlags[4096]; unsigned char output_samples[2048]; float *scalings = NULL; double dt, T; SPIGOT_INFO *spigots; sigprocfb fb; infodata idata; if (argc == 1) { fprintf(stderr, "Usage: spigotSband2filterbank [-stdout] SPIGOT_files\n"); exit(0); } if (!strcmp(argv[argnum], "-stdout")) { /* Use STDOUT */ argnum++; output = 0; outfile = stdout; } else { printf ("\nConverting raw SPIGOT S-band FITs data into SIGPROC\n" "filterbank format and throwing out the bottom 200MHz...\n\n"); } /* Attempt to read a file with lag scalings in it */ sprintf(scalingnm, "%s.scaling", filenmbase); if ((scalingfile = fopen(scalingnm, "rb"))) { /* Determine the length of the file */ numscalings = (int) chkfilelen(scalingfile, sizeof(float)); /* Create the array and read 'em */ scalings = gen_fvect(numscalings); chkfread(scalings, sizeof(float), numscalings, scalingfile); scaling = 1; /* close the scaling file */ fclose(scalingfile); if (outfile != stdout) printf("Scaling the lags with the %d values found in '%s'\n\n", numscalings, scalingnm); } /* Read and convert the basic SPIGOT file information */ numfiles = argc - 1; if (outfile == stdout) numfiles--; else printf("Spigot card input file information:\n"); spigots = (SPIGOT_INFO *) malloc(sizeof(SPIGOT_INFO) * numfiles); infiles = (FILE **) malloc(sizeof(FILE *) * numfiles); for (filenum = 0; filenum < numfiles; filenum++, argnum++) { if (outfile != stdout) printf(" '%s'\n", argv[argnum]); infiles[filenum] = chkfopen(argv[argnum], "rb"); read_SPIGOT_header(argv[argnum], spigots + filenum); rewind(infiles[filenum]); } if (outfile != stdout) printf("\n"); /* The following is necessary in order to initialize all the */ /* static variables in spigot.c */ get_SPIGOT_file_info(infiles, spigots, numfiles, 0, 0, &N, &ptsperblock, &numlags, &dt, &T, &idata, output); /* Step through the SPIGOT files */ ii = 0; if (outfile == stdout) argnum = 2; else argnum = 1; for (filenum = 0; filenum < numfiles; filenum++, argnum++) { split_path_file(argv[argnum], &path, &filenm); strncpy(filenmbase, filenm, strlen(filenm) - 5); filenmbase[strlen(filenm) - 5] = '\0'; sprintf(outfilenm, "%s.fil", filenmbase); if (outfile != stdout){ printf("Reading S-band Spigot lags from '%s'\n", argv[argnum]); printf("Writing filterbank spectra to '%s'\n\n", outfilenm); outfile = chkfopen(outfilenm, "wb"); } // Update the filterbank header information for each file spigot2sigprocfb(&(spigots[filenum]), &fb, filenmbase); write_filterbank_header(&fb, outfile); chkfseek(infiles[filenum], spigots[filenum].header_len, SEEK_SET); bytes_per_read = numlags * spigots[filenum].bits_per_lag / 8; /* Loop over the samples in the file */ while (chkfread(rawlags, bytes_per_read, 1, infiles[filenum])) { if (scaling) convert_SPIGOT_point(rawlags, output_samples, SUMIFS, scalings[ii]); else convert_SPIGOT_point(rawlags, output_samples, SUMIFS, 1.0); ii++; /* Invert the band so that the high freqs are first */ /* This is how SIGPROC stores its data. */ { int jj; unsigned char tempzz = 0.0, *loptr, *hiptr; loptr = output_samples + 0; hiptr = output_samples + numlags - 1; for (jj = 0; jj < numlags / 2; jj++, loptr++, hiptr--) { SWAP(*loptr, *hiptr); } } chkfwrite(output_samples, sizeof(unsigned char), fb.nchans, outfile); } fclose(infiles[filenum]); if (outfile != stdout) fclose(outfile); } if (outfile != stdout) fprintf(stderr, "Converted and wrote %d samples.\n\n", ii); if (scaling) vect_free(scalings); free(spigots); free(path); free(filenm); free(infiles); return 0; }
int main(int argc, char *argv[]) { /* Any variable that begins with 't' means topocentric */ /* Any variable that begins with 'b' means barycentric */ FILE *outfile; float *outdata = NULL; double tdf = 0.0, dtmp = 0.0, barydispdt = 0.0, dsdt = 0.0; double *dispdt, *tobsf = NULL, tlotoa = 0.0, blotoa = 0.0; double max = -9.9E30, min = 9.9E30, var = 0.0, avg = 0.0; char obs[3], ephem[10], *datafilenm, *outinfonm; char rastring[50], decstring[50]; int numchan = 1, newper = 0, oldper = 0, nummasked = 0, useshorts = 0; int numadded = 0, numremoved = 0, padding = 0, *maskchans = NULL, offset = 0; long slen, ii, numbarypts = 0, worklen = 65536; long numread = 0, numtowrite = 0, totwrote = 0, datawrote = 0; long padwrote = 0, padtowrite = 0, statnum = 0; int numdiffbins = 0, *diffbins = NULL, *diffbinptr = NULL, good_padvals = 0; int *idispdt; struct spectra_info s; infodata idata; Cmdline *cmd; mask obsmask; /* Call usage() if we have no command line arguments */ if (argc == 1) { Program = argv[0]; printf("\n"); usage(); exit(0); } /* Parse the command line using the excellent program Clig */ cmd = parseCmdline(argc, argv); spectra_info_set_defaults(&s); s.filenames = cmd->argv; s.num_files = cmd->argc; // If we are zeroDMing, make sure that clipping is off. if (cmd->zerodmP) cmd->noclipP = 1; s.clip_sigma = cmd->clip; // -1 causes the data to determine if we use weights, scales, & // offsets for PSRFITS or flip the band for any data type where // we can figure that out with the data s.apply_flipband = (cmd->invertP) ? 1 : -1; s.apply_weight = (cmd->noweightsP) ? 0 : -1; s.apply_scale = (cmd->noscalesP) ? 0 : -1; s.apply_offset = (cmd->nooffsetsP) ? 0 : -1; s.remove_zerodm = (cmd->zerodmP) ? 1 : 0; if (cmd->noclipP) { cmd->clip = 0.0; s.clip_sigma = 0.0; } if (cmd->ifsP) { // 0 = default or summed, 1-4 are possible also s.use_poln = cmd->ifs + 1; } if (cmd->ncpus > 1) { #ifdef _OPENMP int maxcpus = omp_get_num_procs(); int openmp_numthreads = (cmd->ncpus <= maxcpus) ? cmd->ncpus : maxcpus; // Make sure we are not dynamically setting the number of threads omp_set_dynamic(0); omp_set_num_threads(openmp_numthreads); printf("Using %d threads with OpenMP\n\n", openmp_numthreads); #endif } else { #ifdef _OPENMP omp_set_num_threads(1); // Explicitly turn off OpenMP #endif } #ifdef DEBUG showOptionValues(); #endif printf("\n\n"); printf(" Pulsar Data Preparation Routine\n"); printf(" Type conversion, de-dispersion, barycentering.\n"); printf(" by Scott M. Ransom\n\n"); if (RAWDATA) { if (cmd->filterbankP) s.datatype = SIGPROCFB; else if (cmd->psrfitsP) s.datatype = PSRFITS; } else { // Attempt to auto-identify the data identify_psrdatatype(&s, 1); if (s.datatype == SIGPROCFB) cmd->filterbankP = 1; else if (s.datatype == PSRFITS) cmd->psrfitsP = 1; else if (s.datatype == SDAT) useshorts = 1; else if (s.datatype != DAT) { printf ("Error: Unable to identify input data files. Please specify type.\n\n"); exit(1); } } if (!RAWDATA) { char *root, *suffix; /* Split the filename into a rootname and a suffix */ if (split_root_suffix(s.filenames[0], &root, &suffix) == 0) { printf("\nThe input filename (%s) must have a suffix!\n\n", s.filenames[0]); exit(1); } printf("Reading input data from '%s'.\n", s.filenames[0]); printf("Reading information from '%s.inf'.\n\n", root); /* Read the info file if available */ readinf(&idata, root); free(root); free(suffix); s.files = (FILE **) malloc(sizeof(FILE *)); s.files[0] = chkfopen(s.filenames[0], "rb"); } else { char description[40]; psrdatatype_description(description, s.datatype); if (s.num_files > 1) printf("Reading %s data from %d files:\n", description, s.num_files); else printf("Reading %s data from 1 file:\n", description); for (ii = 0; ii < s.num_files; ii++) { printf(" '%s'\n", cmd->argv[ii]); } printf("\n"); } /* Determine the other file names and open the output data file */ slen = strlen(cmd->outfile) + 8; datafilenm = (char *) calloc(slen, 1); sprintf(datafilenm, "%s.dat", cmd->outfile); outfile = chkfopen(datafilenm, "wb"); sprintf(idata.name, "%s", cmd->outfile); outinfonm = (char *) calloc(slen, 1); sprintf(outinfonm, "%s.inf", cmd->outfile); if (RAWDATA) { read_rawdata_files(&s); if (cmd->ignorechanstrP) { s.ignorechans = get_ignorechans(cmd->ignorechanstr, 0, s.num_channels-1, &s.num_ignorechans, &s.ignorechans_str); if (s.ignorechans_str==NULL) { s.ignorechans_str = (char *)malloc(strlen(cmd->ignorechanstr)+1); strcpy(s.ignorechans_str, cmd->ignorechanstr); } } print_spectra_info_summary(&s); spectra_info_to_inf(&s, &idata); /* Finish setting up stuff common to all raw formats */ idata.dm = cmd->dm; worklen = s.spectra_per_subint; /* If we are offsetting into the file, change inf file start time */ if (cmd->start > 0.0 || cmd->offset > 0) { if (cmd->start > 0.0) /* Offset in units of worklen */ cmd->offset = (long) (cmd->start * idata.N / worklen) * worklen; add_to_inf_epoch(&idata, cmd->offset * idata.dt); offset_to_spectra(cmd->offset, &s); printf("Offsetting into the input files by %ld spectra (%.6g sec)\n", cmd->offset, cmd->offset * idata.dt); } if (cmd->maskfileP) maskchans = gen_ivect(idata.num_chan); /* Compare the size of the data to the size of output we request */ if (cmd->numoutP) { dtmp = idata.N; idata.N = cmd->numout; writeinf(&idata); idata.N = dtmp; } else { /* Set the output length to a good number if it wasn't requested */ cmd->numoutP = 1; cmd->numout = choose_good_N((long long)(idata.N/cmd->downsamp)); writeinf(&idata); printf("Setting a 'good' output length of %ld samples\n", cmd->numout); } /* The number of topo to bary time points to generate with TEMPO */ numbarypts = (long) (idata.dt * idata.N * 1.1 / TDT + 5.5) + 1; // Identify the TEMPO observatory code { char *outscope = (char *) calloc(40, sizeof(char)); telescope_to_tempocode(idata.telescope, outscope, obs); free(outscope); } } /* Read an input mask if wanted */ if (cmd->maskfileP) { read_mask(cmd->maskfile, &obsmask); printf("Read mask information from '%s'\n\n", cmd->maskfile); good_padvals = determine_padvals(cmd->maskfile, &obsmask, s.padvals); } else { obsmask.numchan = obsmask.numint = 0; } /* Determine our initialization data if we do _not_ have Parkes, */ /* Green Bank BCPM, or Arecibo WAPP data sets. */ if (!RAWDATA) { /* If we will be barycentering... */ if (!cmd->nobaryP) { /* The number of topo to bary time points to generate with TEMPO */ numbarypts = (long) (idata.dt * idata.N * 1.1 / TDT + 5.5) + 1; // Identify the TEMPO observatory code { char *outscope = (char *) calloc(40, sizeof(char)); telescope_to_tempocode(idata.telescope, outscope, obs); free(outscope); } } /* The number of data points to work with at a time */ if (worklen > idata.N) worklen = idata.N; worklen = (long) (worklen / 1024) * 1024; /* If we are offsetting into the file, change inf file start time */ if (cmd->start > 0.0 || cmd->offset > 0) { if (cmd->start > 0.0) /* Offset in units of worklen */ cmd->offset = (long) (cmd->start * idata.N / worklen) * worklen; add_to_inf_epoch(&idata, cmd->offset * idata.dt); printf("Offsetting into the input files by %ld samples (%.6g sec)\n", cmd->offset, cmd->offset * idata.dt); if (useshorts) { chkfileseek(s.files[0], cmd->offset, sizeof(short), SEEK_SET); } else { chkfileseek(s.files[0], cmd->offset, sizeof(float), SEEK_SET); } } /* Set the output length to a good number if it wasn't requested */ if (!cmd->numoutP) { cmd->numoutP = 1; cmd->numout = choose_good_N((long long)(idata.N/cmd->downsamp)); printf("Setting a 'good' output length of %ld samples\n", cmd->numout); } } /* Check if we are downsampling */ dsdt = idata.dt * cmd->downsamp; if (cmd->downsamp > 1) { printf("Downsampling by a factor of %d\n", cmd->downsamp); printf("New sample dt = %.10g\n\n", dsdt); if (worklen % cmd->downsamp) { printf("Error: The downsample factor (%d) must be a factor of the\n", cmd->downsamp); printf(" worklength (%ld). Exiting.\n\n", worklen); exit(1); } } printf("Writing output data to '%s'.\n", datafilenm); printf("Writing information to '%s'.\n\n", outinfonm); /* The topocentric epoch of the start of the data */ tlotoa = (double) idata.mjd_i + idata.mjd_f; if (!strcmp(idata.band, "Radio") && RAWDATA) { /* The topocentric spacing between channels */ tdf = idata.chan_wid; numchan = idata.num_chan; /* The topocentric observation frequencies */ tobsf = gen_dvect(numchan); tobsf[0] = idata.freq; for (ii = 0; ii < numchan; ii++) tobsf[ii] = tobsf[0] + ii * tdf; /* The dispersion delays (in time bins) */ dispdt = gen_dvect(numchan); // full float bins idispdt = gen_ivect(numchan); // nearest integer bins if (cmd->nobaryP) { /* Determine our dispersion time delays for each channel */ for (ii = 0; ii < numchan; ii++) dispdt[ii] = delay_from_dm(cmd->dm, tobsf[ii]); /* The highest frequency channel gets no delay */ /* All other delays are positive fractions of bin length (dt) */ dtmp = dispdt[numchan - 1]; for (ii = 0; ii < numchan; ii++) { dispdt[ii] = (dispdt[ii] - dtmp) / idata.dt; idispdt[ii] = (int) (dispdt[ii] + 0.5); } worklen *= ((int) (fabs(dispdt[0])) / worklen) + 1; } } else { /* For unknown radio raw data (Why is this here?) */ tobsf = gen_dvect(numchan); dispdt = gen_dvect(numchan); idispdt = gen_ivect(numchan); dispdt[0] = 0.0; idispdt[0] = 0; if (!strcmp(idata.band, "Radio")) { tobsf[0] = idata.freq + (idata.num_chan - 1) * idata.chan_wid; cmd->dm = idata.dm; } else { tobsf[0] = 0.0; cmd->dm = 0.0; } } if (cmd->nobaryP) { /* Main loop if we are not barycentering... */ /* Allocate our data array */ outdata = gen_fvect(worklen); printf("Massaging the data ...\n\n"); printf("Amount Complete = 0%%"); do { if (RAWDATA) numread = read_psrdata(outdata, worklen, &s, idispdt, &padding, maskchans, &nummasked, &obsmask); else if (useshorts) numread = read_shorts(s.files[0], outdata, worklen, numchan); else numread = read_floats(s.files[0], outdata, worklen, numchan); if (numread == 0) break; /* Downsample if requested */ if (cmd->downsamp > 1) numread = downsample(outdata, numread, cmd->downsamp); /* Print percent complete */ newper = (int) ((float) totwrote / cmd->numout * 100.0) + 1; if (newper > oldper) { printf("\rAmount Complete = %3d%%", newper); fflush(stdout); oldper = newper; } /* Write the latest chunk of data, but don't */ /* write more than cmd->numout points. */ numtowrite = numread; if ((totwrote + numtowrite) > cmd->numout) numtowrite = cmd->numout - totwrote; chkfwrite(outdata, sizeof(float), numtowrite, outfile); totwrote += numtowrite; /* Update the statistics */ if (!padding) { for (ii = 0; ii < numtowrite; ii++) update_stats(statnum + ii, outdata[ii], &min, &max, &avg, &var); statnum += numtowrite; } /* Stop if we have written out all the data we need to */ if (totwrote == cmd->numout) break; } while (numread); datawrote = totwrote; } else { /* Main loop if we are barycentering... */ double avgvoverc = 0.0, maxvoverc = -1.0, minvoverc = 1.0, *voverc = NULL; double *bobsf = NULL, *btoa = NULL, *ttoa = NULL; /* What ephemeris will we use? (Default is DE405) */ strcpy(ephem, "DE405"); /* Define the RA and DEC of the observation */ ra_dec_to_string(rastring, idata.ra_h, idata.ra_m, idata.ra_s); ra_dec_to_string(decstring, idata.dec_d, idata.dec_m, idata.dec_s); /* Allocate some arrays */ bobsf = gen_dvect(numchan); btoa = gen_dvect(numbarypts); ttoa = gen_dvect(numbarypts); voverc = gen_dvect(numbarypts); for (ii = 0; ii < numbarypts; ii++) ttoa[ii] = tlotoa + TDT * ii / SECPERDAY; /* Call TEMPO for the barycentering */ printf("Generating barycentric corrections...\n"); barycenter(ttoa, btoa, voverc, numbarypts, rastring, decstring, obs, ephem); for (ii = 0; ii < numbarypts; ii++) { if (voverc[ii] > maxvoverc) maxvoverc = voverc[ii]; if (voverc[ii] < minvoverc) minvoverc = voverc[ii]; avgvoverc += voverc[ii]; } avgvoverc /= numbarypts; vect_free(voverc); blotoa = btoa[0]; printf(" Average topocentric velocity (c) = %.7g\n", avgvoverc); printf(" Maximum topocentric velocity (c) = %.7g\n", maxvoverc); printf(" Minimum topocentric velocity (c) = %.7g\n\n", minvoverc); printf("Collecting and barycentering %s...\n\n", cmd->argv[0]); /* Determine the initial dispersion time delays for each channel */ for (ii = 0; ii < numchan; ii++) { bobsf[ii] = doppler(tobsf[ii], avgvoverc); dispdt[ii] = delay_from_dm(cmd->dm, bobsf[ii]); } /* The highest frequency channel gets no delay */ /* All other delays are positive fractions of bin length (dt) */ barydispdt = dispdt[numchan - 1]; for (ii = 0; ii < numchan; ii++) { dispdt[ii] = (dispdt[ii] - barydispdt) / idata.dt; idispdt[ii] = (int) (dispdt[ii] + 0.5); } if (RAWDATA) worklen *= ((int) (dispdt[0]) / worklen) + 1; /* If the data is de-dispersed radio data... */ if (!strcmp(idata.band, "Radio")) { printf("The DM of %.2f at the barycentric observing freq of %.3f MHz\n", idata.dm, bobsf[numchan - 1]); printf(" causes a delay of %f seconds compared to infinite freq.\n", barydispdt); printf(" This delay is removed from the barycented times.\n\n"); } printf("Topocentric epoch (at data start) is:\n"); printf(" %17.11f\n\n", tlotoa); printf("Barycentric epoch (infinite obs freq at data start) is:\n"); printf(" %17.11f\n\n", blotoa - (barydispdt / SECPERDAY)); /* Convert the bary TOAs to differences from the topo TOAs in */ /* units of bin length (dsdt) rounded to the nearest integer. */ dtmp = (btoa[0] - ttoa[0]); for (ii = 0; ii < numbarypts; ii++) btoa[ii] = ((btoa[ii] - ttoa[ii]) - dtmp) * SECPERDAY / dsdt; { /* Find the points where we need to add or remove bins */ int oldbin = 0, currentbin; double lobin, hibin, calcpt; numdiffbins = abs(NEAREST_LONG(btoa[numbarypts - 1])) + 1; diffbins = gen_ivect(numdiffbins); diffbinptr = diffbins; for (ii = 1; ii < numbarypts; ii++) { currentbin = NEAREST_LONG(btoa[ii]); if (currentbin != oldbin) { if (currentbin > 0) { calcpt = oldbin + 0.5; lobin = (ii - 1) * TDT / dsdt; hibin = ii * TDT / dsdt; } else { calcpt = oldbin - 0.5; lobin = -((ii - 1) * TDT / dsdt); hibin = -(ii * TDT / dsdt); } while (fabs(calcpt) < fabs(btoa[ii])) { /* Negative bin number means remove that bin */ /* Positive bin number means add a bin there */ *diffbinptr = NEAREST_LONG(LININTERP(calcpt, btoa[ii - 1], btoa[ii], lobin, hibin)); diffbinptr++; calcpt = (currentbin > 0) ? calcpt + 1.0 : calcpt - 1.0; } oldbin = currentbin; } } *diffbinptr = cmd->numout; /* Used as a marker */ } diffbinptr = diffbins; /* Now perform the barycentering */ printf("Massaging the data...\n\n"); printf("Amount Complete = 0%%"); /* Allocate our data array */ outdata = gen_fvect(worklen); do { /* Loop to read and write the data */ int numwritten = 0; double block_avg, block_var; if (RAWDATA) numread = read_psrdata(outdata, worklen, &s, idispdt, &padding, maskchans, &nummasked, &obsmask); else if (useshorts) numread = read_shorts(s.files[0], outdata, worklen, numchan); else numread = read_floats(s.files[0], outdata, worklen, numchan); if (numread == 0) break; /* Downsample if requested */ if (cmd->downsamp > 1) numread = downsample(outdata, numread, cmd->downsamp); /* Determine the approximate local average */ avg_var(outdata, numread, &block_avg, &block_var); /* Print percent complete */ newper = (int) ((float) totwrote / cmd->numout * 100.0) + 1; if (newper > oldper) { printf("\rAmount Complete = %3d%%", newper); fflush(stdout); oldper = newper; } /* Simply write the data if we don't have to add or */ /* remove any bins from this batch. */ /* OR write the amount of data up to cmd->numout or */ /* the next bin that will be added or removed. */ numtowrite = abs(*diffbinptr) - datawrote; /* FIXME: numtowrite+totwrote can wrap! */ if ((totwrote + numtowrite) > cmd->numout) numtowrite = cmd->numout - totwrote; if (numtowrite > numread) numtowrite = numread; chkfwrite(outdata, sizeof(float), numtowrite, outfile); datawrote += numtowrite; totwrote += numtowrite; numwritten += numtowrite; /* Update the statistics */ if (!padding) { for (ii = 0; ii < numtowrite; ii++) update_stats(statnum + ii, outdata[ii], &min, &max, &avg, &var); statnum += numtowrite; } if ((datawrote == abs(*diffbinptr)) && (numwritten != numread) && (totwrote < cmd->numout)) { /* Add/remove a bin */ float favg; int skip, nextdiffbin; skip = numtowrite; do { /* Write the rest of the data after adding/removing a bin */ if (*diffbinptr > 0) { /* Add a bin */ favg = (float) block_avg; chkfwrite(&favg, sizeof(float), 1, outfile); numadded++; totwrote++; } else { /* Remove a bin */ numremoved++; datawrote++; numwritten++; skip++; } diffbinptr++; /* Write the part after the diffbin */ numtowrite = numread - numwritten; if ((totwrote + numtowrite) > cmd->numout) numtowrite = cmd->numout - totwrote; nextdiffbin = abs(*diffbinptr) - datawrote; if (numtowrite > nextdiffbin) numtowrite = nextdiffbin; chkfwrite(outdata + skip, sizeof(float), numtowrite, outfile); numwritten += numtowrite; datawrote += numtowrite; totwrote += numtowrite; /* Update the statistics and counters */ if (!padding) { for (ii = 0; ii < numtowrite; ii++) update_stats(statnum + ii, outdata[skip + ii], &min, &max, &avg, &var); statnum += numtowrite; } skip += numtowrite; /* Stop if we have written out all the data we need to */ if (totwrote == cmd->numout) break; } while (numwritten < numread); } /* Stop if we have written out all the data we need to */ if (totwrote == cmd->numout) break; } while (numread); /* Free the arrays used in barycentering */ vect_free(bobsf); vect_free(btoa); vect_free(ttoa); } /* Calculate what the amount of padding we need */ if (cmd->numout > totwrote) padwrote = padtowrite = cmd->numout - totwrote; /* Write the new info file for the output data */ if (!cmd->nobaryP) { idata.bary = 1; idata.mjd_i = (int) floor(blotoa - (barydispdt / SECPERDAY)); idata.mjd_f = blotoa - (barydispdt / SECPERDAY) - idata.mjd_i; } if (cmd->downsamp > 1) idata.dt = dsdt; update_infodata(&idata, totwrote, padtowrite, diffbins, numdiffbins); writeinf(&idata); /* Set the padded points equal to the average data point */ if (idata.numonoff >= 1) { int jj, index, startpad, endpad; for (ii = 0; ii < worklen; ii++) outdata[ii] = avg; fclose(outfile); outfile = chkfopen(datafilenm, "rb+"); for (ii = 0; ii < idata.numonoff; ii++) { index = 2 * ii; startpad = idata.onoff[index + 1]; if (ii == idata.numonoff - 1) endpad = idata.N - 1; else endpad = idata.onoff[index + 2]; chkfseek(outfile, (startpad + 1) * sizeof(float), SEEK_SET); padtowrite = endpad - startpad; for (jj = 0; jj < padtowrite / worklen; jj++) chkfwrite(outdata, sizeof(float), worklen, outfile); chkfwrite(outdata, sizeof(float), padtowrite % worklen, outfile); } } vect_free(outdata); // Close all the raw files and free their vectors close_rawfiles(&s); /* Print simple stats and results */ var /= (datawrote - 1); /* Conver the '.dat' file to '.sdat' if requested */ if (cmd->shortsP) { FILE *infile; int safe_convert = 1, bufflen = 65536; char *sdatafilenm; float *fbuffer; short *sbuffer; offset = (int) (floor(avg)); if ((max - min) > (SHRT_MAX - SHRT_MIN)) { if ((max - min) < 1.5 * (SHRT_MAX - SHRT_MIN)) { printf("Warning: There is more dynamic range in the data\n" " than can be handled perfectly:\n" " max - min = %.2f - %.2f = %.2f\n" " Clipping the low values...\n\n", max, min, max - min); offset = max - SHRT_MAX; } else { printf("Error: There is way too much dynamic range in the data:\n" " max - min = %.2f - %.2f = %.2f\n" " Not converting to shorts.\n\n", max, min, max - min); safe_convert = 0; } } if (safe_convert) { fbuffer = gen_fvect(bufflen); sbuffer = gen_svect(bufflen); sdatafilenm = (char *) calloc(slen, 1); sprintf(sdatafilenm, "%s.sdat", cmd->outfile); printf("\n\nConverting floats in '%s' to shorts in '%s'.", datafilenm, sdatafilenm); fflush(NULL); infile = chkfopen(datafilenm, "rb"); outfile = chkfopen(sdatafilenm, "wb"); while ((numread = chkfread(fbuffer, sizeof(float), bufflen, infile))) { for (ii = 0; ii < numread; ii++) sbuffer[ii] = (short) (fbuffer[ii] + 1e-20 - offset); chkfwrite(sbuffer, sizeof(short), numread, outfile); } fclose(infile); fclose(outfile); remove(datafilenm); vect_free(fbuffer); vect_free(sbuffer); } } printf("\n\nDone.\n\nSimple statistics of the output data:\n"); printf(" Data points written: %ld\n", totwrote); if (padwrote) printf(" Padding points written: %ld\n", padwrote); if (!cmd->nobaryP) { if (numadded) printf(" Bins added for barycentering: %d\n", numadded); if (numremoved) printf(" Bins removed for barycentering: %d\n", numremoved); } printf(" Maximum value of data: %.2f\n", max); printf(" Minimum value of data: %.2f\n", min); printf(" Data average value: %.2f\n", avg); printf(" Data standard deviation: %.2f\n", sqrt(var)); if (cmd->shortsP && offset != 0) printf(" Offset applied to data: %d\n", -offset); printf("\n"); /* Cleanup */ if (cmd->maskfileP) { free_mask(obsmask); vect_free(maskchans); } vect_free(tobsf); vect_free(dispdt); vect_free(idispdt); free(outinfonm); free(datafilenm); if (!cmd->nobaryP) vect_free(diffbins); return (0); }